JPH07109376B2 - Composite sensor output signal processing method - Google Patents

Composite sensor output signal processing method

Info

Publication number
JPH07109376B2
JPH07109376B2 JP2062619A JP6261990A JPH07109376B2 JP H07109376 B2 JPH07109376 B2 JP H07109376B2 JP 2062619 A JP2062619 A JP 2062619A JP 6261990 A JP6261990 A JP 6261990A JP H07109376 B2 JPH07109376 B2 JP H07109376B2
Authority
JP
Japan
Prior art keywords
flow rate
sensor
signal processing
processing method
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2062619A
Other languages
Japanese (ja)
Other versions
JPH03264821A (en
Inventor
克人 酒井
孝 植木
哲生 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2062619A priority Critical patent/JPH07109376B2/en
Publication of JPH03264821A publication Critical patent/JPH03264821A/en
Publication of JPH07109376B2 publication Critical patent/JPH07109376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2種類の流量センサを使用して測定精度を向
上させる複合センサ出力信号処理方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a composite sensor output signal processing method that improves measurement accuracy by using two types of flow rate sensors.

〔従来の技術〕[Conventional technology]

フルイデイツク流量センサを気体流量計に使用すると、
低流量域で感度が急激に低下し、満足に測定できないと
いう欠点がある。そこで、低流量域まで測定可能な異な
つた方式によるセンサたとえば熱式の半導体流量センサ
と上記フルイデイツク流量センサとを組み合わせ、低流
量域から高流量域まで測定を可能にするような方法が提
案されている。フルイデイツク流量センサを気体流量計
に使用したときの特性を第4図(a)に、熱式半導体流
量センサを気体流量計に使用したときの特性を第4図
(b)に示す。第4図において、横軸は流量、縦軸はセ
ンサ出力である。
Using a fluidic flow sensor with a gas flow meter,
There is a drawback in that the sensitivity drops sharply in the low flow rate region, and satisfactory measurement cannot be performed. Therefore, a method has been proposed in which a sensor using a different method capable of measuring up to a low flow rate range, for example, a thermal semiconductor flow rate sensor and the above fluidic flow rate sensor are combined to enable measurement from a low flow rate range to a high flow rate range. There is. The characteristics when the fluidic flow sensor is used for the gas flow meter are shown in FIG. 4 (a), and the characteristics when the thermal semiconductor flow sensor is used for the gas flow meter are shown in FIG. 4 (b). In FIG. 4, the horizontal axis represents the flow rate and the vertical axis represents the sensor output.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

フルイデイツク流量センサが気体の体積流量を測定する
のに対して、熱式半導体流量センサは気体の質量流量を
測定するため、気体の温度、密度、気体混合比が変化す
ると当然両者の測定値に差が生じる。これを第5図に示
す。第5図において、横軸は体積流量、縦軸はセンサ出
力であり、S1は温度変化等があるとのフルイデイツク流
量センサの出力、S2は温度変化等があるときの熱式半導
体流量センサの出力を示す。熱式半導体流量センサは第
5図に示すように温度変化等により異なる特性を示すの
で、温度によつては、熱式半導体流量センサからフルイ
デイツク流量センサへの切換え、あるいはフルイデイツ
ク流量センサから熱式半導体流量センサへの切換えにお
いて、流量測定値の飛びすなわち流量測定値の急激な変
化を生じる。
The fluidic flow rate sensor measures the volumetric flow rate of gas, whereas the thermal semiconductor flow rate sensor measures the mass flow rate of gas.Therefore, if the temperature, density, or gas mixture ratio of the gas changes, the measured values of both will differ. Occurs. This is shown in FIG. In FIG. 5, the horizontal axis is the volume flow rate, and the vertical axis is the sensor output. S1 is the output of the fluidic flow sensor when there is a temperature change, etc., and S2 is the output of the thermal semiconductor flow sensor when there is a temperature change. Indicates. As shown in FIG. 5, the thermal type semiconductor flow rate sensor shows different characteristics depending on temperature changes. Therefore, depending on the temperature, the thermal type semiconductor flow rate sensor is switched to the fluidic flow rate sensor or the fluidic flow rate sensor is changed to the thermal type semiconductor flow rate sensor. When switching to the flow rate sensor, a jump in the flow rate measurement value, that is, a rapid change in the flow rate measurement value occurs.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、2種類の流量センサを使用した
場合のセンサ切換えにおける流量測定値のずれをなく
し、かつ測定精度を向上させる信号処理方法を提供する
ことにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to eliminate the deviation of the flow rate measurement value in the sensor switching when using two types of flow rate sensors and to improve the measurement accuracy. It is to provide a signal processing method.

〔課題を解決するための手段〕[Means for Solving the Problems]

このような目的を達成するために本発明は、第1の所定
流量以下においては流量値を第1の流量センサによつて
測定表示し、第2の所定流量以上においては流量値を第
2の流量センサによつて測定表示する複合センサ出力信
号処理方法において、測定対象流量が第1の所定流量と
第2の所定流量との間の値であるとき2つの流量センサ
のうち高い精度の流量センサにより低い精度の流量セン
サのデータ校正を自動的に行なうようにしたものであ
る。
In order to achieve such an object, the present invention measures and displays a flow rate value by a first flow rate sensor below a first predetermined flow rate, and displays a flow rate value above a second predetermined flow rate by a second flow rate value. In a composite sensor output signal processing method for measuring and displaying by a flow rate sensor, when the flow rate to be measured is a value between a first predetermined flow rate and a second predetermined flow rate, a flow sensor with high accuracy of the two flow rate sensors. The data calibration of the flow sensor with lower accuracy is automatically performed.

〔作用〕[Action]

本発明による複合センサ出力信号処理方法においては、
流量測定値は流量センサ切換えにおいて急激な変化がな
く、滑らかな値となる。
In the composite sensor output signal processing method according to the present invention,
The flow rate measurement value does not change suddenly when switching the flow rate sensor and is a smooth value.

〔実施例〕〔Example〕

まず、本発明の概要について述べる。2個の流量センサ
の切換点付近に両センサが同時に動作する範囲を設け、
測定値がこの範囲に入つたときえられた2つのデータの
うち予め定められた高精度センサのデータで低精度セン
サのデータを校正する。この校正に使つた補正計数は次
に校正を行なうまで低精度センサのデータ補正に使用す
る。
First, the outline of the present invention will be described. Provide a range where both sensors operate simultaneously near the switching point of the two flow rate sensors,
The data of the low-precision sensor is calibrated with the data of the predetermined high-precision sensor of the two data obtained when the measured value falls within this range. The correction count used for this calibration is used for data correction of the low precision sensor until the next calibration.

第3図は第1の流量センサとしての熱式半導体流量セン
サ1と第2の流量センサとしてのフルイデイツク流量セ
ンサ2とを使用した気体流量計を示す系統図で、3およ
び4は流量値FAおよびFBを出力する信号処理回路、5は
流量値FA,FBを入力して処理を行なうマイクロコンピュ
ータ、Gは気体である。第1図においては、フルイデイ
ツク流量センサ2が高精度センサ、熱式半導体流量セン
サ1が低精度センサであり、フルイデイツク流量センサ
2の流量測定値のある範囲で熱式半導体流量センサ1の
データ校正を行なう。
FIG. 3 is a system diagram showing a gas flow meter using a thermal semiconductor flow sensor 1 as a first flow sensor and a fluidic flow sensor 2 as a second flow sensor. 3 and 4 are flow rate values FA and A signal processing circuit for outputting FB, 5 is a microcomputer for inputting and processing the flow rate values FA, FB, and G is a gas. In FIG. 1, the fluidic flow sensor 2 is a high-accuracy sensor, the thermal semiconductor flow sensor 1 is a low-accuracy sensor, and data calibration of the thermal semiconductor flow sensor 1 is performed within a certain range of flow measurement values of the fluidic flow sensor 2. To do.

第1図は本発明による複合センサ出力信号処理方法の一
実施例を説明するためのフローチヤート、第2図は2種
類のセンサ(熱式半導体流量センサおよびフルイデイツ
ク流量センサ)の特性を示すグラフである。第2図にお
いて横軸は流量、縦軸はセンサ出力値で、SFAは熱式半
導体流量センサ1の特性を示す曲線、SFBはフルイデイ
ツク流量センサ2の特性を示す曲線である。またSFAC
はデータ校正後の熱式半導体流量センサ1の出力測定値
である。
FIG. 1 is a flow chart for explaining an embodiment of a composite sensor output signal processing method according to the present invention, and FIG. 2 is a graph showing characteristics of two kinds of sensors (a thermal type semiconductor flow sensor and a fluidic flow sensor). is there. In FIG. 2, the horizontal axis is the flow rate, the vertical axis is the sensor output value, S FA is a curve showing the characteristics of the thermal semiconductor flow rate sensor 1, and S FB is a curve showing the characteristics of the fluidic flow rate sensor 2. See also S FAC
Is the measured output value of the thermal semiconductor flow sensor 1 after data calibration.

次に、データ校正の方法について第1図〜第3図を用い
て説明する。センサ1,2の測定出力値の誤差がセンサの
感度変化に起因するものと考え、実際の流量をF、セン
サ1,2の各々の所定の感度からの変化分をΔSA,ΔSBとす
れば、 FA=F(1+ΔSA)・・・・・(1) FB=F(1+ΔSB)・・・・・(2) となる。なお、センサの感度変化は周囲温度の変化や、
測定気体成分の違い、経時変化などによつて生じる。
Next, a method of calibrating data will be described with reference to FIGS. Considering that the error in the measured output value of the sensors 1 and 2 is caused by the sensitivity change of the sensor, if the actual flow rate is F and the change from the predetermined sensitivity of each of the sensors 1 and 2 is ΔSA, ΔSB, FA = F (1 + ΔSA) (1) FB = F (1 + ΔSB) (2) In addition, the sensitivity change of the sensor is due to the change of ambient temperature,
It is caused by the difference in the measurement gas component, the change over time, and the like.

センサの特性から|ΔSA|≫|ΔSB|と考え、フルイデイ
ツク流量センサ2による流量測定値FBが第1図のセンサ
出力値F1(第1の所定流量)とF2(第2の所定流量)と
の間に入つたとき(第1図のステツプ11〜13)、フルイ
デイツク流量センサ2の測定FBの値を使つて熱式半導体
流量センサ1の測定値FAの値を校正する。すなわち、次
式の補正計数kの値を決定する(第1図のステツプ1
5)。
Considering the characteristics of the sensor as | ΔSA | >> | ΔSB | When the interval is reached (steps 11 to 13 in FIG. 1), the value of the measured value FA of the thermal semiconductor flow sensor 1 is calibrated using the value of the measured FB of the fluidic flow sensor 2. That is, the value of the correction coefficient k in the following equation is determined (step 1 in FIG. 1).
Five).

k・F(1+ΔSA)=FB・・・・・(3) 以降、次に流量測定値FBが第1図のセンサ出力値F1とF2
との間に入るまで、センサ1の測定値FAにkを掛けて表
示する。センサ1の測定値FAにkを掛けたものをFACと
表わすと、 FAC=k・FA=k・F(1+ΔSA)・・・・・(4) このようにすれば、熱式半導体流量センサ1の表示精度
が向上し、また、フルイデイツク流量センサ2の測定値
FBとの切換時のずれもなくすことができる。
k · F (1 + ΔSA) = FB (3) After that, the flow rate measurement value FB is the sensor output value F1 and F2 in FIG.
The measured value FA of the sensor 1 is multiplied by k and displayed until the interval between and. The value obtained by multiplying the measured value FA of the sensor 1 by k is expressed as FAC. FAC = k · FA = k · F (1 + ΔSA) (4) By doing this, the thermal semiconductor flow sensor 1 Display accuracy is improved, and the measured value of fluidic flow sensor 2
It is possible to eliminate the shift when switching to the FB.

フルイデイツク流量センサ2では瞬時に流量値が得られ
ず、精度よく測定するには或る程度以上の測定時間が必
要である。このため、校正を行なう際、一定時間流量を
測定し、その間の平均流量をもつて、測定値FBとする。
熱式半導体流量センサ1は連続測定可能であるが、校正
時にはフルイデイツク流量センサ2と同時間内に測定を
継続して行ない、その間の平均流量をもつて流量値FAと
する。この処理は第1図のステツプ14,15に示す処理で
あるが、この処理については後述する。このような処理
を行なうことにより、測定時間内に流量変動を生じても
その影響を受けず、また高精度の校正が可能となる。な
お、この同時測定中にはフルイデイツク流量センサ2の
出力値FBを積算する(第1図のステツプ13,14,20)。ま
た、同時測定中に流量が変化して第2図に示す出力値F1
〜F2の範囲を外れた場合には校正演算は中止、通常の測
定に戻る。なお、フルイデイツク流量センサ2の出力値
FBが出力値F1より小さい場合は熱式半導体流量センサ1
の出力値FAを補正して積算する(第1図のステツプ12,1
7〜19)。
The fluidic flow rate sensor 2 cannot instantaneously obtain a flow rate value, and a certain amount of measurement time or more is required for accurate measurement. For this reason, when performing calibration, the flow rate is measured for a certain period of time, and the average flow rate during that period is taken as the measured value FB.
The thermal semiconductor flow rate sensor 1 can continuously measure, but during calibration, the measurement is continued within the same time as the fluidic flow rate sensor 2, and the average flow rate during that time is used as the flow rate value FA. This process is the process shown in steps 14 and 15 of FIG. 1, and this process will be described later. By performing such a process, even if a flow rate fluctuation occurs within the measurement time, it is not affected and a highly accurate calibration becomes possible. During this simultaneous measurement, the output value FB of the fluidic flow sensor 2 is integrated (steps 13, 14, 20 in FIG. 1). In addition, the flow rate changes during the simultaneous measurement and the output value F1 shown in Fig. 2
If it goes out of the range of to F2, the calibration calculation is stopped and normal measurement is resumed. The output value of fluidic flow sensor 2
If FB is smaller than output value F1, thermal semiconductor flow sensor 1
The output value FA of is corrected and integrated (steps 12, 1 in Fig. 1)
7-19).

データ校正範囲を定めるセンサ出力値F1,F2の値の決定
は次のように行なう。フルイデイツク流量センサ2で満
足できる測定の行なえる下限値をF0とし、熱式半導体流
量センサ1で満足できる測定の行なえる上限値をF3とす
れば、 F0≦F1<F2≦F3・・・・・(5) のように出力値F1,F2を選ぶ。
The sensor output values F1 and F2 that determine the data calibration range are determined as follows. F0 ≤ F1 <F2 ≤ F3, where F0 is the lower limit that can be satisfied with the fluidic flow sensor 2 and F3 is the upper limit that can be satisfied with the thermal semiconductor flow sensor 1. Select output values F1 and F2 as shown in (5).

熱式半導体流量センサ1は連続測定可能であるが、フル
イデイツク流量センサ2は間欠的にしか測定結果が得ら
れないため、気体Gの流量変化が急激に生じた場合、F1
〜F2の区間がせまいと、測定を行なわないうちにこの区
間を通過してしまい、先に述べた補正演算が行なわれな
い可能性がある。また、F1〜F2の区間が広いと、この区
間に測定値が入る確率は高くなるが、ここでは二重に測
定を行なうため消費電力が増大し、電池駆動の気体流量
計では好ましくない。このため、F1,F2は上に示した式
(5)の範囲で実際の使用条件を考慮しながら決定す
る。例えば、F0=100l/h,F3=300l/hの場合、F1=150l/
h,F2=180l/hのように選ぶ。
The thermal semiconductor flow rate sensor 1 can continuously measure, but the fluidic flow rate sensor 2 can obtain the measurement result only intermittently. Therefore, when the flow rate of the gas G changes abruptly,
If the section from F2 to F2 is too small, it may pass through this section before measurement, and the correction calculation described above may not be performed. In addition, if the section from F1 to F2 is wide, the probability that a measured value will enter this section is high, but since the measurement is performed twice here, the power consumption increases, which is not preferable for a gas flow meter driven by a battery. Therefore, F1 and F2 are determined within the range of the equation (5) shown above while considering the actual usage conditions. For example, when F0 = 100l / h and F3 = 300l / h, F1 = 150l / h
Select as h, F2 = 180l / h.

先に述べたデータ校正時の消費電力を防ぐには次のよう
な方法がある。演算装置内にタイマを設け、データ校正
を行なう毎にタイマをリセツトする(第1図のステツプ
16)。その後、測定値がF1〜F2の間に入つてもタイマに
あらかじめセツトした時間T1が経過するまではデータ校
正を行なわず(第1図のステツプ13,14,20)、時間T1を
過ぎてから初めてデータ校正を行なうようにする(第1
図のステツプ14,15)。時間T1は気体の温度変化の速度
や気体成分変化の速度に応じて決定する。すなわち変化
の速い測定条件では時間T1を短く、遅い条件では時間T1
は長く選ぶ。このようにすることにより、必要以上の頻
度でデータ校正しないようになり、無駄な電力の消費を
防ぐことができる。
There are the following methods to prevent the power consumption during data calibration described above. A timer is provided in the arithmetic unit, and the timer is reset every time data is calibrated (step 1 in FIG. 1).
16). After that, even if the measured value falls between F1 and F2, data calibration is not performed until the time T1 preset in the timer has elapsed (steps 13, 14, 20 in FIG. 1), and after the time T1 has passed. Make sure to calibrate data for the first time (1st
(Steps 14 and 15 in the figure). The time T1 is determined according to the rate of temperature change of the gas and the rate of change of the gas component. That is, the time T1 is short under the fast-changing measurement conditions and the time T1 under the slow-change conditions.
Choose long. By doing so, data calibration is not performed more frequently than necessary, and wasteful power consumption can be prevented.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、測定対象流量が第1の所
定流量を一定量越えた流量範囲にあるとき第1と第2の
2つの流量センサで同時に測定し、2つの流量センサの
うち安定性の高い流量センサにより経時的なドリフトが
発生しやすい流量センサのデータ校正を自動的に行なう
ことにより、経時的なドリフトを発生しやすい流量セン
サの安定性を高めることができるとともに、2種類の流
量センサを使用した場合のセンサ切換えにおける流量測
定値のずれをなくすことができる効果がある。
As described above, according to the present invention, when the flow rate to be measured is within the flow rate range that exceeds the first predetermined flow rate by a certain amount, the first and second flow rate sensors simultaneously measure, and the two flow rate sensors are stable. A highly accurate flow sensor can easily increase the stability of the flow sensor that is prone to drift over time by automatically performing data calibration of the flow sensor that is prone to drift over time. There is an effect that it is possible to eliminate the deviation of the flow rate measurement value when switching the sensor when the flow rate sensor is used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による複合センサ出力信号処理方法の一
実施例を説明するためのフローチヤート、第2図は2種
類の流量センサの特性を示すグラフ、第3図は本発明に
よる複合センサ出力信号処理方法の一実施例が適用され
る気体流量計を示す系統図、第4図はフルイデイツク流
量センサと熱式半導体流量センサの特性を示すグラフ、
第5図はフルイデイツク流量センサと熱式半導体流量セ
ンサの温度変化等による出力値変化を示すグラフであ
る。 1……熱式半導体流量センサ、2……フルイデイツク流
量センサ、3,4……信号処理回路、5……マイクロコン
ピュータ、G……気体。
FIG. 1 is a flow chart for explaining one embodiment of a composite sensor output signal processing method according to the present invention, FIG. 2 is a graph showing characteristics of two kinds of flow rate sensors, and FIG. 3 is a composite sensor output according to the present invention. FIG. 4 is a system diagram showing a gas flow meter to which an embodiment of the signal processing method is applied. FIG. 4 is a graph showing characteristics of the fluidic flow sensor and the thermal semiconductor flow sensor.
FIG. 5 is a graph showing changes in output values of the fluidic flow sensor and the thermal semiconductor flow sensor due to temperature changes and the like. 1 ... Thermal semiconductor flow sensor, 2 ... Fluidic flow sensor, 3, 4 ... Signal processing circuit, 5 ... Microcomputer, G ... Gas.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−12316(JP,A) 特開 平1−308921(JP,A) 実開 平2−93716(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-12316 (JP, A) JP-A-1-308921 (JP, A) SAIKAI HEI 2-93716 (JP, U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1の所定流量以下においては流量値を第
1の流量センサによつて測定表示し、第2の所定流量以
上においては流量値を第2の流量センサによつて測定表
示する複合センサ出力信号処理方法において、第1の流
量センサは第1の所定流量を一定量越えた流量範囲でも
第2の流量センサと同時に測定できるようにしておき、
その第1の流量センサと第2の流量センサが同時に測定
する流量範囲に測定対象流量があるとき前記2つの流量
センサのうち安定性の高い流量センサにより経時的なド
リフトが発生しやすい流量センサのデータ校正を自動的
に行なう複合センサ出力信号処理方法。
1. A flow rate value is measured and displayed by a first flow rate sensor below a first predetermined flow rate, and a flow rate value is measured and displayed by a second flow rate sensor above a second predetermined flow rate. In the composite sensor output signal processing method, the first flow rate sensor can measure simultaneously with the second flow rate sensor even in a flow rate range that exceeds the first predetermined flow rate by a certain amount.
When the flow rate to be measured is in the flow rate range measured by the first flow rate sensor and the second flow rate sensor at the same time, the flow rate sensor with high stability out of the two flow rate sensors causes a drift with time to easily occur. A composite sensor output signal processing method that automatically performs data calibration.
【請求項2】2つの流量センサとしてフルイデイツクセ
ンサと熱式半導体センサとを用い、演算装置によりデー
タ校正を行なう請求項1記載の複合センサ出力信号処理
方法。
2. A composite sensor output signal processing method according to claim 1, wherein a fluid sensor and a thermal semiconductor sensor are used as the two flow rate sensors, and data is calibrated by an arithmetic unit.
【請求項3】演算装置にタイマを付加し、タイマセツト
時間を経過するまでは校正を行なわないようにする請求
項2記載の複合センサ出力信号処理方法。
3. The composite sensor output signal processing method according to claim 2, wherein a timer is added to the arithmetic unit so that calibration is not performed until the timer set time has elapsed.
JP2062619A 1990-03-15 1990-03-15 Composite sensor output signal processing method Expired - Lifetime JPH07109376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062619A JPH07109376B2 (en) 1990-03-15 1990-03-15 Composite sensor output signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062619A JPH07109376B2 (en) 1990-03-15 1990-03-15 Composite sensor output signal processing method

Publications (2)

Publication Number Publication Date
JPH03264821A JPH03264821A (en) 1991-11-26
JPH07109376B2 true JPH07109376B2 (en) 1995-11-22

Family

ID=13205516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062619A Expired - Lifetime JPH07109376B2 (en) 1990-03-15 1990-03-15 Composite sensor output signal processing method

Country Status (1)

Country Link
JP (1) JPH07109376B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2204200A (en) * 1998-12-23 2000-07-31 Image Guided Technologies, Inc. A hybrid 3-d probe tracked by multiple sensors
GB2375401A (en) * 2001-05-03 2002-11-13 Endress & Hauser Ltd A flow meter incorporating thermal loss sensors and an installation adapter to provide known flow conditions upstream of the flow meter
JP4944622B2 (en) * 2007-01-17 2012-06-06 古河電気工業株式会社 Flow velocity measurement system
JP5402095B2 (en) 2009-03-06 2014-01-29 株式会社リコー Ink jet recording ink, ink cartridge, ink jet recording apparatus, ink recorded matter
NL2006895C2 (en) * 2011-06-03 2012-12-04 Berkin Bv FLOW MEASURING DEVICE AND ITS USE FOR DETERMINING A FLOW OF A MEDIA, AND THE METHOD FOR THIS.
EP2913642B1 (en) 2012-10-24 2021-03-17 National Institute of Advanced Industrial Science and Technology Mass flowmeter

Also Published As

Publication number Publication date
JPH03264821A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
JP2787785B2 (en) Flowmeter and flow measurement method
CA2091853A1 (en) Electronic clinical thermometer
JP2001013001A (en) Electronic weighing apparatus with built-in weight
JPH07109376B2 (en) Composite sensor output signal processing method
JPH0333213B2 (en)
JP3053486B2 (en) Fluidic gas meter
JPS5895230A (en) Method and apparatus for electronic type temperature measurement
JP2513390B2 (en) Electronic balance
JP2001056380A (en) Radiation monitor for measurement of counting rate
JP2004093174A (en) Flowmeter
JPS6175217A (en) Instrumental errors corrector for flowmeter
JPH0612282B2 (en) Liquid meter for mobile
JPH0462430A (en) Integrating flowmeter consisting of plural sensors
JPH0119062Y2 (en)
JP3170335B2 (en) Gas flow meter
JPH07333365A (en) Pressure measuring apparatus
JP2504753B2 (en) Electronic thermometer
JP3036218B2 (en) Flowmeter
JPS604818A (en) Flow rate measuring apparatus
JP2708280B2 (en) Fluidic gas meter with micro flow sensor
JP3146603B2 (en) Fluidic meter controller
JPS6237148Y2 (en)
JPS6367130B2 (en)
JPS5832652B2 (en) How to calibrate an electronic thermometer
JP3146602B2 (en) Fluidic meter controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 15