JPH07108949B2 - Blow hollow molded products - Google Patents

Blow hollow molded products

Info

Publication number
JPH07108949B2
JPH07108949B2 JP59025142A JP2514284A JPH07108949B2 JP H07108949 B2 JPH07108949 B2 JP H07108949B2 JP 59025142 A JP59025142 A JP 59025142A JP 2514284 A JP2514284 A JP 2514284A JP H07108949 B2 JPH07108949 B2 JP H07108949B2
Authority
JP
Japan
Prior art keywords
weight
parts
glass fiber
molded product
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59025142A
Other languages
Japanese (ja)
Other versions
JPS60170664A (en
Inventor
尚彦 菅
勝也 大野
忠夫 塘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59025142A priority Critical patent/JPH07108949B2/en
Publication of JPS60170664A publication Critical patent/JPS60170664A/en
Publication of JPH07108949B2 publication Critical patent/JPH07108949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、ポリアミド樹脂から得られたブロー中空成形
品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blow hollow molded article obtained from a polyamide resin.

ポリアミド樹脂製ブロー中空成形品の製造法として、ポ
リアミド樹脂95〜50重量部にガラス繊維を5〜50重量部
の割合で混合したポリアミド組成物をブロー成形する方
法がある(特公昭40−5233号公報)。
As a method for producing blow hollow molded articles made of polyamide resin, there is a method of blow molding a polyamide composition in which 95 to 50 parts by weight of polyamide resin and 5 to 50 parts by weight of glass fibers are mixed (Japanese Patent Publication No. 405233). Gazette).

この方法は、分子量25,000以下のポリアミドを使用し、
ガラス繊維の混入により見かけの溶融粘度増加を狙うも
のである。
This method uses a polyamide with a molecular weight of 25,000 or less,
It is intended to increase the apparent melt viscosity by mixing glass fibers.

この方法は、ポリアミド樹脂を高重合しなくてもよいと
いう利点はあるが、得られた成形品は低温時における衝
撃性が不十分であり、高温時の剛性も劣り、更に安定し
た成形ができないため成形品の肉厚が一定になりにく
く、大型の中空成形品を得る技術としてはなお改良の余
地がある。
This method has the advantage that the polyamide resin does not have to be highly polymerized, but the resulting molded article has insufficient impact resistance at low temperatures, poor rigidity at high temperatures, and further stable molding cannot be performed. Therefore, the thickness of the molded product is less likely to be constant, and there is room for improvement as a technique for obtaining a large hollow molded product.

そこで本発明者らは、剛性が高く耐衝撃性にすぐれ、し
かも肉厚の斑の少ないポリアミド樹脂からなるブロー中
空成形品を得る目的で鋭意検討したところ、数平均分子
量が20,000〜60,000のポリアミド樹脂(A)が40〜80重
量部、エチレンおよび/またはプロピレン99.9〜10モル
%と0.1〜10モル%の不飽和カルボン酸またはその誘導
体とが共重合した変性ポリオレフィン(B)30〜5重量
部、平均直径3〜20μ、平均長さ50〜600μであり(平
均長さ)/(平均直径)が10〜90であるガラス繊維
(C)が5〜50重量部の合計100重量部に対し、ハロゲ
ン化銅および/又はその誘導体(D)が0.01〜0.2重量
部の割合で含まれている組成物からなるブロー中空成形
品とすればよいことが分かった。以下、本発明の成形品
の製法及び成形品の特徴を詳述する。
Therefore, the present inventors have conducted intensive studies for the purpose of obtaining a blow hollow molded article made of a polyamide resin having high rigidity and excellent impact resistance, and having less unevenness in wall thickness, and a number average molecular weight of 20,000 to 60,000 polyamide resin. 40 to 80 parts by weight of (A), 30 to 5 parts by weight of modified polyolefin (B) in which 99.9 to 10 mol% of ethylene and / or propylene and 0.1 to 10 mol% of an unsaturated carboxylic acid or its derivative are copolymerized, Halogen is used for the total of 100 parts by weight of the glass fiber (C) having an average diameter of 3 to 20 µ, an average length of 50 to 600 µ and an (average length) / (average diameter) of 10 to 90, of 5 to 50 parts by weight. It has been found that a blow hollow molded article made of a composition containing copper oxide and / or its derivative (D) in an amount of 0.01 to 0.2 part by weight is preferable. Hereinafter, the method for producing the molded article of the present invention and the features of the molded article will be described in detail.

まず、ポリアミド樹脂(A)、変性ポリオレフイン
(B)、ガラス繊維(C)及びハロゲン化銅等を用意す
る。
First, a polyamide resin (A), modified polyolefin (B), glass fiber (C), copper halide and the like are prepared.

ポリアミド樹脂は、いわゆるナイロン6、ナイロン66、
ナイロン610、ナイロン612、ナイロン11、ナイロン12あ
るいはナイロン6/66、ナイロン6/610、ナイロン6/12、
ナイロン66/12等のホモポリマーまたはコポリマー(前
記において、“/"はコポリマーを意味する)またはこれ
らの混合体である。好ましいポリアミドはナイロン6、
66のホモポリマーまたはこれらのコポリマーである。な
お、これらのポリマーに滑剤、結晶核剤、耐熱安定剤、
耐候剤、帯電防止剤、難燃剤、着色剤その他種々の添加
剤を含有できる。
Polyamide resin is so-called nylon 6, nylon 66,
Nylon 610, Nylon 612, Nylon 11, Nylon 12 or Nylon 6/66, Nylon 6/610, Nylon 6/12,
It is a homopolymer or a copolymer such as nylon 66/12 (wherein "/" means a copolymer) or a mixture thereof. Preferred polyamide is nylon 6,
66 homopolymers or copolymers thereof. In addition, lubricants, crystal nucleating agents, heat stabilizers,
Various additives such as weathering agents, antistatic agents, flame retardants, coloring agents and the like can be contained.

上記ポリアミド樹脂は平均分子量20,000〜60,000のもの
でなければならない。平均分子量が20,000未満の場合、
剛性の大きい成形品が得られないだけではなく安定した
成形性が得られず、そのため肉厚の斑が生じやすい。
The polyamide resin should have an average molecular weight of 20,000-60,000. If the average molecular weight is less than 20,000,
Not only a molded product with high rigidity cannot be obtained, but also stable moldability cannot be obtained, and therefore unevenness in wall thickness is likely to occur.

本発明でいう変性ポリオレフィンとは、エチレンおよび
/またはプロピレンと不飽和カルボン酸またはその誘導
体とのブロック共重合体およびランダム共重合体、なら
びにエチレンおよび/またはプロピレンの重合体に不飽
和カルボン酸またはその誘導体がグラフトした共重合体
(前記各共重合体において、エチレンおよびプロピレン
の構造単位99.9〜10モル%、不飽和カルボン酸およびそ
の誘導体の構造単位0.1〜10モル%である)からなる群
から選ばれる1種以上の変性ポリオレフィンを意味す
る。
The modified polyolefin referred to in the present invention means a block copolymer and a random copolymer of ethylene and / or propylene and an unsaturated carboxylic acid or a derivative thereof, and an ethylene and / or propylene polymer having an unsaturated carboxylic acid or an unsaturated carboxylic acid thereof. Derivative-grafted copolymer (in each of the copolymers, the structural unit of ethylene and propylene is 99.9 to 10 mol%, the structural unit of unsaturated carboxylic acid and its derivative is 0.1 to 10 mol%) Means one or more modified polyolefins.

前記不飽和カルボン酸及びその誘導体としてはアクリル
酸、メタクリル酸、マレイン酸、フマル酸等の不飽和モ
ノあるいはジカルボン酸、またはこれらのアミド、エス
テル、金属塩化合物および酸無水物等で挙げられ、これ
らの単独あるいは2種以上併用されてもよい。
Examples of the unsaturated carboxylic acid and its derivative include unsaturated mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, maleic acid and fumaric acid, or their amides, esters, metal salt compounds and acid anhydrides. These may be used alone or in combination of two or more.

特に好ましい変性オレフインはエチレンと不飽和カルボ
ン酸との共重合体に原子価が1〜3の金属イオンを付加
せしめたエチレン系アイオノマー樹脂またはエチレン/
プロピレン共重合体またはその酸無水物変性体等があ
る。
A particularly preferred modified olefin is an ethylene ionomer resin obtained by adding a metal ion having a valence of 1 to 3 to a copolymer of ethylene and an unsaturated carboxylic acid, or ethylene /
Examples include propylene copolymers and acid anhydride modified products thereof.

本発明の成形物中のガラス繊維は平均直径(D)3〜20
μ、好ましくは6〜15μのものであり、その平均長さ
(L)は成形物中で50〜600μ、好ましくは150〜500μ
の範囲である。更に、平均長さ(L)の、平均直径
(D)に対する比(L/D)が10〜90の範囲になるような
ガラス繊維を選ぶ。長さの選定に当たつては、ポリアミ
ド樹脂との溶融混練の際、押出成形機中でガラス繊維の
破断が起こるので、押出機やそのスクリユー形状等を考
慮し、予め実験等により、混合前のガラス繊維の長さを
決定すればよい。実際的には長さ50〜7000μ、好ましく
は1000〜6000μのものが使用される。ガラス繊維の直径
が3〜20μで長さが50μよりも小さくなると、成形品中
のガラス繊維のL/Dがほぼ5より小さくなり、増粘効果
および高温時の剛性増大効果が少なくなり、好ましくな
い。同様のガラス繊維径で長さを7000μより大きくし
て、かつ成形品中のガラス繊維のL/Dを100より大きくす
ると賦形性が悪くなり、ブロー比率を大きくすることが
できない等の問題があり、100以下、好ましくは90以下
にする方がよい。
The glass fiber in the molded article of the present invention has an average diameter (D) of 3 to 20.
μ, preferably 6 to 15 μ, and the average length (L) thereof is 50 to 600 μ, preferably 150 to 500 μ in the molded product.
Is the range. Further, glass fibers are selected so that the ratio (L / D) of the average length (L) to the average diameter (D) is in the range of 10 to 90. In selecting the length, during melting and kneading with the polyamide resin, glass fiber breaks in the extruder, so consider the extruder and its screw shape, etc. in advance by experimentation before mixing. The length of the glass fiber may be determined. Practically, those having a length of 50 to 7000 μ, preferably 1000 to 6000 μ are used. When the diameter of the glass fiber is 3 to 20μ and the length is less than 50μ, the L / D of the glass fiber in the molded product becomes smaller than about 5, and the thickening effect and the rigidity increasing effect at high temperature are reduced, which is preferable. Absent. If the length is greater than 7,000μ with the same glass fiber diameter, and the L / D of the glass fiber in the molded product is greater than 100, the shapeability deteriorates and there is a problem that the blow ratio cannot be increased. Yes, it is better to be 100 or less, preferably 90 or less.

ガラス繊維の太さについては直径が小さい程L/Dが大き
くなり増粘効果が大きくなる傾向にあり、20μ以下が好
ましいが、3μより小さいものはガラス繊維の価格が増
大等の問題があり、経済性の点から好ましくない。
Regarding the thickness of the glass fiber, the smaller the diameter is, the larger the L / D tends to be and the thickening effect tends to be large, and it is preferable that the thickness is 20 μ or less. However, if the diameter is smaller than 3 μ, the cost of the glass fiber increases, and the like. It is not preferable from the economical point of view.

ハロゲン化銅またはその誘導体としてはヨウ化銅、臭化
銅、塩化銅、メルカプトベンズイミダゾールとヨウ化銅
との錯塩、m−キシリレンジアミンヨウ化銅錯塩、m−
キシリレンジアミン塩化第一銅錯塩等が挙げられるが、
好ましいハロゲン化銅はヨウ化銅、ヨウ化銅とメルカプ
トイミダゾールとの錯体である。
As the copper halide or its derivative, copper iodide, copper bromide, copper chloride, a complex salt of mercaptobenzimidazole and copper iodide, m-xylylenediamine copper iodide complex salt, m-
Examples include xylylenediamine cuprous chloride complex salt,
A preferred copper halide is copper iodide, a complex of copper iodide and mercaptoimidazole.

次に、前記の原料を用いてブロー中空成形を行ない中空
成形品を得る。中空成形は公知の方法装置により行な
う。
Next, blow hollow molding is performed using the above raw materials to obtain a hollow molded product. The blow molding is performed by a known method device.

ポリアミド樹脂と変性ポリオレフインとの混合方法は特
に限定されず、通常公知の方法を採用することができる
が、両者のペレツト、粉末または細片等を高速攪拌機で
均一混合した後、十分な混練能力のある押出機で溶融混
練する方法が適している。ガラス繊維の混合方法につい
ても、通常公知の方法を採用することができ、1軸スク
リユー押出機でも2軸以上の多軸スクリユー押出機によ
る混練方法でも良く変性ポリオレフインとの同時混練で
もよく、別々でもよい。また、ガラス繊維濃度の多いマ
スターペレツトを作り、これをブレンドする方法でもよ
い。またハロゲン化銅および/またはその誘導体または
各種添加剤の添加方法についても通常公知の方法を採用
することができ、前記樹脂またはガラス繊維の混合時で
もよく、別別でもよい。
The method for mixing the polyamide resin and the modified polyolefin is not particularly limited, and a commonly known method can be adopted. However, both pellets, powder or fine particles are uniformly mixed with a high-speed stirrer, and then a sufficient kneading ability is obtained. A method of melt-kneading with an extruder is suitable. As a method for mixing the glass fibers, a generally known method can be adopted. A kneading method using a single-screw extruder or a multi-screw extruder having two or more screws may be used, and simultaneous kneading with a modified polyolefin may be used, or separately. Good. Alternatively, a master pellet having a high glass fiber concentration may be prepared and blended. Further, as a method for adding the copper halide and / or its derivative or various additives, a generally known method can be adopted, and may be at the time of mixing the resin or the glass fiber, or separately.

上記成形法の実施に際してはポリアミド樹脂40〜80重量
部に対して変性ポリオレフインは30〜5重量部、及びガ
ラス繊維は50〜5、好ましくは40〜10重量部の割合であ
つて3者の合計が100重量部の割合となるように3者の
原料が使用される。変性ポリオレフインが5重量部より
少ないと増粘効果や低温の耐衝撃性改良効果がほとんど
なく好ましくない。また、30重量部より多いと低温の耐
衝撃性改良効果は得られても増粘効果もほとんど飽和に
達してくるし、ポリアミド樹脂本来の高品質特性が失わ
れ剛性、特に高温時の剛性が低下し好ましくない。ガラ
ス繊維は、5重量部より少ないと増粘効果、高温剛性増
大効果が少なく、50重量部より多くなるとブロー成形時
の賦形性が悪くなり、ブロー比率が大きくなると破断す
る場合もあり好ましくない。
In carrying out the above molding method, 30 to 5 parts by weight of the modified polyolefin and 50 to 5 parts by weight of the glass fiber, preferably 40 to 10 parts by weight, relative to 40 to 80 parts by weight of the polyamide resin, are the total of the three. The raw materials of the three are used so that the ratio is 100 parts by weight. If the amount of the modified polyolefin is less than 5 parts by weight, the thickening effect and the impact resistance improving effect at low temperature are scarcely exhibited, which is not preferable. Further, if it is more than 30 parts by weight, the effect of improving impact resistance at low temperature can be obtained but the thickening effect will almost reach saturation, and the high quality characteristics inherent to the polyamide resin will be lost, and the rigidity, especially at high temperature, will decrease. However, it is not preferable. If the amount of glass fiber is less than 5 parts by weight, the thickening effect and the effect of increasing high-temperature rigidity are small, and if it exceeds 50 parts by weight, the shapeability during blow molding is deteriorated, and if the blow ratio is increased, it may break, which is not preferable. .

ガラス繊維入りポリアミド樹脂のブロー成形品はピンチ
オフ部の接着性がガラス繊維を含まないポリアミド樹脂
より若干悪く、用途によつてはピンチオフ部の耐衝撃性
に問題となる場合が多く、この対策としてハロゲン化銅
および/またはその誘導体を0.01〜0.2、好ましくは0.0
2〜0.15重量部、ポリアミド樹脂、変性ポリオレフイン
及びガラス繊維からなる組成物100重量部につき、該組
成物に添加される。
Blow-molded products of polyamide resin containing glass fiber have slightly worse adhesion at the pinch-off part than polyamide resin not containing glass fiber, and depending on the application, the impact resistance of the pinch-off part often poses a problem. 0.01 to 0.2, preferably 0.0 to 0.2,
2 to 0.15 parts by weight, 100 parts by weight of a composition comprising polyamide resin, modified polyolefin and glass fiber are added to the composition.

上記方法により本発明のブロー中空成形品が得られる
が、本発明でブロー中空成形品とは前記ポリアミド組成
物を溶融押出をして、まず最初に成形品の前駆体である
いわゆるパリソンを一旦成形し、次いで上記パリソン中
に空気を吹き込んで金型に接触させることにより、目的
とする三次元的中空成形体として得られた製品を意味す
る。
The blow hollow molded article of the present invention is obtained by the above method, and the blow hollow molded article of the present invention is obtained by first melt-extruding the polyamide composition to first form a so-called parison which is a precursor of the molded article. Then, by blowing air into the parison and bringing it into contact with a mold, the product obtained as the target three-dimensional hollow molded article is meant.

従つて、かかる中空成形品としては、例えば中空状の容
器、タンク及びパイプ等がある。
Therefore, examples of such a hollow molded article include a hollow container, a tank, a pipe, and the like.

本発明の成形品は次の特徴を有する。The molded article of the present invention has the following features.

(1)数平均分子量が20,000以上のポリアミド樹脂、変
性ポリオレフィン、ガラス繊維及びハロゲン化銅及び/
又はその誘導体とからなる組成物を用いているので、ブ
ロー中空成形の際、口金から吐出された溶融ポリマーの
ドローダウンを小さくし、溶融パリソンの形態を十分保
持し得るので、成形品の寸法および肉厚の均一なものが
得られる。
(1) Polyamide resin having a number average molecular weight of 20,000 or more, modified polyolefin, glass fiber and copper halide and /
Or, since the composition comprising the derivative thereof is used, the drawdown of the molten polymer discharged from the die during blow blow molding can be reduced, and the shape of the molten parison can be sufficiently retained. A uniform thickness can be obtained.

(2)ポリアミド樹脂に変性ポリオレフィン、ガラス繊
維及びハロゲン化銅及び/又はその誘導体をそれぞれ特
定量混合しているので成形品の剛性、特に高温時の剛性
および成形品の耐衝撃性、特に低温時の耐衝撃性とピン
チオフ部の耐衝撃性の両方の効果を本発明の成形品が発
揮している。
(2) The modified polyolefin, the glass fiber, and the copper halide and / or its derivative are mixed in a specific amount in the polyamide resin, so that the rigidity of the molded product, particularly the rigidity at high temperature and the impact resistance of the molded product, especially at low temperature The molded article of the present invention exhibits both the impact resistance of 1 and the impact resistance of the pinch-off portion.

(3)上記二つの効果が相乗的に作用するので、大型の
中空成形品の取得が可能となる。
(3) Since the above two effects act synergistically, a large hollow molded product can be obtained.

以下実施例をもつて本発明の中空成形品の製法及び特性
を示す。
The production method and characteristics of the hollow molded article of the present invention are shown below with reference to examples.

実施例1〜4 数平均分子量が37,000のナイロン6、変性ポリオレフイ
ンとしてエチレン系アイオノマー樹脂(デユポン社製
“サーリン"1706)および直径13μ、長さ3000μのガラ
ス繊維を各々80/10/10重量部、60/20/20重量部、40/30/
30重量部およびヨウ化銅0.03部を混合した各ペレツトを
作つた。また同様に、ガラス繊維を直径6μ、長さ3000
μにして各々60/20/20重量部およびヨウ化銅0.03部を混
合したペレツトを作つた。該ペレツトを用い、直径40mm
Φの押出機を有するブロー成形機を用いて250℃で外形1
00mm、肉厚4mmのパリソンを形成し、1辺120mm、高さ50
0mmの正四角柱形容器を成形した。
Examples 1 to 4 Nylon 6 having a number average molecular weight of 37,000, ethylene ionomer resin ("Surlyn" 1706 manufactured by Dyupon Co., Ltd.) as modified polyolefin, and glass fiber having a diameter of 13 µ and a length of 3000 µ are respectively 80/10/10 parts by weight, 60/20/20 parts by weight, 40/30 /
Each pellet was prepared by mixing 30 parts by weight and 0.03 part of copper iodide. Similarly, glass fiber with a diameter of 6μ and a length of 3000
A pellet was prepared by mixing 60/20/20 parts by weight and 0.03 part of copper iodide in each μ. 40 mm diameter using the pellet
Outer shape at 250 ° C using blow molding machine with Φ extruder 1
A parison with a thickness of 00 mm and a wall thickness of 4 mm is formed, and one side is 120 mm and the height is 50.
A 0 mm square prismatic container was molded.

このとき使用されたガラス繊維の平均直径(D)に対す
る平均長さ(L)の比(L/D)、成形性、得られた成形
品の剛性および耐低温衝撃性を表にまとめた。なお、成
形品中のガラス繊維平均L/Dは成形品を3か所より全体
で1g採取し、ギ酸で溶解後、スライドグラスにはさみ、
30倍の顕微鏡拡大写真をとりn数200のガラス繊維長さ
を測定し、その平均長さLを求めた。平均長さLの求め
方は等間隔を25μにして度数分布を求め、(各級の中心
値)×(度数)を求め、これらを加えたものを全度数で
割ることにより求めた。従つて で示される。全度数は200であつた。
The ratio (L / D) of the average length (L) to the average diameter (D) of the glass fibers used at this time, the moldability, the rigidity of the obtained molded product and the low temperature impact resistance are summarized in the table. The average glass fiber L / D in the molded product was 1 g in total from the molded product from three locations, dissolved in formic acid, and then sandwiched in a slide glass.
A 30 times microscope enlarged photograph was taken to measure the glass fiber length of n number 200, and the average length L thereof was determined. The average length L was determined by obtaining a frequency distribution with equal intervals of 25 μ, (central value of each class) × (frequency), and adding these values and dividing by the total frequency. Therefore Indicated by. The total frequency was 200.

同様に300倍の顕微鏡拡大写真をとり、n=10のガラス
繊維直径を測定し、その平均直径Dを算述平均により求
めた。この平均長さと平均直径の比率L/Dを計算により
求めた。
Similarly, a 300 times magnified photograph was taken, the glass fiber diameter of n = 10 was measured, and the average diameter D was calculated by the arithmetic mean. The ratio L / D between the average length and the average diameter was calculated.

成形性の良否判定は成形品5個について成形品胴部の上
部8か所の厚みを測定し、同時に胴部下部8か所の厚み
を測定し、該上部厚み平均値と下部厚み平均値との差R
が1mm以下は良(○印)、1mmより大きいものは不良(×
印)と判断した。
For the determination of the moldability, the thickness of the eight upper parts of the body of the molded product of five molded products was measured, and the thickness of the lower eight parts of the body was measured at the same time. Difference R
Is 1 mm or less (good), those larger than 1 mm is bad (×)
Mark).

高温剛性の評価方法は一定値雰囲気温度別に角ビン胴部
に荷重2.5kgを1時間かけて2mm以上変形する最高温度を
求めた。低温衝撃試験の評価方法は該成形品の胴部を10
0mm角に切りとり、0℃の雰囲気温度に5時間放置後、
高さ50cmから落下させ、n数20で破壊品の発生比率を求
めた。(以下実施例、比較例においても同じである)。
The high temperature rigidity was evaluated by determining the maximum temperature at which a load of 2.5 kg was deformed by 2 kg or more over 1 hour on the body of the square bottle for each constant value atmospheric temperature. The evaluation method of the low temperature impact test is as follows:
Cut into 0 mm square and leave at 0 ° C for 5 hours,
It was dropped from a height of 50 cm, and the generation ratio of broken products was calculated with n number of 20. (The same applies to the following Examples and Comparative Examples).

実施例5 数平均分子量が37,000のナイロン6、エチレン系アイオ
ノマー樹脂(デユポン社製“サーリン"1855)および直
径13μ、長さ3000μのガラス繊維を各々60/20/20重量部
およびヨウ化銅0.03部を混合したペレツトを作つた。該
ペレツトを用い、実施例1と同様の方法で、同様の成形
品を作つた。
Example 5 Nylon 6 having a number average molecular weight of 37,000, ethylene ionomer resin ("Surlyn" 1855 manufactured by Dyupon Co., Ltd.) and glass fiber having a diameter of 13 µ and a length of 3000 µ are respectively 60/20/20 parts by weight and copper iodide 0.03 part. A mixed pellet was prepared. Using the pellet, a similar molded product was produced in the same manner as in Example 1.

この成形時の垂れ下がりはほとんど認められず、極めて
良好なブロー成形が実施でき、肉厚の均一な成形品を得
ることができた。
Almost no sagging was observed during this molding, and extremely good blow molding could be carried out, and a molded product having a uniform wall thickness could be obtained.

得られた結果を表に示した。The results obtained are shown in the table.

実施例6 数平均分子量が42,000のナイロン66および実施例1〜4
で使用した変性ポリオレフイン、直径13μ、長さ300μ
のガラス繊維を各々60/20/20重量部の割合からなるポリ
アミド組成物とヨウ化銅0.03重量部を混合したペレツト
を作つた。該ペレツトを用い、実施例1と同様のブロー
成形機を用いて280℃で実施例1と同様の成形品を得
た。この成形時の垂れ下がりはほとんど認められず、極
めて良好なブロー成形が実施でき、肉厚の均一な成形品
を得ることができた。
Example 6 Nylon 66 having a number average molecular weight of 42,000 and Examples 1 to 4
Modified polyolefin used in, diameter 13μ, length 300μ
A pellet composition was prepared by mixing the polyamide composition in the proportion of 60/20/20 parts by weight of each glass fiber and 0.03 parts by weight of copper iodide. Using the pellet, a blow molding machine similar to that of Example 1 was used to obtain a molded article similar to that of Example 1 at 280 ° C. Almost no sagging was observed during this molding, and extremely good blow molding could be carried out, and a molded product having a uniform wall thickness could be obtained.

得られた結果を表に示す。The results obtained are shown in the table.

実施例7 実施例1〜3で使用したナイロン6、変性ポリオレフィ
ンおよびガラス繊維を各々75/5/20重量部の割合からな
るポリアミド組成物とヨウ化銅0.03重量部を混合したペ
レットを用い、実施例1と同様のブロー成形機を用いて
250℃で実施例1と同様の成形品を得た。この成形時の
垂れ下がりはほとんど認められず、極めて良好なブロー
成形が実施でき、肉厚の均一な成形品を得ることができ
た。
Example 7 Using a pellet obtained by mixing 0.06 part by weight of copper iodide with a polyamide composition comprising 75/5/20 parts by weight of nylon 6, modified polyolefin and glass fiber used in Examples 1 to 3, Using a blow molding machine similar to Example 1
A molded product similar to that of Example 1 was obtained at 250 ° C. Almost no sagging was observed during this molding, and extremely good blow molding could be carried out, and a molded product having a uniform wall thickness could be obtained.

得られた結果を表に示す。The results obtained are shown in the table.

比較例1 数平均分子量が37,000のナイロン6 100重量部にヨウ化
銅0.03重量部を混合したペレツトを作つた。該ペレツト
を用い、実施例1と同様の方法で同様の成形品を作つ
た。
Comparative Example 1 100 parts by weight of nylon 6 having a number average molecular weight of 37,000 was mixed with 0.03 part by weight of copper iodide to prepare a pellet. Using the pellet, a similar molded product was produced in the same manner as in Example 1.

この成形時のパリソンの垂れ下がりが大きく、肉厚のバ
ラツキが大きかつた。
During this molding, the parison drooped down significantly, and the variation in wall thickness was large.

得られた成形品の特性は表のとおり、高温での剛性に劣
つていた。
The characteristics of the obtained molded product were inferior in rigidity at high temperature as shown in the table.

比較例2 数平均分子量が19,000のナイロン6 80重量部にヨウ化銅
0.03重量部および直径13μ、長さ100μのガラス繊維を2
0重量部混合したペレツトを作つた。該ペレツトを用
い、実施例1と同様の方法で同様の成形品を作つた。こ
の成形時の垂れ下がりは大きく、肉厚のバラツキが大き
かつた。得られた成形品の特性は表のとおりで、剛性の
増加効果も少なく、高温での剛性も十分なものは得られ
なかつた。また低温衝撃性の実用評価を行なつた結果、
破壊頻度が大きく、好ましくないこと等が確認された。
Comparative Example 2 Nylon 6 having a number average molecular weight of 19,000 6 80 parts by weight of copper iodide
2 glass fibers with 0.03 parts by weight and a diameter of 13μ and a length of 100μ
0 parts by weight of mixed pellets were prepared. Using the pellet, a similar molded product was produced in the same manner as in Example 1. The sagging at the time of molding was large, and the variation in wall thickness was large. The characteristics of the obtained molded product are as shown in the table, and there was little effect of increasing the rigidity, and sufficient rigidity at high temperature could not be obtained. As a result of conducting a practical evaluation of low temperature impact resistance,
It was confirmed that the destruction frequency was high and that it was not preferable.

比較例3 数平均分子量が37,000のナイロンおよび前記変性ポリオ
レフイン(“サーリン"1706)が60/40重量割合とからな
るポリアミド組成物100重量部にヨウ化銅0.03重量部を
混合したペレツトを作つた。該ペレツトを用い実施例1
と同様の方法で、同様の成形品を作つた。
Comparative Example 3 A pellet was prepared by mixing 0.03 part by weight of copper iodide with 100 parts by weight of a polyamide composition consisting of nylon having a number average molecular weight of 37,000 and the modified polyolefin ("Surlyn" 1706) at a ratio of 60/40 parts by weight. Example 1 using the pellet
Similar moldings were made in the same manner as in.

成形品の特性は表のとおり、成形性については比較的よ
く、成形品の低温耐衝撃性も特に問題なかつたが高温剛
性が非常に悪く好ましくなかつた。
As shown in the table, the characteristics of the molded product were relatively good in terms of moldability, and the low-temperature impact resistance of the molded product was particularly problematic, but the high-temperature rigidity was extremely poor, which was not preferable.

比較例4,5 数平均分子量が37,000のナイロン6および比較例3の変
性ポリオレフインおよび直径13μ、長さ3000μのガラス
繊維を各々20/60/20または20/20/60重量部およびヨウ化
銅0.03重量部を混合したペレツトを作つた。該ペレツト
を用い、実施例1と同様の方法で同様の成形品を作つ
た。
Comparative Examples 4,5 Nylon 6 having a number average molecular weight of 37,000 and modified polyolefin of Comparative Example 3 and glass fibers having a diameter of 13μ and a length of 3000μ were respectively 20/60/20 or 20/20/60 parts by weight and copper iodide 0.03. A pellet was prepared by mixing parts by weight. Using the pellet, a similar molded product was produced in the same manner as in Example 1.

成形品の特性は表のとおりであり、その結果、前者は成
形性、低温耐衝撃性は問題なかつたが、高温剛性が悪く
好ましくなかつた。また、後者は成形時に賦形性が著し
く悪く、良好な成形品を得ることができず好ましくなか
つた。
The characteristics of the molded product are as shown in the table. As a result, the former was unfavorable in moldability and low temperature impact resistance, but was unfavorable in high temperature rigidity. On the other hand, the latter was not preferable because it was not possible to obtain a good molded product because the shapeability during molding was extremely poor.

比較例6 数平均分子量37000のナイロン6および直径13μ、長さ3
000μのガラス繊維を各々80/20重量部およびヨウ化銅0.
03重量部を混合したペレットを作り、実施例1と同様の
方法で同様の成形品を作った。
Comparative Example 6 Nylon 6 having a number average molecular weight of 37,000 and a diameter of 13μ and a length of 3
80/20 parts by weight of 000μ glass fiber each and copper iodide 0.
A pellet was prepared by mixing 03 parts by weight, and a similar molded product was produced in the same manner as in Example 1.

成形品の特性を表に示したが、変性ポリオレフィン樹脂
が添加されていないため低温時の衝撃性が不十分のもの
しか得られなかった。
The characteristics of the molded product are shown in the table. However, since the modified polyolefin resin was not added, only the impact resistance at low temperature was obtained.

比較例7〜9 実施例1で用いたナイロン6および変性ポリオレフィン
に、比較例7では直径30μ、長さ3000μmのガラス繊
維、比較例8では直径13μ、長さ12000μのガラス繊
維、比較例9では直径13μ、長さ100μのガラス繊維を
用いて、ナイロン6/変性ポリオレフィン/ガラス繊維を
各々60/20/20重量部およびヨウ化銅0.03重量部を混合し
たペレットを作り、実施例1と同様の方法で同様の成形
品を作った。
Comparative Examples 7 to 9 In addition to the nylon 6 and modified polyolefin used in Example 1, in Comparative Example 7, glass fibers having a diameter of 30 μm and a length of 3000 μm, Comparative Example 8 glass fibers having a diameter of 13 μm and a length of 12000 μm, and Comparative Example 9 were used. Using glass fibers having a diameter of 13μ and a length of 100μ, pellets were prepared by mixing 60/20/20 parts by weight of nylon 6 / modified polyolefin / glass fibers and 0.03 parts by weight of copper iodide, respectively. Similar moldings were made by the method.

成形品の特性を表に示したが、比較例7ではガラス繊維
の直径が大きくL/Dが小さいため、高温時の剛性が不十
分であり、比較例8では混合前の繊維長が大きいガラス
繊維を用いたため、L/Dが大きくなり、その結果、成形
時の賦形性が著しく悪くなり、良好な成形品が得られな
かった。また比較例9では、混合前の繊維長が小さいガ
ラス繊維を用いたため、L/Dが小さくなり、高温での剛
性が十分なものが得られなかった。
The characteristics of the molded product are shown in the table. In Comparative Example 7, the glass fiber has a large diameter and the L / D is small, so that the rigidity at high temperature is insufficient, and in Comparative Example 8, the glass having a large fiber length before mixing is used. Since fibers were used, L / D was increased, and as a result, the shapeability during molding was remarkably deteriorated, and good molded products could not be obtained. Further, in Comparative Example 9, since glass fibers having a short fiber length before mixing were used, L / D was reduced, and sufficient rigidity at high temperature could not be obtained.

比較例10,11 実施例1に記した変性ポリオレフィンおよびガラス繊維
を用い、比較例10では、数平均分子量が15000と小さい
ナイロン6を用い、また比較例11では、数平均分子量が
80000と大きいナイロン6を用いて、ナイロン6/変性ポ
リオレフィン/ガラス繊維を各々60/20/20重量部および
ヨウ化銅0.03重量部を混合したペレットを作り、実施例
1と同様の方法で同様の成形品を作った。
Comparative Examples 10 and 11 The modified polyolefin and glass fiber described in Example 1 were used. In Comparative Example 10, nylon 6 having a small number average molecular weight of 15,000 was used. In Comparative Example 11, the number average molecular weight was
Using 80,000 and a large nylon 6, pellets were prepared by mixing 60/20/20 parts by weight of nylon 6 / modified polyolefin / glass fiber and 0.03 parts by weight of copper iodide, and using the same method as in Example 1, I made a molded product.

成形品の特性を表に示したが、比較例10ではナイロン6
の分子量が小さいため成形時の垂れ下がりが大きく、肉
厚のバラツキが大きくなった不良な成形品が得られ、ま
た比較例11ではナイロン6の分子量が大きいため、見か
けの溶融粘度が高くなりすぎ、その結果ブロー成形機に
おいて成形が不可能であった。
The characteristics of the molded product are shown in the table. In Comparative Example 10, nylon 6
Has a large sagging at the time of molding due to its small molecular weight, and a defective molded product having a large variation in wall thickness can be obtained. Further, in Comparative Example 11, since the molecular weight of nylon 6 is large, the apparent melt viscosity becomes too high, As a result, molding was not possible with the blow molding machine.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−106157(JP,A) 特開 昭57−102948(JP,A) 特開 昭58−206667(JP,A) 特開 昭58−168654(JP,A) 特開 昭57−67658(JP,A) 特開 昭58−20634(JP,A) 特公 昭50−5233(JP,B1) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-51-106157 (JP, A) JP-A-57-102948 (JP, A) JP-A-58-206667 (JP, A) JP-A-58- 168654 (JP, A) JP-A-57-67658 (JP, A) JP-A-58-20634 (JP, A) JP-B-50-5233 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】数平均分子量が20,000〜60,000のポリアミ
ド樹脂(A)が40〜80重量部、 エチレンおよび/またはプロピレンと不飽和カルボン酸
またはその誘導体とのブロック共重合体およびランダム
共重合体、ならびにエチレンおよび/またはプロピレン
の重合体に不飽和カルボン酸またはその誘導体がグラフ
トした共重合体(前記各共重合体において、エチレンお
よびプロピレンの構造単位99.9〜10モル%、不飽和カル
ボン酸およびその誘導体の構造単位0.1〜10モル%であ
る)からなる群から選ばれる1種以上の変性ポリオレフ
ィン(B)が30〜5重量部、 平均直径3〜20μ、平均長さ50〜600μであり(平均長
さ)/(平均直径)が10〜90であるガラス繊維(C)が
5〜50重量部 の合計100重量部に対し、ハロゲン化銅及び/又はその
誘導体(D)が0.01〜0.2重量部の割合で含まれている
組成物からなるブロー中空成形品。
1. A polyamide resin (A) having a number average molecular weight of 20,000 to 60,000 (40 to 80 parts by weight), a block copolymer and a random copolymer of ethylene and / or propylene and an unsaturated carboxylic acid or a derivative thereof, And a copolymer obtained by grafting an unsaturated carboxylic acid or a derivative thereof onto a polymer of ethylene and / or propylene (in each of the above copolymers, 99.9 to 10 mol% of structural units of ethylene and propylene, an unsaturated carboxylic acid and a derivative thereof). 30 to 5 parts by weight of one or more modified polyolefins (B) selected from the group consisting of structural units of 0.1 to 10 mol%), an average diameter of 3 to 20 μ, and an average length of 50 to 600 μ (average length). Sa) / (average diameter) of 10 to 90, 5 to 50 parts by weight of glass fiber (C), for a total of 100 parts by weight, 0.01% of copper halide and / or its derivative (D). Blow hollow molded article formed from a composition contained in an amount of 0.2 parts by weight.
JP59025142A 1984-02-15 1984-02-15 Blow hollow molded products Expired - Fee Related JPH07108949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025142A JPH07108949B2 (en) 1984-02-15 1984-02-15 Blow hollow molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025142A JPH07108949B2 (en) 1984-02-15 1984-02-15 Blow hollow molded products

Publications (2)

Publication Number Publication Date
JPS60170664A JPS60170664A (en) 1985-09-04
JPH07108949B2 true JPH07108949B2 (en) 1995-11-22

Family

ID=12157730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025142A Expired - Fee Related JPH07108949B2 (en) 1984-02-15 1984-02-15 Blow hollow molded products

Country Status (1)

Country Link
JP (1) JPH07108949B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619017B2 (en) * 1986-04-25 1994-03-16 宇部興産株式会社 Hollow molding polyamide resin composition
DK35388A (en) * 1987-01-27 1988-07-28 Du Pont THERMOPLASTIC FORMATABLE MATERIAL AND USE THEREOF
JPS6474264A (en) * 1987-09-11 1989-03-20 Daihatsu Motor Co Ltd Production of nylon composite of good vibration-damping performance
AU620380B2 (en) * 1988-03-18 1992-02-20 Denso Corporation Fiber-reinforced polymer composition and method of producing same
JP2884586B2 (en) * 1989-03-28 1999-04-19 宇部興産株式会社 Polyamide resin composition for hollow molding
DE4425437A1 (en) * 1994-07-19 1996-01-25 Basf Ag Glass-reinforced polyamide molding compounds for blow molding applications
US9932444B2 (en) 2012-11-12 2018-04-03 Mitsui Chemicals, Inc. Semiaromatic polyamide, semiaromatic polyamide resin composition, and molded article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512082A (en) * 1978-07-13 1980-01-28 Toray Industries Blowwformed container
JPS5820634A (en) * 1981-07-29 1983-02-07 帝人株式会社 Plastic vessel

Also Published As

Publication number Publication date
JPS60170664A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
EP0095349B1 (en) Laminates of lamellar articles and polyolefins
EP0133867B1 (en) Blown nylon film and process for the preparation thereof
JPH0781016B2 (en) Polyamide blow molded product
JPS6014695B2 (en) Layered molded product and its manufacturing method
JPH0797462A (en) Laminar body and its preparation
EP0403109B1 (en) Resin composition and shaped article thereof
JPH07108949B2 (en) Blow hollow molded products
US5700412A (en) Process for making laminar articles
EP0305146A1 (en) Blends of ethylene vinyl alcohol copolymer and amorphous polyamide and multilayer containers made therefrom
JPH03197541A (en) Low-gloss resin composition for blow molding
US5338502A (en) Process for preparing molded articles of hydrolyzed ethylene-vinyl acetate copolymers
JP3032042B2 (en) Method for producing saponified ethylene-vinyl acetate copolymer composition
JPS5840584B2 (en) polyamide materials
JPH0345691B2 (en)
JPS59172533A (en) Production of reinforced resin composition
JP2884586B2 (en) Polyamide resin composition for hollow molding
JPS58134137A (en) Thermoplastic resin composition
JPH0554504B2 (en)
JPH0551525A (en) Polyamide resin composition and its stretched film
JP2519536B2 (en) Gasoline resistant blown hollow molded container
JPH0116270B2 (en)
JP3558740B2 (en) Polyamide composition
JPH04288339A (en) Polyamide blow molding
JPS62132948A (en) Electrically conductive polypropylene film
JPS6356904B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees