JPH07108819B2 - Method for manufacturing ceramic sintered body - Google Patents

Method for manufacturing ceramic sintered body

Info

Publication number
JPH07108819B2
JPH07108819B2 JP2109129A JP10912990A JPH07108819B2 JP H07108819 B2 JPH07108819 B2 JP H07108819B2 JP 2109129 A JP2109129 A JP 2109129A JP 10912990 A JP10912990 A JP 10912990A JP H07108819 B2 JPH07108819 B2 JP H07108819B2
Authority
JP
Japan
Prior art keywords
ceramic
sintered body
heat treatment
base material
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2109129A
Other languages
Japanese (ja)
Other versions
JPH046167A (en
Inventor
小林  廣道
啓治 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2109129A priority Critical patent/JPH07108819B2/en
Publication of JPH046167A publication Critical patent/JPH046167A/en
Publication of JPH07108819B2 publication Critical patent/JPH07108819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミック焼結体の製造方法に関するもの
で、特に高温静水圧プレス(HIP)を用いたセラミック
焼結体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a ceramic sintered body, and more particularly to a method for producing a ceramic sintered body using a high temperature isostatic press (HIP).

(従来の技術) 従来より、高温静水圧プレスを用いた高緻密質の窒化珪
素焼結体の製造方法としては、窒化珪素粉末に焼結助剤
および有機バインダを添加し、プレス成形等により成形
した成形体にガラスを被覆して高温静水圧プレスする方
法(特公昭59−35870号公報)や、窒化粉末に焼結助剤
を添加し、プレス成形等により成形した成形体を常圧下
で1600〜1700℃の温度範囲で熱処理し、熱処理後の成形
体を高温静水圧プレスする方法(特公昭63−57388号公
報)が知られている。
(Prior Art) Conventionally, as a method for producing a highly dense silicon nitride sintered body using a high temperature isostatic press, a sintering aid and an organic binder are added to silicon nitride powder, and the material is formed by press molding or the like. The formed body is coated with glass and is subjected to high temperature isostatic pressing (Japanese Patent Publication No. 59-35870), or the formed body is formed by press forming, etc. by adding a sintering aid to the nitride powder under normal pressure. A method (Japanese Patent Publication No. 63-57388) is known in which heat treatment is performed in the temperature range of ˜1700 ° C. and the molded body after the heat treatment is hot isostatically pressed.

(発明が解決しようとする課題) しかしながら、従来の高温静水圧プレスを用いたセラミ
ック焼結体の製造方法によると、粒界相の組成が高融点
の焼結体、難焼結材料の焼結体、複合材料からなる焼結
体等を製造する場合、セラミック焼結体の高温強度を充
分に高めることができないという問題があった。
(Problems to be Solved by the Invention) However, according to the conventional method for producing a ceramic sintered body using a high temperature isostatic press, a sintered body having a composition of a grain boundary phase having a high melting point, or a sintered material having a low sintering property is used. In the case of manufacturing a body, a sintered body or the like made of a composite material, there is a problem that the high temperature strength of the ceramic sintered body cannot be sufficiently enhanced.

本発明はこのような問題点を解決するためになされたも
ので、母材に強化材が添加された成形体にさらに母材を
用いて表面被膜層を形成し熱処理を行なうことにより、
成形体の開気孔を無くし、複雑形状の成形体を高密度に
焼成可能にし、かつ耐熱性、耐酸化性および高温強度に
優れるセラミック焼結体の製造方法を提供することを目
的とする。
The present invention has been made in order to solve such a problem, by forming a surface coating layer using a base material in a molded body in which a reinforcing material is added to the base material and performing heat treatment,
An object of the present invention is to provide a method for producing a ceramic sintered body, which eliminates open pores in a molded body, enables a molded body having a complicated shape to be fired at high density, and is excellent in heat resistance, oxidation resistance and high temperature strength.

(課題を解決するための手段) そのために、本発明によるセラミック焼結体の製造方法
は、セラミック母材とセラミック強化材を含むセラミッ
ク混合粉末を成形し、この成形体にセラミック母材粉末
で表面被膜層を形成し、この表面被膜層を形成した成形
体を熱処理温度1500〜1950℃で熱処理した後、ガラスに
より被覆して高温静水圧プレス焼結することを特徴とす
る。
(Means for Solving the Problem) Therefore, in the method for manufacturing a ceramic sintered body according to the present invention, a ceramic mixed powder containing a ceramic base material and a ceramic reinforcing material is molded, and the molded body is surface-coated with the ceramic base material powder. It is characterized in that a coating layer is formed, the molded body having the surface coating layer formed thereon is heat-treated at a heat treatment temperature of 1500 to 1950 ° C., then coated with glass and subjected to high temperature isostatic pressing sintering.

前記セラミック母材は、アルミナ、ムライト等の酸化物
セラミックスあるいは窒化珪素、サイアロン等の非酸化
物セラミックスを用いる。
As the ceramic base material, oxide ceramics such as alumina and mullite or non-oxide ceramics such as silicon nitride and sialon are used.

また前記セラミック強化材は、炭化珪素粒状粒子、炭化
珪素板状粒子または炭化珪素ウィスカーのうち少なくと
も一種であるのが望ましい。
The ceramic reinforcing material is preferably at least one of silicon carbide granular particles, silicon carbide plate-like particles, and silicon carbide whiskers.

前記熱処理条件は、セラミック母材がアルミナ、ムライ
ト等の酸化物セラミックスの場合、温度1500〜1800℃で
熱処理し、セラミック母材が窒化珪素、サイアロン等の
非酸化物セラミックスの場合、窒素雰囲気中温度1750〜
1950℃、9.5気圧下で熱処理するのが望ましい。
The heat treatment conditions are such that when the ceramic base material is oxide ceramics such as alumina and mullite, heat treatment is performed at a temperature of 1500 to 1800 ° C., and when the ceramic base material is non-oxide ceramics such as silicon nitride and sialon, the temperature in a nitrogen atmosphere is set. 1750 ~
It is desirable to heat-treat at 1950 ° C and 9.5 atm.

前記したセラミック焼結体の製造方法において、母材が
酸化物セラミックスの場合、熱処理温度を1500〜1800℃
の範囲としたのは、1500℃よりも熱処理温度が低いと開
気孔を無くすることができず、高温静水圧プレス時にガ
ラスが開気孔を通して浸透するからであり、また1800℃
以下としたのは、1800℃を越えると母材と強化材間に空
隙(発泡現象)が生じ熱処理後の成形体の表面に開気孔
を生じ、この開気孔から高温静水圧プレス時にガラスが
浸透し、ガラスが浸透した焼結体はガラス成分の影響を
受けて高温強度が低下するからである。
In the above-mentioned method for producing a ceramic sintered body, when the base material is an oxide ceramic, the heat treatment temperature is 1500 to 1800 ° C.
The reason why the range is set is that if the heat treatment temperature is lower than 1500 ° C, the open pores cannot be eliminated and the glass permeates through the open pores during hot isostatic pressing.
The reason below is that when the temperature exceeds 1800 ° C, voids (foaming phenomenon) occur between the base material and the reinforcing material, and open pores are formed on the surface of the molded body after heat treatment, and the glass penetrates through these open pores during hot isostatic pressing. However, the high-temperature strength of the sintered body in which the glass has permeated is affected by the glass component and is lowered.

他方、母材が非酸化物セラミックスの場合、熱処理温度
を1750〜1950℃の範囲としたのは、1750℃よりも熱処理
温度が低いと開気孔を無くすことができず、高温静水圧
プレス時にガラスがこの開気孔を通して浸透するからで
あり、1950℃としたのは、1950℃を超えると窒化珪素、
サイアロンの分解が起こり、熱処理後の成形体の表面に
開気孔を生じ、この開気孔から高温静水圧プレス時にガ
ラスが浸透し、ガラスが浸透した焼結体の高温強度が低
下するからである。
On the other hand, when the base material is non-oxide ceramics, the heat treatment temperature is set in the range of 1750 to 1950 ° C because the open pores cannot be eliminated when the heat treatment temperature is lower than 1750 ° C and the glass is not pressed during high temperature isostatic pressing. Is permeated through these open pores, and the temperature of 1950 ° C. is that silicon nitride,
This is because the sialon is decomposed and open pores are formed on the surface of the molded body after the heat treatment, the glass permeates through the open pores at the time of hot isostatic pressing, and the high temperature strength of the sintered body in which the glass permeates decreases.

(実施例) 以下、本発明の実施例を図面にもとづいて説明する。第
1図に製造工程を示す。
(Example) Hereinafter, the Example of this invention is described based on drawing. The manufacturing process is shown in FIG.

原料粉末は、母材として、アルミナ、ムライト等の酸化
物セラミックス、または窒化珪素、サイアロン等の非酸
化物セラミックスを用い、強化材として、炭化珪素粒
子、炭化珪素板状粒子、炭化珪素ウィスカーを用いる。
この場合、原料中に不純物として含まれる少量の他の成
分が存在しても構わない。また通常の酸化物セラミック
スまたは非酸化物セラミックスを母材とした焼結体と同
様に焼結助剤を含有させることが好ましい。
The raw material powder uses oxide ceramics such as alumina and mullite as the base material, or non-oxide ceramics such as silicon nitride and sialon, and uses silicon carbide particles, silicon carbide plate-like particles, and silicon carbide whiskers as the reinforcing material. .
In this case, a small amount of other components contained as impurities in the raw material may be present. Further, it is preferable to include a sintering aid as in the case of a sintered body having a usual oxide ceramic or non-oxide ceramic as a base material.

成形方法としては、プレス成形、泥奨鋳込み成形、射出
成形、押出成形等の通常の全ての成形方法を適用するこ
とができる。
As the molding method, all the usual molding methods such as press molding, mud casting molding, injection molding, and extrusion molding can be applied.

次に得られた成形体の表面にセラミック母材粉末により
表面被膜層を形成する。表面被膜層は、ハケ塗り、スプ
レーコート、浸漬等により形成する。
Next, a surface coating layer is formed on the surface of the obtained molded body with the ceramic base material powder. The surface coating layer is formed by brush coating, spray coating, dipping or the like.

次に表面被膜層を形成した成形体に対し、母材がアルミ
ナ、ムライト等の酸化物セラミックスの場合は温度1500
〜1800℃、圧力9.5気圧下で熱処理を行ない、母材が窒
化珪素、サイアロン等の非酸化物セラミックスの場合は
窒素雰囲気中温度1750〜1950℃、圧力9.5気圧下で熱処
理を行なう。
Next, when the base material is an oxide ceramics such as alumina or mullite, the temperature is 1500 with respect to the molded body on which the surface coating layer is formed.
Heat treatment is performed at ~ 1800 ° C under a pressure of 9.5 atm. When the base material is a non-oxide ceramic such as silicon nitride or sialon, the heat treatment is performed in a nitrogen atmosphere at a temperature of 1750 ~ 1950 ° C under a pressure of 9.5 atm.

熱処理(予備焼結)を行なった成形体をガラスにより表
面被覆する。ガラスによる表面被覆は、成形体表面にガ
ラスを直接被覆するほか、ガラスカプセルに入れ脱気を
行なうこともできる。
The heat-treated (pre-sintered) molded body is surface-coated with glass. The surface coating with glass can be carried out by directly coating the surface of the molded article with glass, or by putting it in a glass capsule for deaeration.

ガラスにより表面被覆した予備焼結体を高温静水圧プレ
ス(HIP)することにより、高密度、かつ耐熱性、耐酸
化性、高温強度に優れるセラミック焼結体を得る。
By subjecting the pre-sintered body whose surface is coated with glass to high temperature isostatic pressing (HIP), a ceramic sintered body having a high density and excellent heat resistance, oxidation resistance and high temperature strength is obtained.

以下、具体的に実施例を述べる。Examples will be specifically described below.

実施例1〜10 実施例1〜10の原料粉末は、平均粒径0.5μm、BET比表
面積5.0m2/g、純度99.5%以上のアルミナ粉末を母材と
し、炭化珪素粒状粒子、炭化珪素板状粒子、炭化珪素ウ
ィスカーを強化材とした。母材と強化材の配合割合なら
びに強化材の形状、大きさは第1表に示す。母材と強化
材の混合は、内容積1のポリエチレン製広口瓶とナイ
ロン被覆鋼球玉石を用い、調合量200grに対し玉石1.1k
g、水またはエチルアルコール300ml加え、20時間湿式混
合した。この際、強化材が炭化珪素ウィスカーの場合は
超音波洗浄器を用い予め良く分散させてから湿式混合し
た。得られた混合物を120℃で24時間乾燥させ、メッシ
ュが149μmの篩を使用して整粒し、成形用粉末とし
た。この成形用粉末を金型プレスし、大きさ50×40×6m
mの成形体を作製した。この成形体を7ton/cm2の圧力で
ラバープレスをした。そして得られた成形体にアルミナ
粉末で表面被覆層を形成した。この表面被覆層を形成し
た成形体をアルゴン雰囲気中で1500〜1800℃の温度範囲
内で熱処理を行なった。その後、熱処理を行なった成形
体をガラスカプセルに入れ脱気を行ないアルゴン雰囲気
中で高温静水圧プレスにより焼結した。熱処理および高
温静水圧プレスの条件は第1表に示す。
Examples 1 to 10 The raw material powders of Examples 1 to 10 have an average particle diameter of 0.5 μm, a BET specific surface area of 5.0 m 2 / g, and an alumina powder having a purity of 99.5% or more as a base material, silicon carbide granular particles, and a silicon carbide plate. Particles and silicon carbide whiskers were used as the reinforcing material. Table 1 shows the blending ratio of the base material and the reinforcing material and the shape and size of the reinforcing material. The base material and the reinforcing material were mixed using a polyethylene wide-mouthed bottle with an internal volume of 1 and a nylon-coated steel ball boulder.
g, water or 300 ml of ethyl alcohol was added and wet-mixed for 20 hours. At this time, in the case where the reinforcing material was silicon carbide whiskers, they were well dispersed in advance using an ultrasonic cleaner and then wet mixed. The obtained mixture was dried at 120 ° C. for 24 hours and sized using a sieve having a mesh of 149 μm to obtain a molding powder. This molding powder is pressed into a mold and the size is 50 x 40 x 6 m.
A molded body of m was produced. The molded body was rubber-pressed at a pressure of 7 ton / cm 2 . Then, a surface coating layer was formed on the obtained molded body with alumina powder. The molded body having this surface coating layer was heat-treated in an argon atmosphere within a temperature range of 1500 to 1800 ° C. Then, the heat-treated molded body was put into a glass capsule, deaerated, and sintered by a high temperature isostatic press in an argon atmosphere. The conditions of heat treatment and hot isostatic pressing are shown in Table 1.

第1表中、比較例1および比較例2は熱処理を行わずに
高温静水圧プレスにより焼結した例、比較例3および比
較例4は1500〜1800℃の熱処理温度範囲外で熱処理し高
温静水圧プレスした例である。
In Table 1, Comparative Examples 1 and 2 are examples of sintering by high-temperature isostatic pressing without heat treatment, and Comparative Examples 3 and 4 are heat-treated outside the heat treatment temperature range of 1500 to 1800 ° C. This is an example of hydraulic pressing.

得られたセラミック焼結体(実施例1〜10および比較例
1〜4)について密度、四点曲げ強さを測定した。密度
はアルキメデス法により測定し、四点曲げ強度は室温お
よび1200℃について「ファインセラミックスの曲げ強さ
試験法」(JIS r−1601)に従って測定した。結果は第
1表に示す。第1表に示した密度および四点曲げ強度の
値は、焼結体3個についての試験結果の平均値である。
The density and four-point bending strength of the obtained ceramic sintered bodies (Examples 1 to 10 and Comparative Examples 1 to 4) were measured. The density was measured by the Archimedes method, and the four-point bending strength was measured at room temperature and 1200 ° C according to the "bending strength test method for fine ceramics" (JIS r-1601). The results are shown in Table 1. The values of the density and the four-point bending strength shown in Table 1 are the average values of the test results for the three sintered bodies.

第1表の結果より本発明で得られたセラミック焼結体は
高密度で高温強度が大きいことが判る。
From the results shown in Table 1, it can be seen that the ceramic sintered body obtained by the present invention has high density and high strength at high temperature.

実施例11〜20 実施例11〜20の原料粉末は、平均粒径1.0μm、BET比表
面積10m2/gのムライト粉末を母材とし、炭化珪素粒状粒
子、炭化珪素板状粒子、炭化珪素ウィスカーを強化材と
した。製造方法は実施例1〜10に準ずる。
Examples 11 to 20 The raw material powders of Examples 11 to 20 have mullite powder having an average particle size of 1.0 μm and a BET specific surface area of 10 m 2 / g as a base material, and have silicon carbide granular particles, silicon carbide plate-like particles, and silicon carbide whiskers. Was used as a reinforcing material. The manufacturing method is in accordance with Examples 1 to 10.

実施例11〜20の母材と強化材の配合割合、強化材の形
状、大きさならびに熱処理および高温静水圧プレスの条
件は第2表に示す。
Table 2 shows the blending ratio of the base material and the reinforcing material, the shape and size of the reinforcing material, and the conditions of heat treatment and high temperature isostatic pressing in Examples 11 to 20.

第2表中、比較例5および比較例6は熱処理を行わずに
高温静水圧プレスにより焼結した例、比較例7および比
較例8は1500〜1800℃の熱処理温度範囲外で熱処理し高
温静水圧プレスした例である。
In Table 2, Comparative Example 5 and Comparative Example 6 are examples of sintering by high temperature isostatic pressing without heat treatment, and Comparative Example 7 and Comparative Example 8 are heat treated outside the heat treatment temperature range of 1500 to 1800 ° C. This is an example of hydraulic pressing.

得られたセラミック焼結体(実施例11〜20および比較例
5〜8)について密度、四点曲げ強さを測定した。密度
はアルキメデス法により測定し、四点曲げ強さは室温お
よび1200℃について「ファインセラミックスの曲げ強さ
試験法」(JIS R−1601)に従って測定した。結果は第
2表に示す。なお、ここに示した密度および四点曲げ強
さの値は焼結体3個についての試験結果の平均値であ
る。
The density and four-point bending strength of the obtained ceramic sintered bodies (Examples 11 to 20 and Comparative examples 5 to 8) were measured. The density was measured by the Archimedes method, and the four-point bending strength was measured at room temperature and 1200 ° C according to the "bending strength test method for fine ceramics" (JIS R-1601). The results are shown in Table 2. The values of the density and the four-point bending strength shown here are the average values of the test results for three sintered bodies.

第2表の結果より本発明で得られたセラミック焼結体は
高密度で高温強度が大きいことが判る。
From the results shown in Table 2, it is understood that the ceramic sintered body obtained by the present invention has high density and high strength at high temperature.

実施例21〜34 実施例21〜34は、Y2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3
いずれか2種以上を焼結助剤として含む窒化珪素粉末を
母材とし、強化材として炭化珪素粒状粒子、炭化珪素板
状粒子、炭化珪素ウィスカーを用い混合した。この混合
物を成形し、この成形体に前述した窒化珪素母材粉末に
より表面被膜層を形成し、この表面被膜層を形成した成
形体に予備焼成としての熱処理を行い、その後、ガラス
カプセルにて高温静水圧プレス焼結する。
Examples 21 to 34 Examples 21 to 34 are nitrides containing two or more of Y 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 as a sintering aid. Silicon powder was used as a base material, and silicon carbide granular particles, silicon carbide plate-like particles, and silicon carbide whiskers were used as a reinforcing material and mixed. This mixture is molded, a surface coating layer is formed on the molded body from the above-mentioned silicon nitride base material powder, and the molded body on which the surface coating layer has been formed is subjected to a heat treatment as pre-baking, and then a glass capsule is used for high temperature treatment. Isostatic press sintering.

まず、金属または陽イオンの不純物(C、Al、Fe、Mg、
Ca等)0.1wt%を含み酸素含有量2.2wt%、平均粒径0.5
μm、BET比表面積15m2/gの窒化珪素原料粉末に、Y
2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3のうちいずれか2種
以上の焼結助剤約8〜13wt%を添加し、この窒化珪素原
料粉末に窒化珪素質磁器製玉石と水を加え、ナイロン樹
脂製容器を用いて混合粉砕した。このとき、混合粉砕
は、玉石と水を前述の窒化珪素原料粉末200grに対して
玉石1.8kg、水300mlを加え、振動ミルにより振動数1200
回転/分で3時間行なった。得られた混合物を120℃、2
4時間乾燥させ、メッシュが149μmの篩を使用して整粒
し母材粉末とした。次に、この母材用粉末に強化材とし
て炭化珪素粒子、炭化珪素板状粒子、炭化珪素ウィスカ
ーの1種を別々に混合し、内容積1のポリエチレン製
広口瓶とナイロン被覆鋼球玉石を用いて、調合量200gr
に対し玉石1.1kg、水またはエチルアルコール300ml加
え、20時間湿式混合した。この際、強化材が炭化珪素ウ
ィスカーの場合は超音波洗浄器を用い予め良く分散させ
てから湿式混合した。得られた混合物を120℃で24時間
乾燥させ、メッシュが149μmの篩を使用して整粒し成
形用粉末とした。この成形用粉末を金型プレスし大きさ
50×40×6mmの成形体を作製した。この成形体を7ton/cm
2の圧力でラバープレスした。そして得られた成形体に
前記の母材粉末により表面被膜層を形成した。この成形
体を9.5気圧、窒素雰囲気下、1750〜1950℃の範囲内の
温度で熱処理を行なった。その後、熱処理を行なった成
形体をガラスカプセルに入れ脱気を行い、1850〜1950
℃、500〜2000気圧の条件で高温静水圧プレスにより焼
結した。焼結後、ガラスカプセルを除去したセラミック
焼結体をさらに窒素雰囲気下で1400℃で6時間結晶化処
理を行なった。
First, metal or cation impurities (C, Al, Fe, Mg,
Ca, etc.) containing 0.1 wt% oxygen content 2.2 wt%, average particle size 0.5
μm, BET specific surface area 15m 2 / g Silicon nitride raw material powder, Y
2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 or Lu 2 O 3 is added to the silicon nitride raw material powder by adding about 8 to 13 wt% of two or more sintering aids. Cobblestone made of silicon nitride porcelain and water were added, and mixed and pulverized using a nylon resin container. At this time, in the mixed pulverization, boulders and water were added to 1.8 g of boulders and 300 ml of water with respect to 200 gr of the above-mentioned silicon nitride raw material powder, and the vibration frequency was set to 1200 by a vibration mill.
Rotation / min was carried out for 3 hours. The resulting mixture was heated at 120 ° C, 2
It was dried for 4 hours and sized using a sieve having a mesh of 149 μm to obtain a base material powder. Next, one kind of silicon carbide particles, silicon carbide plate-like particles, and silicon carbide whiskers were separately mixed with this powder for base material as a reinforcing material, and a polyethylene wide-mouthed bottle having an inner volume of 1 and a nylon-coated steel ball boulder were used. 200 gr
To 1.1 g of boulders, 300 ml of water or ethyl alcohol was added and wet mixed for 20 hours. At this time, in the case where the reinforcing material was silicon carbide whiskers, they were well dispersed in advance using an ultrasonic cleaner and then wet mixed. The obtained mixture was dried at 120 ° C. for 24 hours and sized using a sieve having a mesh of 149 μm to obtain a molding powder. This molding powder is pressed into a die and sized
A 50 × 40 × 6 mm molded body was produced. This molded body is 7ton / cm
Rubber pressed at a pressure of 2 . Then, a surface coating layer was formed on the obtained compact by using the above-mentioned base material powder. This molded body was heat-treated at a temperature in the range of 1750 to 1950 ° C under a nitrogen atmosphere at 9.5 atm. After that, the heat-treated molded body is put into a glass capsule and degassed, and 1850 to 1950
Sintered by a high temperature isostatic press at a temperature of 500 to 2000 atm. After sintering, the ceramic sintered body from which the glass capsule was removed was further crystallized at 1400 ° C. for 6 hours in a nitrogen atmosphere.

セラミック焼結体の製造に使用した母材と強化材の配合
割合および強化材の大きさについては第3表に示し、熱
処理および高温静水圧プレスの条件について第4表に示
す。
The compounding ratio of the base material and the reinforcing material and the size of the reinforcing material used for manufacturing the ceramic sintered body are shown in Table 3, and the conditions of the heat treatment and the high temperature isostatic pressing are shown in Table 4.

第3表および第4表の比較例9、10および11は、熱処理
を行わずに高温静水圧プレスにより焼結した例、比較例
12および比較例13は、1750〜1950℃の熱処理温度範囲外
で熱処理し高温静水圧プレスした例である。
Comparative examples 9, 10 and 11 in Tables 3 and 4 are examples in which sintering was performed by a high temperature isostatic press without heat treatment, and comparative examples.
12 and Comparative Example 13 are examples of heat treatment outside the heat treatment temperature range of 1750 to 1950 ° C. and high temperature isostatic pressing.

得られたセラミック焼結体(実施例21〜34および比較例
9〜13)について密度、四点曲げ強さを測定した。密度
はアルキメデス法により測定し、四点曲げ強さは室温お
よび1400℃について「ファインセラミックスの曲げ強さ
試験法」(JIS R−1601)に従って測定した。結果を第
4表に示す。第4表に示す密度および四点曲げ強さの値
は焼結体3個についての試験結果の平均値である。
The density and four-point bending strength of the obtained ceramic sintered bodies (Examples 21 to 34 and Comparative Examples 9 to 13) were measured. The density was measured by the Archimedes method, and the four-point bending strength was measured at room temperature and 1400 ° C. according to the “Bending strength test method for fine ceramics” (JIS R-1601). The results are shown in Table 4. The values of density and four-point bending strength shown in Table 4 are average values of the test results for three sintered bodies.

第4表の結果より本発明で得られたセラミック焼結体は
高密度で高温強度が大きいことが判る。
From the results shown in Table 4, it is understood that the ceramic sintered body obtained by the present invention has high density and high strength at high temperature.

実施例35〜44 実施例35〜44は、平均粒径1.7μm、BET比表面積5.9m2/
gのサイアロン粉末に焼結助剤としてY2O3を0.5wt%添加
したものを母材とした。強化材として炭化珪素粒状粒
子、炭化珪素板状粒子、炭化珪素ウィスカーを用いた。
混合は内容積1のポリエチレン製広口瓶とナイロン被
覆鋼球玉石を用い、調合量200grに対し玉石1.1kg、水ま
たはエチルアルコール300ml加え20時間湿式混合した。
この際、強化材が炭化珪素ウィスカー場合は超音波洗浄
器を用い予め良く分散させてから湿式混合した。得られ
た混合物を120℃で24時間乾燥させ、メッシュが149μm
の篩を使用して整粒し、成形用粉末とした。この成形用
粉末を金型プレスし大きさ50×40×6mmの成形体を作製
した。この成形体を7ton/cm2の圧力でラバープレスし
た。そして得られた成形体に前記の母材粉末により表面
被膜層を形成した。この形成体を9.5気圧、窒素雰囲気
下、1750〜1950℃の温度範囲内で熱処理を行なった。そ
の後、熱処理を行なった成形体をガラスカプセルに入れ
脱気を行い、1800〜1900℃、500〜2000気圧の条件で高
温静水圧プレスにより焼結した。
Examples 35 to 44 Examples 35 to 44 have an average particle size of 1.7 μm and a BET specific surface area of 5.9 m 2 /
As a base material, 0.5 g of Y 2 O 3 as a sintering additive was added to g of sialon powder. Silicon carbide granular particles, silicon carbide plate-like particles, and silicon carbide whiskers were used as the reinforcing material.
For the mixing, a polyethylene wide-mouthed bottle having an internal volume of 1 and a nylon-coated steel ball boulder were used, and 1.1 kg of boulder and 300 ml of water or ethyl alcohol were added to a blending amount of 200 gr and wet-mixed for 20 hours.
At this time, when the reinforcing material was a silicon carbide whisker, it was well-dispersed in advance using an ultrasonic cleaner and then wet-mixed. The resulting mixture was dried at 120 ° C for 24 hours and had a mesh of 149 μm
The powder was sized using a sieve of No. 1 to obtain a molding powder. This molding powder was pressed by a mold to produce a molded body having a size of 50 × 40 × 6 mm. This molded body was rubber-pressed at a pressure of 7 ton / cm 2 . Then, a surface coating layer was formed on the obtained compact by using the above-mentioned base material powder. This formed body was heat-treated in a temperature range of 1750 to 1950 ° C under a nitrogen atmosphere at 9.5 atm. Then, the heat-treated molded body was placed in a glass capsule, deaerated, and sintered by a high temperature isostatic press under the conditions of 1800 to 1900 ° C and 500 to 2000 atm.

セラミック焼結体の製造に使用した母材と強化材の配合
の配合割合ならびに熱処理および高温静水圧プレスの条
件について第5表に示す。
Table 5 shows the mixing ratio of the base material and the reinforcing material used in the production of the ceramic sintered body, and the conditions of heat treatment and high temperature isostatic pressing.

また比較例14および比較例15は、熱処理を行わずに高温
静水圧プレスにより焼結した例、比較例16および17は17
50〜1950℃の熱処理温度範囲外で熱処理し高温静水圧プ
レスした例である。
Comparative Examples 14 and 15 are examples of sintering by high temperature isostatic pressing without heat treatment, Comparative Examples 16 and 17 are 17
This is an example of heat treatment outside the heat treatment temperature range of 50 to 1950 ° C. and high temperature isostatic pressing.

得られたセラミック焼結体(実施例35〜44および比較例
14〜17)について、密度、四点曲げ強さを測定した。密
度はアルキメデス法により測定し、四点曲げ強さは室温
および1400℃について「ファインセラミックスの曲げ強
さ試験法」(JIS R−1601)に従って測定した。結果を
第5表に示す。第5表に示した密度および四点曲げ強さ
の値は焼結体3個についての試験結果の平均値である。
第5表の結果より本発明で得られたセラミック焼結体は
高密度で高温強度が大きいことが判る。
The obtained ceramic sintered body (Examples 35 to 44 and Comparative Example
14-17), the density and the four-point bending strength were measured. The density was measured by the Archimedes method, and the four-point bending strength was measured at room temperature and 1400 ° C. according to the “Bending strength test method for fine ceramics” (JIS R-1601). The results are shown in Table 5. The values of the density and the four-point bending strength shown in Table 5 are average values of the test results for three sintered bodies.
From the results shown in Table 5, it is understood that the ceramic sintered body obtained according to the present invention has high density and high strength at high temperature.

(発明の効果) 以上説明したように、本発明のセラミック焼結体の製造
方法によると、セラミック母材とセラミック強化材から
なる成形体にセラミック母材粉末で表面被膜層を形成
し、高温静水圧プレス処理前に予備焼成による処理を行
なうことにより、複雑な形状の成形体であっても、高緻
密質で耐熱性、耐酸化性、および高温強度に優れたセラ
ミック焼結体を得ることができるという効果がある。
(Effects of the Invention) As described above, according to the method for manufacturing a ceramic sintered body of the present invention, a surface coating layer is formed from a ceramic base material powder on a molded body composed of a ceramic base material and a ceramic reinforcement material, and high temperature static By performing the pre-firing process before the hydraulic pressing process, it is possible to obtain a ceramic sintered body that is highly dense and has excellent heat resistance, oxidation resistance, and high-temperature strength, even if the molded body has a complicated shape. The effect is that you can do it.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の製造工程を示す工程図、第2
図は本発明の実施例の高温静水圧プレス処理における温
度と時間および圧力と時間の関係を示す特性図である。
FIG. 1 is a process diagram showing a manufacturing process of an embodiment of the present invention, and FIG.
The figure is a characteristic diagram showing the relationship between temperature and time and pressure and time in the hot isostatic pressing process of the example of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】セラミック母材とセラミック強化材を含む
セラミック混合粉末を成形し、この成形体にセラミック
母材粉末で表面被膜層を形成し、この表面被膜層を形成
した成形体を熱処理温度1500〜1950℃で熱処理した後、
ガラスにより被覆して高温静水圧プレス焼結することを
特徴とするセラミック焼結体の製造方法。
1. A ceramic mixed powder containing a ceramic base material and a ceramic reinforcing material is molded, a surface coating layer is formed on the molded body with the ceramic base material powder, and the molded body having the surface coating layer formed thereon is subjected to a heat treatment temperature of 1500. After heat treatment at ~ 1950 ℃,
A method for producing a ceramic sintered body, which comprises coating with glass and performing high temperature isostatic pressing sintering.
【請求項2】前記セラミック母材が、アルミナ、ムライ
ト等の酸化物セラミックスであることを特徴とする請求
項1に記載のセラミック焼結体の製造方法。
2. The method for producing a ceramic sintered body according to claim 1, wherein the ceramic base material is an oxide ceramic such as alumina or mullite.
【請求項3】前記熱処理は、熱処理温度を1500〜1800℃
で行うことを特徴とする請求項2に記載のセラミック焼
結体の製造方法。
3. The heat treatment is performed at a heat treatment temperature of 1500 to 1800 ° C.
The method for producing a ceramic sintered body according to claim 2, wherein
【請求項4】前記セラミック母材が、窒化珪素、サイア
ロン等の非酸化物セラミックスであることを特徴とする
請求項1に記載のセラミック焼結体の製造方法。
4. The method for producing a ceramic sintered body according to claim 1, wherein the ceramic base material is a non-oxide ceramic such as silicon nitride or sialon.
【請求項5】前記熱処理は、窒化雰囲気中温度1750〜19
50℃、9.5気圧下で行うことを特徴とする請求項4に記
載のセラミック焼結体の製造方法。
5. The heat treatment is performed in a nitriding atmosphere at a temperature of 1750-19.
The method for producing a ceramic sintered body according to claim 4, which is carried out at 50 ° C. and under 9.5 atm.
【請求項6】前記セラミック強化材が、炭化珪素粒状粒
子、炭化珪素板状粒子または炭化珪素ウィスカーのうち
少なくとも一種であることを特徴とする請求項1〜5の
いずれか一項に記載のセラミック焼結体の製造方法。
6. The ceramic according to claim 1, wherein the ceramic reinforcing material is at least one of silicon carbide granular particles, silicon carbide plate-like particles and silicon carbide whiskers. Manufacturing method of sintered body.
JP2109129A 1990-04-25 1990-04-25 Method for manufacturing ceramic sintered body Expired - Fee Related JPH07108819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109129A JPH07108819B2 (en) 1990-04-25 1990-04-25 Method for manufacturing ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109129A JPH07108819B2 (en) 1990-04-25 1990-04-25 Method for manufacturing ceramic sintered body

Publications (2)

Publication Number Publication Date
JPH046167A JPH046167A (en) 1992-01-10
JPH07108819B2 true JPH07108819B2 (en) 1995-11-22

Family

ID=14502312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109129A Expired - Fee Related JPH07108819B2 (en) 1990-04-25 1990-04-25 Method for manufacturing ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH07108819B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822782B2 (en) * 1987-05-22 1996-03-06 石川島播磨重工業株式会社 Method for producing fiber-reinforced ceramics

Also Published As

Publication number Publication date
JPH046167A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
JPS6256107B2 (en)
JPH0925166A (en) Aluminum nitride sintered compact and its production
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPS61146762A (en) Antiabrasive silicon nitride base product
JPH07172921A (en) Aluminum nitride sintered material and its production
JPH07108819B2 (en) Method for manufacturing ceramic sintered body
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH0733291B2 (en) Method for manufacturing silicon nitride sintered body
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JPS60239360A (en) Silicon carbide ceramic sintered body
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JP3564164B2 (en) Silicon nitride sintered body and method for producing the same
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH11236266A (en) Production of silicon carbide-base sheet
JPH0583515B2 (en)
JP2004083354A (en) Method of producing non-oxide porous ceramic material mainly comprising silicon
JPH0461828B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees