JPH07108806B2 - Furnace material for thermal shock resistance firing - Google Patents

Furnace material for thermal shock resistance firing

Info

Publication number
JPH07108806B2
JPH07108806B2 JP1273262A JP27326289A JPH07108806B2 JP H07108806 B2 JPH07108806 B2 JP H07108806B2 JP 1273262 A JP1273262 A JP 1273262A JP 27326289 A JP27326289 A JP 27326289A JP H07108806 B2 JPH07108806 B2 JP H07108806B2
Authority
JP
Japan
Prior art keywords
furnace material
firing
alumina
furnace
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1273262A
Other languages
Japanese (ja)
Other versions
JPH03137074A (en
Inventor
小林  隆
健之 上野
昂 雲川
雅和 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1273262A priority Critical patent/JPH07108806B2/en
Publication of JPH03137074A publication Critical patent/JPH03137074A/en
Publication of JPH07108806B2 publication Critical patent/JPH07108806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック電子部品用素子の焼成用に用いる
耐熱衝撃性焼成用炉材に関する。
TECHNICAL FIELD The present invention relates to a thermal shock-resistant firing furnace material used for firing an element for a ceramic electronic component.

[背景技術] セラミック電子部品の焼成用炉材として、近年、体積密
度の小さな軽量炉材が用いられている。これは、アルミ
ナ等のセラミック炉材に樹脂粒子を混合して成形し、こ
れを焼成することによって樹脂粒子を燃焼させ、その後
に気孔を発生させて体積密度を減少させ、軽量化したも
のである。このような軽量炉材は、低熱容量であるた
め、速やかに昇温及び冷却することができ、焼成スピー
ドの早い電子部品を焼成するために最適である。
BACKGROUND ART In recent years, a lightweight furnace material having a small volume density has been used as a furnace material for firing a ceramic electronic component. This is one in which resin particles are mixed with a ceramic furnace material such as alumina, molded, and burned to burn the resin particles, and then pores are generated to reduce the volume density and reduce the weight. . Since such a lightweight furnace material has a low heat capacity, it can be quickly heated and cooled, and is optimal for firing electronic parts having a high firing speed.

しかしながら、このような軽量炉材の母材としてアルミ
ナ系セラミックを用いると、熱膨張係数が大きいために
耐熱衝撃性が低く、炉材ライフが短いという問題があ
る。一方、軽量炉材の母材としてムライト系炉材を用い
ると、ムライト組成中のSiO2その他の不純物が被焼成物
と反応し、被焼成物の品質や電気的特性を低下させると
いう問題があった。
However, when an alumina-based ceramic is used as the base material of such a lightweight furnace material, there is a problem that the thermal shock resistance is low and the furnace material life is short because of a large coefficient of thermal expansion. On the other hand, when a mullite-based furnace material is used as the base material of the lightweight furnace material, there is a problem that SiO 2 and other impurities in the mullite composition react with the material to be fired, which deteriorates the quality and electrical characteristics of the material to be fired. It was

そこで、本発明の出願人は、母材としてアルミナにジル
コニアを添加したものを用いたアルミナ−ジルコニア複
合軽量炉材について特許出願(平成元年9月13日付けで
差し出しの特許出願「耐熱衝撃性焼成用炉材」)した。
これは、軽量炉材の特徴を備えており、被焼成物との反
応が起こりにくく、しかも耐熱衝撃性が高いという長所
を備えている。
Therefore, the applicant of the present invention has applied for a patent for an alumina-zirconia composite lightweight furnace material that uses alumina with zirconia added as a base material (patent application “Thermal shock resistance provided on September 13, 1989) Furnace material for firing ").
This has the characteristics of a lightweight furnace material, and has the advantage that it does not easily react with the material to be fired and has high thermal shock resistance.

[発明が解決しようとする課題] しかしながら、上記のようなアルミナ−ジルコニア複合
軽量炉材も、一般の重質炉材と比較すると、抗折強度が
低く(100kg/cm2)、そのために実用上の炉材ライフが
低いという課題が残っている。また、製造上において
も、該炉材は、アルミナとジルコニアという高温焼成を
要するファインな原料を用いているため、成形及び焼成
工程において母材中にクラック等の歪みが入りやすく、
一層炉材ライフが低下させられている。
[Problems to be Solved by the Invention] However, the alumina-zirconia composite lightweight furnace material as described above also has a low bending strength (100 kg / cm 2 ) as compared with a general heavy furnace material, and therefore is practically used. The problem that the life of the furnace material is low remains. Further, also in manufacturing, since the furnace material uses fine raw materials such as alumina and zirconia that require high temperature firing, cracks and the like are likely to occur in the base material in the molding and firing steps,
Furnace material life is being further reduced.

しかして、本発明は、叙上の従来例の欠点に鑑みてなさ
れたものであり、その目的とするところは、アルミナ−
ジルコニア複合軽量炉材の炉材ライフを改善することを
目的としてなされたものである。
Therefore, the present invention has been made in view of the drawbacks of the above-mentioned conventional examples, and the object thereof is alumina-
The purpose is to improve the life of the zirconia composite lightweight furnace material.

[課題を解決するための手段] このため、本発明の耐熱衝撃性焼成用炉材は、アルミナ
80〜90wt%と単斜晶ジルコニア20〜10wt%の組成に対し
カオリン質粘土鉱物を0.5〜2.5wt%添加し、さらに粒子
状もしくは繊維状をした樹脂材を混合して焼成すること
により、嵩密度が1.1〜1.6gr/ccの多孔質体にしたこと
を特徴としている。
[Means for Solving the Problems] Therefore, the furnace material for thermal shock resistance firing of the present invention is made of alumina.
By adding 0.5-2.5 wt% of kaolin clay mineral to the composition of 80-90 wt% and monoclinic zirconia of 20-10 wt%, and mixing the particulate or fibrous resin material and firing, The feature is that the porous body has a density of 1.1 to 1.6 gr / cc.

[作用] 単斜晶ジルコニアは、高温で結晶構造の熱的変換を起こ
し、ローカルな体積収縮を生じ、これがアルミナ組成の
熱膨張を相殺するので、アルミナ−ジルコニア複合材は
全体として熱膨張係数がゼロに近くなる。このため、焼
成用炉材の急熱急冷に対する耐久性が向上し、耐熱衝撃
性が改善される。また、この焼成用炉材は、高温相で安
定なアルミナとジルコニアのみで構成されているので、
被焼成物と反応する恐れがない。樹脂材の焼成跡に生じ
た気孔により焼成用炉材の嵩密度が小さくなり、焼成用
炉材が軽量化され、炉材熱容量が小さくなる。
[Operation] Monoclinic zirconia causes a thermal conversion of the crystal structure at a high temperature to cause a local volume contraction, which offsets the thermal expansion of the alumina composition, so that the alumina-zirconia composite has an overall coefficient of thermal expansion. It approaches zero. Therefore, the durability of the firing furnace material against rapid heating and quenching is improved, and the thermal shock resistance is improved. Further, since this firing furnace material is composed only of alumina and zirconia that are stable in the high temperature phase,
There is no danger of reacting with the material to be fired. Due to the pores generated in the trace of the baking of the resin material, the bulk density of the baking furnace material is reduced, the baking furnace material is reduced in weight, and the furnace material heat capacity is reduced.

しかも、本発明にあっては、アルミナ−ジルコニア複合
材にカオリン質粘土鉱物を成形および焼成助剤として少
量添加しているので、アルミナ−ジルコニア複合軽量炉
材内部の結合力を向上させ、製造工程における歪の発生
を防止すると共に、抗折強度の向上を図ることができ
る。従って、アルミナ−ジルコニア複合軽量炉材の上記
諸特性に加えて、実用上の炉材ライフを大幅に長くする
ことができる。
Moreover, in the present invention, since a small amount of kaolinaceous clay mineral is added to the alumina-zirconia composite material as a molding and firing aid, the binding force inside the alumina-zirconia composite lightweight furnace material is improved, and the manufacturing process It is possible to prevent the occurrence of strain at the same time and improve the bending strength. Therefore, in addition to the above various characteristics of the alumina-zirconia composite lightweight furnace material, the life of the furnace material in practical use can be significantly extended.

[実施例] 以下、本発明の実施例を添付図に基づいて詳述する。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図には、アルミナ−ジルコニア複合材の内部に多数
の気孔2を形成して多孔質体とした焼成用炉材1(セッ
ター)の外観斜視図を示してあり、第2図にはその一部
を拡大して示してある。
FIG. 1 shows an external perspective view of a firing furnace material 1 (setter) made into a porous body by forming a large number of pores 2 inside an alumina-zirconia composite material, and FIG. A portion is enlarged and shown.

この焼成用炉材1は、次のようにして製造する。純度99
/0%以上の高純度アルミナ(Al2O3)に純度99.0%の高
純度の電融単斜晶ジルコニアを重量比90:10の割合で加
え、さらにアルミナ及びジルコニア100wt%に対し成形
及び焼結助剤としてカオリンを外がけで0.5〜2.5wt%添
加してスラリーを調製する。気孔2を形成するための粒
子状もしくは繊維状をした樹脂材は、スラリー内に体積
比で38%混合される。このスラリーを石膏型に流し込ん
で炉材形状に鋳込成形し、これをバッチ炉において1600
℃で2時間保持して焼成し、焼成時に樹脂材を燃焼させ
て燃焼跡に多数の気孔2を生じさせ、嵩密度1.3g/ccの
多孔質体の焼成用炉材1を製作する。
The firing furnace material 1 is manufactured as follows. Purity 99
/ 0% or higher high-purity alumina (Al 2 O 3 ) with high-purity 99.0% high-purity fused monoclinic zirconia at a weight ratio of 90:10, and then formed and fired against 100% by weight of alumina and zirconia. A slurry is prepared by adding 0.5 to 2.5 wt% of kaolin as an auxiliary agent on the outside. The particulate or fibrous resin material for forming the pores 2 is mixed in the slurry in a volume ratio of 38%. This slurry is poured into a plaster mold and cast into a furnace material shape.
A firing furnace material 1 for firing a porous body having a bulk density of 1.3 g / cc is manufactured by holding the firing temperature at 2 ° C. for firing for 2 hours and burning the resin material during firing to generate a large number of pores 2 in the burning trace.

このようなアルミナ−ジルコニア複合軽量材にあって
は、単斜晶ジルコニアが高温で結晶構造の熱的変換によ
り正方晶ジルコニアになり、その時結晶構造の変化に伴
ってローカルな体積収縮を起こし、これがアルミナの体
積膨張を相殺し、焼成用炉材1全体としては熱膨張係数
がゼロに近くなる。このため、焼成用炉材1の急熱急冷
に対する耐久性が向上し、耐熱衝撃性が改善される。ま
た、アルミナ−ジルコニアは、いずれも高温相において
安定であるので、ムライト質の炉材のように被焼成物と
反応する恐れが無い。さらに、気孔2の存在により軽量
化されているので、体積密度及び炉材熱容量が小さく、
電子部品の高速焼成用に適している。しかも、カオリン
を添加したので、炉材内部の結合力が強くなり、製造工
程における歪の発生を防止でき、抗折強度を向上させる
ことができる。
In such an alumina-zirconia composite lightweight material, monoclinic zirconia becomes tetragonal zirconia by thermal conversion of the crystal structure at high temperature, at which time local volume shrinkage occurs with the change of the crystal structure, which The volume expansion of alumina is offset, and the thermal expansion coefficient of the firing furnace material 1 as a whole approaches zero. Therefore, the durability of the firing furnace material 1 against rapid heating and quenching is improved, and the thermal shock resistance is improved. Further, since alumina-zirconia is stable in the high temperature phase, there is no risk of reacting with the material to be fired unlike the mullite type furnace material. Further, since the weight is reduced due to the existence of the pores 2, the volume density and the heat capacity of the furnace material are small,
Suitable for high speed firing of electronic parts. In addition, since kaolin is added, the binding force inside the furnace material is strengthened, the occurrence of strain in the manufacturing process can be prevented, and the bending strength can be improved.

本発明を実施の結果を調べるため、第1表に示すよう
に、アルミナ及びジルコニア100wt%に対し、カオリン
を0.5〜2.5wt%添加し、上記製造方法に従って実施例1
〜5の焼成用炉材を製作した。また、本実施例と比較の
ため、カオリン無添加の比較例1、カオリン3.0wt%の
比較例2、カオリン3.5wt%の比較例3の焼成用炉材を
製作した。この後、これら各焼成用炉材の工程不良率
(1000個製作中のクラック発生率)、被焼成物特性(各
焼成用炉材を用いて焼成したセラミックデンサの品質の
良否)、炉材ライフ(可使用回数)及び抗折強度を調べ
た。第1表には、この結果も併せて示してある。
In order to examine the results of carrying out the present invention, as shown in Table 1, 0.5 to 2.5 wt% of kaolin was added to 100 wt% of alumina and zirconia, and the method of Example 1 was followed.
~ 5 furnace materials for firing were manufactured. Further, for comparison with this example, firing furnace materials of Comparative Example 1 containing no kaolin, Comparative Example 2 containing 3.0 wt% kaolin, and Comparative Example 3 containing 3.5 wt% kaolin were manufactured. After this, the process defect rate (crack occurrence rate during the production of 1000 pieces) of each of these firing furnace materials, the characteristics of the material to be fired (the quality of the ceramic capacitor fired using each firing furnace material), the life of the furnace material (Usable count) and flexural strength were examined. The results are also shown in Table 1.

第1表に示されているように、カオリンを0.5wt%以上
添加することによりカオリン無添加の比較例1に比較し
て大幅に工程不良率を低減することができ、炉材製作時
の歩留りを向上させることができた。また、抗折強度も
向上し、それに伴って炉材ライフも大幅に延びた。一
方、カオリンを3.0wt%以上添加した場合には、比較例
2及び比較例3のように被焼成物の特性劣化が生じた。
したがって、この結果よりカオリンの添加量としては、
0.5wt%〜2.5wt%の範囲内が最適であった。
As shown in Table 1, by adding kaolin in an amount of 0.5 wt% or more, the process defect rate can be significantly reduced as compared with Comparative Example 1 in which kaolin is not added. Was able to improve. In addition, the bending strength was improved, and the life of the furnace material was significantly extended accordingly. On the other hand, when kaolin was added in an amount of 3.0 wt% or more, the characteristics of the fired product deteriorated as in Comparative Examples 2 and 3.
Therefore, from this result, as the amount of kaolin added,
The optimum range was 0.5 wt% to 2.5 wt%.

[発明の効果] 本発明によれば、熱膨張係数がゼロに近くて耐熱衝撃性
が良好で、被焼成物と反応する恐れがなく、軽量で炉材
熱容量が小さい、という特徴を有するアルミナ−ジルコ
ニア複合軽量炉材の特性をより改善することができ、製
造工程における歪の発生を防止すると共に、抗折強度の
向上を図ることができ、炉材ライフを大幅に長くするこ
とができる。
[Advantages of the Invention] According to the present invention, alumina having characteristics that the coefficient of thermal expansion is close to zero, the thermal shock resistance is good, there is no danger of reacting with the material to be fired, the weight is small, and the heat capacity of the furnace material is small. The characteristics of the zirconia composite lightweight furnace material can be further improved, distortion can be prevented from occurring in the manufacturing process, and the bending strength can be improved, so that the furnace material life can be significantly lengthened.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は第1
図のX部拡大図である。 1…焼成用炉材 2…気孔
FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG.
It is an X section enlarged view of a figure. 1 ... Baking furnace material 2 ... Pores

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27D 3/12 S (72)発明者 弓削 雅和 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 (56)参考文献 特開 昭57−100988(JP,A) 特開 昭63−265870(JP,A) 特開 平1−208378(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location F27D 3/12 S (72) Inventor Masakazu Yuge 2 26-10 Tenjin, Nagaokakyo-shi, Kyoto Stock Murata Manufacturing Co., Ltd. (56) Reference JP-A-57-100988 (JP, A) JP-A-63-265870 (JP, A) JP-A-1-208378 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミナ80〜90wt%と単斜晶ジルコニア20
〜10wt%の組成に対しカオリン質粘土鉱物を0.5〜2.5wt
%添加し、さらに粒子状もしくは繊維状をした樹脂材を
混合して焼成することにより、嵩密度が1.1〜1.6gr/cc
の多孔質体にしたことを特徴とする耐熱衝撃性焼成用炉
材。
1. Alumina 80-90 wt% and monoclinic zirconia 20
0.5 to 2.5 wt% of kaolinaceous clay mineral for composition of 10 wt%
%, And by further mixing and firing a particulate or fibrous resin material, the bulk density is 1.1 to 1.6 gr / cc.
A furnace material for thermal shock resistance firing, characterized in that it is made of a porous material.
JP1273262A 1989-10-19 1989-10-19 Furnace material for thermal shock resistance firing Expired - Lifetime JPH07108806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273262A JPH07108806B2 (en) 1989-10-19 1989-10-19 Furnace material for thermal shock resistance firing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273262A JPH07108806B2 (en) 1989-10-19 1989-10-19 Furnace material for thermal shock resistance firing

Publications (2)

Publication Number Publication Date
JPH03137074A JPH03137074A (en) 1991-06-11
JPH07108806B2 true JPH07108806B2 (en) 1995-11-22

Family

ID=17525380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273262A Expired - Lifetime JPH07108806B2 (en) 1989-10-19 1989-10-19 Furnace material for thermal shock resistance firing

Country Status (1)

Country Link
JP (1) JPH07108806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693213A (en) * 2016-04-02 2016-06-22 黄世启 Ceramic sculpture material and ceramic sculpture thereof

Also Published As

Publication number Publication date
JPH03137074A (en) 1991-06-11

Similar Documents

Publication Publication Date Title
JP2533992B2 (en) Aluminum titanate ceramics and manufacturing method thereof
EP0372868B1 (en) Ceramic materials for use in insert-casting and processes for producing the same
US5071798A (en) Heat-resistant and inorganic shaped article
JP3094148B2 (en) Manufacturing method of lightweight refractory
EP0363911B1 (en) Refractories for use in firing ceramics
JPS5988378A (en) Lightweight refractories and manufacture
JPH07108806B2 (en) Furnace material for thermal shock resistance firing
JPH06305828A (en) Aluminum titanate composite material and its production
JP3661958B2 (en) Refractory for casting
US4985378A (en) Carbon-containing refractory and a manufacturing method therefor
JP3103480B2 (en) Method for producing zirconia refractory for thermal insulation
JP3127514B2 (en) Furnace material for ceramic firing
JPH0368411A (en) Cordierite-based gas filter and its production
EP0360564A2 (en) Method of producing a ceramic material for insert casting
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH05200479A (en) Ceramic core for precision casting
JP3094147B2 (en) Firing jig
JP2508511B2 (en) Alumina composite
JP3108362B2 (en) High-strength inorganic fiber molded body
JPS6374978A (en) Ceramic composite body
JPH0832586B2 (en) Heat shock resistant firing setter
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JPH0437454A (en) Nozzle for casting wide and thin slab
JPH06227859A (en) Heat-resistant sintered mullite
JPH0881259A (en) Mullite-based ceramics and their production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

EXPY Cancellation because of completion of term