JPH07108158B2 - Mushroom respiration rate measuring device - Google Patents

Mushroom respiration rate measuring device

Info

Publication number
JPH07108158B2
JPH07108158B2 JP5017228A JP1722893A JPH07108158B2 JP H07108158 B2 JPH07108158 B2 JP H07108158B2 JP 5017228 A JP5017228 A JP 5017228A JP 1722893 A JP1722893 A JP 1722893A JP H07108158 B2 JPH07108158 B2 JP H07108158B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
pressure
unit
measuring unit
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5017228A
Other languages
Japanese (ja)
Other versions
JPH06225633A (en
Inventor
衛 高橋
Original Assignee
株式会社みすずコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社みすずコーポレーション filed Critical 株式会社みすずコーポレーション
Priority to JP5017228A priority Critical patent/JPH07108158B2/en
Publication of JPH06225633A publication Critical patent/JPH06225633A/en
Publication of JPH07108158B2 publication Critical patent/JPH07108158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はきのこ呼吸量測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mushroom respiration rate measuring device.

【0002】[0002]

【従来の技術】各種きのこの人工栽培が普及している。
このきのこの人工栽培では、培養基を充填したきのこ栽
培びんを殺菌釜中にいれて加熱殺菌し、次いで菌を接種
して所定期間菌糸培養を行い、菌糸が十分培養基中に蔓
延した段階で、いわゆる菌かきを行って、古い種菌を除
去して原基の発生を促し、所定の栽培期間経過後に収穫
するようにしている。上記培養工程から栽培工程に移行
する菌かきの時期は、きのこの収量および栽培期間に重
大な影響を与える。すなわち適期より早すぎれば、菌糸
はまだ発育が旺盛で、菌糸の発育により発熱が生じるこ
とから菌床面が乾燥してヒビ割れが生じる、いわゆる床
ヤケという現象が生じ、収量が減じるという問題点があ
る。また遅すぎるとそれだけ栽培期間が長くなってしま
う。
2. Description of the Related Art Artificial cultivation of various types of mushrooms has become widespread.
In the artificial cultivation of this mushroom, a mushroom cultivation bottle filled with a culture medium is put into a sterilization kettle for heat sterilization, and then inoculated with a bacterium to perform mycelial culture for a predetermined period of time, at a stage where the mycelium is sufficiently spread in the culture medium, so-called. Bacteria are sterilized to remove old inoculum to promote the generation of primordia and harvest after a predetermined cultivation period. The timing of fungal oysters shifting from the culturing process to the culturing process significantly affects the yield and cultivation period of mushrooms. That is, if it is too early than the proper period, mycelia still grows vigorously, and the heat generated by the growth of mycelia causes the bed surface to dry and crack, causing a phenomenon called so-called floor burns, which reduces the yield. There is. If it is too late, the cultivation period will be extended accordingly.

【0003】[0003]

【発明が解決しようとする課題】従来、菌かきの時期は
菌糸の蔓延状態を黙視にて判断し、菌かきの時期を経験
的に判断していた。しかしながら、このように黙視にて
判断するときは、どうしてもバラツキが生じやすく、最
適な菌かきの時期を特定するのは困難であった。また従
来、きのこ栽培びんから培養基の一部を取出し、水分を
測定することにより菌かきの時期を決定することもなさ
れている。しかし、この方法は全く経験的なものであ
り、培養基の水分量と発茸との関係は示唆されてはいる
が、培養菌糸の生理的な面を示しているとは考えられ
ず、菌かきの時期を正確には判断できない。ところで、
栽培中のきのこは、どの種でも、菌まわり(菌糸蔓延)
終了までに炭酸ガス排出量のピークがあり、以後低下し
極小値をむかえる。経験的に、菌かき適期がこの炭酸ガ
ス排出量の極小値の時期と一致することが知られてい
る。きのこの種類、栽培条件が異なれば当然菌かきの時
期も異なり、従来は上記のように経験で判断しているの
が現状である。炭酸ガス排出量の極小値が簡単に求めら
れれば、勘や熟練を必要とせず、きのこ栽培が容易とな
る。
Conventionally, the timing of fungal oysters has been empirically determined by visually observing the prevalence of hyphae. However, in such a blind judgment, variations are apt to occur, and it is difficult to specify the optimum time for sterilization. Further, conventionally, it is also known that a part of the culture medium is taken out from a mushroom cultivation bottle and the water content is measured to determine the time of oyster oysters. However, this method is completely empirical, and although a relationship between the water content of the culture medium and mushrooming has been suggested, it is not considered to indicate the physiological aspect of the culture mycelium, I can't judge exactly when. by the way,
Mushrooms under cultivation can be fungi around (mycelial spread)
There is a peak of carbon dioxide emission by the end, and then it decreases to reach the minimum value. It is empirically known that the optimum period for sterilization coincides with the time when the carbon dioxide emission is at its minimum value. Different types of mushrooms and different cultivation conditions naturally lead to different times of fungal oysters, and the present situation is that the conventional judgment is based on experience as described above. If the minimum value of carbon dioxide emissions can be easily obtained, mushroom cultivation becomes easy without intuition or skill.

【0004】そこで、本発明は上記要請に応えるべくな
されたものであり、その目的とするところは、微量な炭
酸ガスを容易に計測でき、最適な菌かき時期を容易に判
定できるきのこ呼吸量測定装置を提供するにある。
Therefore, the present invention has been made in order to meet the above-mentioned demand, and an object of the present invention is to measure a minute amount of carbon dioxide gas and to easily determine an optimum bacillus-scraping time. To provide the equipment.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため次の構成を備える。すなわち、炭酸ガス吸収剤
が収納され、外部空気が導入されるガス吸収部と、該ガ
ス吸収部と導入管を介して接続され、且つ内部空気排出
路を有する補正用測定部と、該補正用の測定部の前記内
部空気排出路を開閉する開閉弁と、前記ガス吸収部と導
入管を介して接続され、内部空気排出路を有し、内部に
きのこ栽培瓶を収納可能で、また炭酸ガス吸収剤が収納
された測定部と、該測定部の前記内部空気排出路の開閉
をする開閉弁と、前記ガス吸収部に外部空気を導入し、
炭酸ガス吸収剤にて炭酸ガスが吸収された外部空気を前
記導入管を介して前記測定部および前記補正用測定部に
導入し、測定部および補正用測定部の空気をパージする
ためのエアーポンプと、前記補正用測定部内の圧力と外
部圧力との差圧を検出する差圧計と、前記測定部に収容
されたきのこ栽培瓶のきのこ菌糸により排出される炭酸
ガスが炭酸ガス吸収剤に吸収されることにより減圧する
測定部中の圧力と外部圧力との差圧を検出する差圧計を
具備することを特徴としている。
The present invention has the following constitution in order to achieve the above object. That is, a carbon dioxide absorbing agent is housed, a gas absorbing section for introducing external air, a correction measuring section connected to the gas absorbing section through an introducing pipe and having an internal air discharge path, and the correction measuring section. An on-off valve that opens and closes the internal air discharge passage of the measurement unit of, and is connected through the introduction pipe with the gas absorption unit, has an internal air discharge passage, can store mushroom cultivation bottles inside, and carbon dioxide A measuring unit containing an absorbent, an opening / closing valve for opening and closing the internal air discharge passage of the measuring unit, and introducing external air into the gas absorbing unit,
An air pump for introducing external air, in which carbon dioxide gas is absorbed by a carbon dioxide gas absorbent, into the measurement unit and the correction measurement unit via the introduction pipe, and purging air in the measurement unit and the correction measurement unit. And a differential pressure gauge for detecting the differential pressure between the pressure inside the measuring unit for correction and the external pressure, and carbon dioxide gas discharged by the mushroom mycelium of the mushroom cultivation bottle housed in the measuring unit is absorbed by the carbon dioxide absorbent. It is characterized in that it is equipped with a differential pressure gauge for detecting the differential pressure between the external pressure and the pressure in the measuring section which is decompressed.

【0006】[0006]

【作用】図3における作用を説明する。まず両測定部1
8と補正用測定部34内にきのこ栽培びんを倒立状態に
収容し、次いで、開閉弁22、36を開放した状態にて
エアーポンプ14を作動させ、炭酸ガスフリーの外部空
気を測定部18、補正用測定部34内に導入して内部空
気をパージする。 このようにしてエアーポンプ14を停
止し、開閉弁22、36および導入管20の開閉弁を閉
じ、一定時間経過後に測定部18内の圧力と外部圧力と
の差圧を計測し、また同時に補正用測定部34内の圧力
と外部圧力との差圧を計測する。 上記の場合補正用測定
部34で測定される結果は、外部圧がどのように変動し
ょうとも、常に測定部18の測定結果よりも炭酸ガスの
分圧の分だけ高いことになる。したがって両者の差をと
ることにより、正確に外部圧力との差圧が検出で きる。
The operation in FIG . 3 will be described. First, both measurement units 1
8 and the mushroom cultivation bottle in the measuring unit 34 for correction upside down
Housed, then with the open / close valves 22, 36 open
Operate the air pump 14 to remove carbon dioxide-free external air.
Qi is introduced into the measuring unit 18 and the measuring unit for correction 34,
Purge the air. In this way, stop the air pump 14.
Stop and close the on-off valves 22, 36 and the on-off valves of the introduction pipe 20.
The pressure inside the measuring unit 18 and the external pressure after a certain period of time.
Of the pressure in the measuring unit for correction 34 at the same time.
And the pressure difference between the external pressure and the external pressure. In the above case, correction measurement
The results measured in section 34 show how the external pressure fluctuates.
On the other hand, the amount of carbon dioxide gas
It will be higher by the amount of partial pressure. Therefore, the difference between the two
The Rukoto, the differential pressure between the exact external pressure wear detection.

【0007】[0007]

【実施例】以下、本発明の好適な実施例を添付図面に基
づいて詳細に説明する。図1は基本原理を示す概略図で
ある。10はガス吸収部であり、内部にKOH等の炭酸
ガス吸収剤12が収納される。ガス吸収部10は基本的
に密封容器に形成されている。14はエアーポンプであ
り、送出管16により外部空気をガス吸収部10内に送
り込む。18は測定部であり、基本的に密閉容器に形成
され、導入管20によりガス吸収部10に接続され、ま
た、開閉弁22付きの排出管24により外部と開閉可能
に連通されている。なお導入管20は図示しない開閉弁
により管路が開閉される。測定部18中には、KOH等
の炭酸ガス吸収剤12が収納される。また測定部18中
には、きのこ栽培びん26を倒立した状態にて支持、収
納できるようになされている。きのこ栽培びん26は図
示しない蓋体を取り去った状態で測定部18中に出し入
れできるようになっている。28は支持体で、例えば金
網で形成され、きのこ栽培びん26を倒立状態にて支持
可能である。30は測定部18と連通して設けられた差
圧計で、測定部18内の圧力と外部圧力との差圧を検出
しうるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the basic principle. Reference numeral 10 denotes a gas absorbing portion, in which a carbon dioxide absorbing agent 12 such as KOH is stored. The gas absorption part 10 is basically formed in a sealed container. Reference numeral 14 denotes an air pump, which sends the outside air into the gas absorption portion 10 through the delivery pipe 16. Reference numeral 18 denotes a measurement unit, which is basically formed in a closed container, is connected to the gas absorption unit 10 by an introduction pipe 20, and is openably and closably connected to the outside by a discharge pipe 24 with an opening / closing valve 22. The introduction pipe 20 is an open / close valve not shown.
Opens and closes the pipeline. A carbon dioxide absorbent 12 such as KOH is stored in the measuring unit 18. Further, in the measuring unit 18, the mushroom cultivation bottle 26 can be supported and stored in an inverted state. The mushroom cultivation bottle 26 can be put into and taken out of the measuring unit 18 with a lid (not shown) removed . Reference numeral 28 denotes a support, which is formed of, for example, a wire mesh and can support the mushroom cultivation bottle 26 in an inverted state. A differential pressure gauge 30 is provided so as to communicate with the measuring unit 18, and can detect the differential pressure between the pressure inside the measuring unit 18 and the external pressure.

【0008】続いてその使用方法を説明する。まず測定
部18内にきのこ栽培びん26を倒立状態にて収納す
る。次いで、測定部18中の空気を清浄空気にてパージ
する。すなわち、開閉弁22を開き、エアーポンプ14
を駆動する。これにより外部空気は送出管16からガス
吸収部10内に導入され、ここで炭酸ガスが吸収除去さ
れ、この炭酸ガスが除去された空気が導入管20を経て
測定部18内に導入され、測定部18内の空気がこの炭
酸ガスフリーの空気にてパージされる。次に、エアーポ
ンプ14を停止し、開閉弁22および導入管20を閉
じ、一定時間例えば1分間そのまま保持する。測定部1
8内では、菌糸の呼吸により、酸素が消費され、反対に
炭酸ガスが放出される。この炭酸ガスは炭酸ガス吸収剤
12により吸収される。したがって測定部18内の圧力
は次第に減少し、差圧計30により測定部18内の圧力
と外部空気との差圧を経時的に検出できる。この差圧は
きのこの呼吸量と相関関係にあることは明らかであり、
きのこの培養状況の指標となる。
Next, the method of use will be described. First, the mushroom cultivation bottle 26 is stored in the measuring unit 18 in an inverted state. Next, the air in the measuring unit 18 is purged with clean air. That is, the on-off valve 22 is opened and the air pump 14 is opened.
To drive. As a result, the external air is introduced from the delivery pipe 16 into the gas absorption unit 10, where the carbon dioxide gas is absorbed and removed, and the air from which the carbon dioxide gas has been removed is introduced into the measurement unit 18 via the introduction pipe 20 and measured. The air in the portion 18 is purged with the carbon dioxide-free air. Next, the air pump 14 is stopped, the on-off valve 22 and the introducing pipe 20 are closed, and the air pump 14 is kept as it is for a certain period of time, for example, 1 minute. Measuring unit 1
In 8, oxygen is consumed and carbon dioxide is released by breathing hyphae. This carbon dioxide gas is absorbed by the carbon dioxide gas absorbent 12. Therefore, the pressure in the measurement unit 18 gradually decreases, and the differential pressure between the pressure in the measurement unit 18 and the external air can be detected with time by the differential pressure gauge 30. It is clear that this differential pressure correlates with the respiratory volume of the mushroom,
It can be an indicator of the culture status of mushrooms.

【0009】図2は培養日数の異なるブナシメジの栽培
びんにおける経過時間毎の差圧測定結果を示す。なお、
差圧は水柱圧力で示す。図2から明らかなように、時間
経過により次第に差圧が上昇、すなわち炭酸ガスの量が
増加していることがわかり、また培養日数の異なるもの
においては、16日経過、39日経過、67日経過の順
に差圧が減少し、炭酸ガスの放出量が次第に減少してい
ることが測定できる。
FIG. 2 shows the results of measuring the differential pressure for each elapsed time in the cultivated bottles of Buna shimeji cultivated on different culture days. In addition,
The differential pressure is indicated by the water column pressure. As is clear from FIG. 2, it was found that the differential pressure gradually increased with the lapse of time, that is, the amount of carbon dioxide gas increased, and in the case of different culture days, 16 days passed, 39 days passed, 67 days passed. It can be measured that the differential pressure decreases in the order of progress, and the released amount of carbon dioxide gas gradually decreases.

【0010】図3は上記基本原理を応用した本発明の
施例を示す。本実施例では、上記の装置に加えて補正用
の測定部34を備えている。この補正用の測定部34は
やはり導入管20によりガス吸収部10に接続され、さ
らに開閉弁36を備える排出管38により外部に開閉自
在に連通されている。導入管20の、ガス吸収部10と
測定部34との間、および測定部34と測定部18との
間にも該管路を開閉する開閉弁(図示せず)を設けるこ
とはもちろんである。40は補正用測定部34内の圧力
と外部圧力の差圧を検出する差圧計で、42は両差圧計
30、40の検出結果を記録する記録計である。他の部
分は前記基本原理の装置と同じであるので説明を省略す
る。前記基本原理の測定装置では、例えば培養室におけ
る戸の開け閉め、ファンの作動などにより、外部圧力に
僅かの変動があった場合でも、差圧計30により圧力変
動が敏感にキャッチされ、それだけ差圧の測定に誤差が
入るおそれがある。この点本実施例では、外部圧力変動
を補正できるようにしている。使用方法を説明すると、
まず両測定部18と補正用測定部34内に前記と同様に
してきのこ栽培びんを倒立状態に収容し、次いで、開閉
弁22、36を開放した状態にてエアーポンプ14を作
動させ、炭酸ガスフリーの外部空気を測定部18、補正
用測定部34内に導入して内部空気をパージする。この
ようにしてエアーポンプ14を停止し、開閉弁22、3
および導入管20の開閉弁を閉じ、一定時間経過後に
測定部18内の圧力と外部圧力との差圧を計測し、また
同時に補正用測定部34内の圧力と外部圧力との差圧を
計測する。上記の場合補正用測定部34で測定される結
果は、外部圧がどのように変動しょうとも、常に測定部
18の測定結果よりも炭酸ガスの分圧の分だけ高いこと
になる。したがって両者の差をとることにより、正確に
外部圧力との差圧が検出できる。
FIG. 3 shows an embodiment of the present invention to which the above basic principle is applied . In this embodiment, a measuring unit 34 for correction is provided in addition to the above-mentioned device. The measuring part 34 for correction is also connected to the gas absorbing part 10 by the introduction pipe 20, and is openably and closably connected to the outside by a discharge pipe 38 having an opening / closing valve 36. The gas absorption part 10 of the introduction pipe 20
Between the measuring unit 34 and between the measuring unit 34 and the measuring unit 18.
An on-off valve (not shown) that opens and closes the pipeline should be installed between
And of course. Reference numeral 40 is a differential pressure gauge for detecting the differential pressure between the pressure inside the correction measuring unit 34 and the external pressure, and 42 is a recorder for recording the detection results of both differential pressure gauges 30, 40. Since the other parts are the same as those of the device of the above-mentioned basic principle, description thereof will be omitted. In the measuring device of the above-mentioned basic principle, even if there is a slight change in the external pressure due to, for example, opening and closing the door in the culture room or operating a fan, the pressure difference is sensitively caught by the differential pressure gauge 30, and the differential pressure is increased accordingly. There may be an error in the measurement of. In this respect, in this embodiment, the fluctuation of the external pressure can be corrected. Explaining how to use,
First, the mushroom cultivation bottle is housed in the both measuring units 18 and the correction measuring unit 34 in an inverted state in the same manner as described above, and then the air pump 14 is operated with the opening / closing valves 22 and 36 opened to operate the carbon dioxide gas. Free external air is introduced into the measuring unit 18 and the correction measuring unit 34 to purge the internal air. In this way, the air pump 14 is stopped and the on-off valves 22, 3
6 and the on-off valve of the introduction pipe 20 are closed, and after a certain period of time, the differential pressure between the pressure in the measuring unit 18 and the external pressure is measured, and at the same time, the differential pressure between the pressure in the measuring unit for correction 34 and the external pressure is measured. measure. In the above case, the result measured by the correction measuring unit 34 is always higher than the measurement result of the measuring unit 18 by the partial pressure of carbon dioxide gas, no matter how the external pressure changes. Therefore, by taking the difference between the two, the pressure difference from the external pressure can be accurately detected.

【0011】図4は上記のようにして計測したブナシメ
ジの経過日数ごとの差圧変化を示す。測定は各測定毎に
2本のきのこ栽培びんを棚からランダムに選択し、測定
部18と補正用測定部34に交互に入れ換えて計測した
結果を示す。サンプル1は当初に測定部18に入れて計
測したもののデータであり、サンプル2は当初補正用測
定部34に収容したものを測定部18に移し代えて計測
したデータを示す。サンプル1、2共、同じパターンが
示され、43日目と70日目に落ち込みがみられた。4
3日目では、菌糸回りが十分でないことが黙視にて明確
であり、70日目で菌糸回りが十分であった。この70
日目で菌かきを実施した区の栽培状況は極めて良好であ
った。なおサンプル1と2で生じた圧力差は、サンプル
2が計測時までチャンバー内で長時間経過したためと見
られる。すなわち、最初に計測したサンプル1は培養基
中に蓄積している炭酸ガスの量が多いため、ベースライ
ンが高くなり、サンプル2ではパージ後、サンプル1の
測定中にびん中の炭酸ガスがチャンバー内に拡散するた
めベースラインが低くなると考えられる。したがってパ
ージ時間を長くすることにより両者間の差を少なくでき
る。
FIG. 4 shows changes in the differential pressure of the beech squirrel measured as described above for each number of days elapsed. In the measurement, two mushroom cultivation bottles are randomly selected from the shelves for each measurement, and the measurement results are shown by alternately replacing the measurement unit 18 and the correction measurement unit 34. Sample 1 is the data that was initially measured in the measuring unit 18, and Sample 2 is the data that was initially stored in the measuring unit for correction 34 and transferred to the measuring unit 18 for measurement. The same pattern was shown in both Samples 1 and 2, and depression was observed on the 43rd day and the 70th day. Four
On the 3rd day, it was clear by visual observation that the mycelium rotation was not sufficient, and on the 70th day, the mycelium rotation was sufficient. This 70
The cultivated condition of the plot where the fungus was sterilized on the day was extremely good. The pressure difference between Samples 1 and 2 is considered to be because Sample 2 had a long time in the chamber until the time of measurement. That is, since the amount of carbon dioxide gas accumulated in the culture medium is large in the sample 1 measured first, the baseline becomes high, and in the sample 2, after purging, the carbon dioxide gas in the bottle is in the chamber during the measurement of sample 1. It is thought that the baseline becomes lower because it diffuses into the. Therefore, by increasing the purge time, the difference between the two can be reduced.

【0012】図5はきのこ技術集団会編集委員会編「き
のこの基礎科学と最新技術」から抜粋したブナシメジの
炭酸ガス排出量の図を示した。また図6は図5のプロッ
トから平均値を計算し図にしたものを示した。図5の原
図では滑らかな曲線で描かれているが、図6では40日
目に落ち込みが見られ、70日過ぎに最低値を示してい
る。このようにブナシメジの酸素消費量には周期性が見
られるが、これは菌糸類一般に見られる現象である。上
記の比較から明らかなように、本実施例装置にても正確
に炭酸ガス量の計測が行えることが実証された。上記実
施例ではブナシメジでの測定結果を示したが、エノキタ
ケの場合にも同様に炭酸ガス排出量の測定が好適に行え
た。
FIG. 5 shows a diagram of carbon dioxide emissions of beech squirrels extracted from “Basic mushroom science and latest technology” edited by the Editorial Committee of Mushroom Technology Group. Further, FIG. 6 shows a graph obtained by calculating an average value from the plot of FIG. In the original diagram of FIG. 5, a smooth curve is drawn, but in FIG. 6, a drop is seen on the 40th day, and the minimum value is shown after 70 days. As described above, the oxygen consumption of Pleurotus cornucopiae has a periodicity, which is a phenomenon commonly observed in mycelia. As is clear from the above comparison, it has been proved that the carbon dioxide gas amount can be accurately measured even in the apparatus of this embodiment. In the above-mentioned examples, the measurement results using Buna shimeji were shown, but in the case of enoki mushrooms, the carbon dioxide emission amount could be suitably measured.

【0013】以上本発明につき好適な実施例を挙げて種
々説明したが、本発明はこの実施例に限定されるもので
はなく、発明の精神を逸脱しない範囲内で多くの改変を
施し得るのはもちろんである。
Although the present invention has been variously described with reference to the preferred embodiments, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.

【0014】[0014]

【発明の効果】本発明に係るきのこ呼吸量測定装置によ
れば、簡単な装置にて正確に炭酸ガス量の測定が行え、
きのこ栽培における菌かきの時期を容易に判定すること
ができる。
According to the mushroom breathing rate measuring apparatus of the present invention, the carbon dioxide amount can be accurately measured with a simple apparatus,
It is possible to easily determine the timing of fungal oysters in mushroom cultivation.

【図面の簡単な説明】[Brief description of drawings]

【図1】基本原理の装置を示した説明図である。FIG. 1 is an explanatory diagram showing a device of the basic principle .

【図2】図1の測定装置によりブナシメジの炭酸ガス量
を測定した結果を示すグラフである。
FIG. 2 is a graph showing the results of measuring the amount of carbon dioxide in Buna shimeji with the measuring device of FIG.

【図3】本発明の実施例を示した説明図である。FIG. 3 is an explanatory diagram showing an example of the present invention .

【図4】本発明の実施例の測定装置によりブナシメジの
炭酸ガス量を測定した結果を示すグラフである。
FIG. 4 is a graph showing the results of measuring the amount of carbon dioxide gas of Buna shimeji with the measuring device of the example of the present invention .

【図5】従来の炭酸ガス測定データを示すグラフであ
る。
FIG. 5 is a graph showing conventional carbon dioxide gas measurement data.

【図6】図5のプロットの平均を示すグラフである。FIG. 6 is a graph showing the average of the plots of FIG.

【符号の説明】[Explanation of symbols]

10 ガス吸収部 12 炭酸ガス吸収剤 14 エアーポンプ 18 測定部 20 導入管 22 開閉弁 24 排出管 26 きのこ栽培びん 30 差圧計 34 補正用測定部 36 開閉弁 38 排出管 40 差圧計 10 Gas Absorbing Part 12 Carbon Dioxide Absorbing Agent 14 Air Pump 18 Measuring Part 20 Introducing Pipe 22 Opening / Closing Valve 24 Discharging Pipe 26 Mushroom Cultivation Bottle 30 Differential Pressure Meter 34 Compensating Measuring Unit 36 Opening / Closing Valve 38 Discharging Pipe 40 Differential Pressure Meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭酸ガス吸収剤が収納され、外部空気が
導入されるガス吸収部と、 該ガス吸収部と導入管を介して接続され、且つ内部空気
排出路を有する補正用測定部と、 該補正用の測定部の前記内部空気排出路を開閉する開閉
弁と、 前記ガス吸収部と導入管を介して接続され、内部空気排
出路を有し、内部にきのこ栽培瓶を収納可能で、また炭
酸ガス吸収剤が収納された測定部と、 該測定部の前記内部空気排出路の開閉をする開閉弁と、 前記ガス吸収部に外部空気を導入し、炭酸ガス吸収剤に
て炭酸ガスが吸収された外部空気を前記導入管を介して
前記測定部および前記補正用測定部に導入し、測定部お
よび補正用測定部の空気をパージするためのエアーポン
プと、 前記補正用測定部内の圧力と外部圧力との差圧を検出す
る差圧計と、 前記測定部に収容されたきのこ栽培瓶のきのこ菌糸によ
り排出される炭酸ガスが炭酸ガス吸収剤に吸収されるこ
とにより減圧する測定部中の圧力と外部圧力との差圧を
検出する差圧計を具備することを特徴とするきのこ呼吸
量測定装置。
1. A gas absorbing section for accommodating a carbon dioxide absorbent and introducing external air, and a correction measuring section connected to the gas absorbing section through an introducing pipe and having an internal air discharge path. An on-off valve that opens and closes the internal air discharge path of the correction measurement unit, is connected via the gas absorption unit and an introduction pipe, has an internal air discharge path, and can store a mushroom cultivation bottle inside. In addition, a measuring unit that stores a carbon dioxide absorbent, an on-off valve that opens and closes the internal air discharge passage of the measuring unit, and external air is introduced into the gas absorbing unit so that carbon dioxide gas is generated by the carbon dioxide absorbent. An air pump for introducing the absorbed external air into the measurement unit and the correction measurement unit through the introduction pipe, and purging the air of the measurement unit and the correction measurement unit, and the pressure in the correction measurement unit And a differential pressure gauge that detects the differential pressure between the external pressure and Carbon dioxide gas discharged by the mushroom mycelium of the mushroom cultivation bottle housed in the measuring unit is reduced by the absorption of carbon dioxide by the carbon dioxide absorbent. A differential pressure gauge that detects the pressure difference between the pressure in the measuring unit and the external pressure is used. A mushroom respiration rate measuring device comprising.
JP5017228A 1993-02-04 1993-02-04 Mushroom respiration rate measuring device Expired - Lifetime JPH07108158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5017228A JPH07108158B2 (en) 1993-02-04 1993-02-04 Mushroom respiration rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5017228A JPH07108158B2 (en) 1993-02-04 1993-02-04 Mushroom respiration rate measuring device

Publications (2)

Publication Number Publication Date
JPH06225633A JPH06225633A (en) 1994-08-16
JPH07108158B2 true JPH07108158B2 (en) 1995-11-22

Family

ID=11938098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5017228A Expired - Lifetime JPH07108158B2 (en) 1993-02-04 1993-02-04 Mushroom respiration rate measuring device

Country Status (1)

Country Link
JP (1) JPH07108158B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024816A2 (en) * 2005-08-22 2007-03-01 Co2 Boost Llc A device and process to generate co2 used for indoor crop production and underwater gardening
CN105842185A (en) * 2016-05-31 2016-08-10 华中农业大学 Device and method for detecting respiration of chicken eggs
JP2018027056A (en) * 2016-08-19 2018-02-22 株式会社ニッポー Carbon dioxide density sensor correction system for plant cultivation facility and outside attachment unit therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111438A (en) * 1974-07-18 1976-01-29 Canon Kk Kamerano rokoryoseigyohoshiki
JPS579324A (en) * 1980-06-20 1982-01-18 Toshiba Corp Thrust bearing device

Also Published As

Publication number Publication date
JPH06225633A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
JP6173355B2 (en) Method and apparatus for controlling the atmosphere in a space filled with agricultural or horticultural products
CN205784214U (en) A kind of extend the equipment that Fructus Citri grandis is fresh-keeping
WO2006076110A3 (en) Instrument and method for detecting leaks in hermetically sealed packaging
CN104386362A (en) Controlled atmosphere cultural relic protecting device and controlled atmosphere cultural relic protecting process
KR20080114351A (en) Food safekeeping device using nitrogen gas
CN104444030A (en) Method for storing traditional Chinese medicine materials by injecting nitrogen
US11466304B2 (en) System for exposure to a product in the form of an aerosol and method for evaluating the integrity of a container by means of such a system
JPH07108158B2 (en) Mushroom respiration rate measuring device
CN204264688U (en) A kind of controlled atmosphere historical relic's protection device
FI83432C (en) PROCEDURE FOR DETECTION OF BIOLOGICAL ACTIVITIES.
CN207619359U (en) A kind of beer fermentation low-temperature cold accumulation device
CN104990833B (en) Gas absorbs volume detector and detection method
CN213807651U (en) Microorganism drainage gas production device
FI73940C (en) Procedure for packing meat
CN205580913U (en) Rising strength measurement appearance of test tube seedling
CN210923201U (en) Vegetation source volatile organic compounds developments sampling device
CN210560383U (en) Culture apparatus of anaerobe
CN208956494U (en) A kind of automatic oxygen supply apparatus cultivated for roxburgh anoectochilus terminal bud
CN206862907U (en) A kind of Microbiological detection of foods device
CN2843467Y (en) The index pot of autoclave
CN208095275U (en) One grows tea Seed Deposit device
Kihal et al. A new manometric method for measuring carbon dioxide production by dairy starter culture: a case of Leuconostoc mesenteroides
CN213364715U (en) Fertilizer fermentation detection device
CN214430284U (en) Seed collection device of chinese yew
CN108617758A (en) A kind of preservation method of sweet basil MAP packagings