JPH07107853B2 - Positive mix for cylindrical alkaline batteries - Google Patents

Positive mix for cylindrical alkaline batteries

Info

Publication number
JPH07107853B2
JPH07107853B2 JP63111969A JP11196988A JPH07107853B2 JP H07107853 B2 JPH07107853 B2 JP H07107853B2 JP 63111969 A JP63111969 A JP 63111969A JP 11196988 A JP11196988 A JP 11196988A JP H07107853 B2 JPH07107853 B2 JP H07107853B2
Authority
JP
Japan
Prior art keywords
graphite
particle size
manganese dioxide
positive electrode
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63111969A
Other languages
Japanese (ja)
Other versions
JPH01281672A (en
Inventor
健一 篠田
昌武 西尾
国良 西田
勝博 山下
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP63111969A priority Critical patent/JPH07107853B2/en
Publication of JPH01281672A publication Critical patent/JPH01281672A/en
Publication of JPH07107853B2 publication Critical patent/JPH07107853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、筒形アルカリ電池に用いる正極合剤の改良
に関し、特に成形性と電池性能向上を図った技術に関す
る。
DETAILED DESCRIPTION OF THE INVENTION << Industrial Application Field >> The present invention relates to an improvement of a positive electrode mixture used in a tubular alkaline battery, and more particularly to a technique for improving moldability and battery performance.

《発明の背景》 筒形アルカリ電池に用いる正極合剤の製造方法として
は、まず二酸化マンガン,黒鉛の素材に少量のバインダ
ーを加えてミキシングした後、シート状に圧延した上で
粉砕し、平均粒径が20〜80メッシュ程度の粒を得て、こ
ののちに金型内で成形することで円筒形の正極合剤を得
るようにしている。
<Background of the Invention> As a method for producing a positive electrode mixture used in a tubular alkaline battery, first, a small amount of a binder is added to a material of manganese dioxide or graphite, mixed, rolled into a sheet, and then pulverized to obtain an average particle size. A cylindrical positive electrode mixture is obtained by obtaining particles having a diameter of about 20 to 80 mesh and then molding in a mold.

このとき、従来ではCMCなどのバインダーを少量添加す
ることと、合剤を適当な粒度に揃えることで成形性を上
げるようにしている。
At this time, conventionally, a small amount of a binder such as CMC is added and the mixture is made to have an appropriate particle size to improve the moldability.

ところで、筒形アルカリ電池の高容量化を図るための手
段の一つとして、前記正極合剤中の主剤である二酸化マ
ンガンの含有量を増加する方法が望まれている。この高
容量化対策の1つとして、黒鉛の含有量を減ずれば相対
的に二酸化マンガンの含有量が増加する。
By the way, a method for increasing the content of manganese dioxide, which is the main component in the positive electrode mixture, is desired as one means for increasing the capacity of the tubular alkaline battery. As one of measures for increasing the capacity, if the content of graphite is reduced, the content of manganese dioxide is relatively increased.

しかしながら、二酸化マンガンそれ自体では導電性が乏
しく、また成形性も悪いので、ある程度の黒鉛の量は不
可欠である。
However, manganese dioxide itself has poor conductivity and poor formability, so a certain amount of graphite is indispensable.

また、バインダの存在も二酸化マンガンの含有比率を落
とし、電池性能向上の阻害要因となるため、出来ればバ
インダも無添加状態で成形することが望ましい。
Further, the presence of the binder lowers the content ratio of manganese dioxide and becomes an impediment factor to the improvement of the battery performance. Therefore, it is desirable to form the binder without addition if possible.

《発明が解決しようとする問題点》 正極合剤に混合される黒鉛として、粒度の大きな黒鉛を
用いた場合には造形性は向上し、バインダの添加量を減
少または無添加状態とすることができ、その分二酸化マ
ンガンの量を増すことができる。
<< Problems to be Solved by the Invention >> When graphite having a large particle size is used as the graphite mixed in the positive electrode mixture, the moldability is improved, and the addition amount of the binder may be reduced or may be made non-added. Therefore, the amount of manganese dioxide can be increased accordingly.

このメカニズムははっきりとは分からないが、成形時に
於ける合剤の滑りが粒度の小さいものよりも良好で、よ
り圧縮密度が増し、造形性が向上するものと思われる。
Although this mechanism is not clearly understood, it is thought that the slippage of the mixture during molding is better than that with a small particle size, the compression density is increased, and the formability is improved.

また、金型からの離型時にも良好に滑りが作用し、摩擦
が小さくなることで割れ等が生じにくいと考えられる。
In addition, it is considered that slipping works well even when the mold is released from the mold, and the friction is reduced, so that cracks and the like are less likely to occur.

しかし、粒度の大きい黒鉛を用いた場合には一粒一粒の
表面積が小さくなることから、粒度の小さな黒鉛を使用
した場合に比べて導電性が低下し、電池性能に影響を与
え、限られた容積中での電池性能の低下要因となる。
However, when graphite with a large particle size is used, the surface area of each particle is small, so the conductivity is lower than when graphite with a small particle size is used, which affects battery performance and is limited. This will cause deterioration of battery performance in a large volume.

一方、その逆に、粒度の小さな黒鉛を用いた場合には、
筒形に成形した場合に強度が不足し、金型からの離型時
に割れが生じたり、これを正極缶に嵌合した場合には欠
けなどにより合剤の剥落が生じたりする。
On the other hand, on the contrary, when graphite with a small particle size is used,
When molded into a tubular shape, the strength is insufficient, and cracking occurs when the mold is released from the mold, and when this is fitted in a positive electrode can, the mixture may peel off due to chipping or the like.

この発明が以上の問題点を克服し、成形時における造形
性を向上するとともに、電池性能の向上を図るようにし
た筒形アルカリ電池用正極合剤を提供するものである。
The present invention provides a positive electrode mixture for a tubular alkaline battery that overcomes the above problems, improves the moldability during molding, and improves the battery performance.

《問題点を解決するための手段》 前記目的を達成するため、この発明は、従来の単一の粒
度分布をもつ黒鉛を用いるよりも、微粒状黒鉛による導
電性と粗粒状黒鉛による造形性に着目し、両者を適度に
ブレンドして二酸化マンガンに添加することで、両者の
弱点を補完でき、総合性能の向上が達成できる点を着目
した。
<< Means for Solving Problems >> In order to achieve the above-mentioned object, the present invention is more excellent in electroconductivity by fine granular graphite and formability by coarse granular graphite than in the case of using graphite having a conventional single particle size distribution. Focusing attention, we focused on the fact that by appropriately blending both and adding them to manganese dioxide, the weak points of both can be complemented and the overall performance can be improved.

本発明は、以上の着眼に基づきなされたもので、以下の
構成となっている。
The present invention has been made based on the above viewpoint, and has the following configuration.

すなわち本発明は、二酸化マンガンを主剤として、これ
に黒鉛を分散混合し、筒形に成形してなる筒形アルカリ
電池用正極合剤において: 前記黒鉛を粒度分布の異なる微粒子状の黒鉛と粗粒状の
黒鉛の二種類で構成してなり、かつ前記微粒子状の黒鉛
としてその平均粒径が5〜30μの鱗状または人造黒鉛を
用いるとともに、前記粗粒状の黒鉛としてその平均粒径
が100〜700μのフレーク状または鱗状黒鉛を用いたこと
を要旨とするものである。
That is, in the present invention, a manganese dioxide is used as a main agent, and graphite is dispersed and mixed into the manganese dioxide to form a cylindrical positive electrode mixture for an alkaline battery, wherein: the graphite is finely divided graphite having different particle size distributions and coarse particles. Of two types of graphite, and the average particle size of the fine graphite particles is 5 to 30 μ with scaly or artificial graphite, and the average particle size of the coarse graphite particles is 100 to 700 μ. The gist is to use flake-shaped or scaly graphite.

前記二酸化マンガンに対する前記形状の微粒子状黒鉛の
配合比の好ましい範囲は、3〜7重量%、前記形状の粗
粒状黒鉛の配合比の好ましい範囲は1〜5重量%であ
り、黒鉛全体としての二酸化マンガンに対する配合比率
は、4〜12重量%である。
The preferable range of the compounding ratio of the particulate graphite having the above-mentioned shape to the manganese dioxide is 3 to 7% by weight, and the preferable range of the compounding ratio of the coarse-grained graphite having the above-mentioned shape is 1 to 5% by weight. The compounding ratio with respect to manganese is 4 to 12% by weight.

また、微粒子状黒鉛と粗粒状黒鉛との配合比率は60〜40
ないし90〜10重量%(以下単に%と略記する)である。
Also, the mixing ratio of fine-grain graphite and coarse-grain graphite is 60 to 40.
Or 90 to 10% by weight (hereinafter simply referred to as%).

そして、黒鉛全体の二酸化マンガンに対する配合比が、
その上限である12%を越えた場合には、従来と同様に主
剤である二酸化マンガンの絶対量不足によって、電池性
能に影響を与え、その逆に下限である4%を下回った場
合には今度はプレス成形時の成形性が低下し、また、導
電性の低下に伴い、電池性能は悪化する。
And the compounding ratio of manganese dioxide to the entire graphite is
When the upper limit of 12% is exceeded, the absolute amount of manganese dioxide, which is the main ingredient, is insufficient as before, which affects battery performance. Conversely, when the lower limit of 4% is exceeded, In addition, the moldability at the time of press molding is lowered, and the battery performance is deteriorated as the conductivity is lowered.

したがって、前記の範囲の添加量が望ましく、より好ま
しくは5〜8%の範囲内が最もよい結果を与える。
Therefore, the addition amount within the above range is desirable, and more preferably within the range of 5 to 8% gives the best result.

また、微粒子状黒鉛に対する粗粒状黒鉛の配合比率は、
その上限である、40%を越えると成形性は良好となる
が、導電性が低下し、また下限である10%を下回ると逆
の結果である成形性が低下し、造形後の成形体が崩れた
り、割れや欠けなどが発生し易くなる。
Further, the mixing ratio of coarse-grained graphite to fine-grained graphite is
If the upper limit of 40% is exceeded, the moldability will be good, but if the conductivity is reduced below the lower limit of 10%, the conversely the moldability will decrease, and the molded article after molding will It tends to collapse, crack, or chip.

したがって、前記配合比の範囲内にすることが必要であ
り、更に好ましくは、70〜30%ないしは90〜10%が最も
好ましい結果を与える。
Therefore, it is necessary to set the content within the above range, and more preferably 70 to 30% or 90 to 10% gives the most preferable result.

以上の二種類の黒鉛を用いた合剤の製造方法は、従来と
同様の配合工程で二酸化マンガンに対して前記範囲内に
混合し、これを圧延・粉砕後、適当な粒度に揃えて、通
常のプレス成形工程で成形すれば筒形の成形合剤に成形
される。
The method for producing a mixture using the above two types of graphite is a method of mixing manganese dioxide within the above range in the same mixing step as in the conventional method, rolling and crushing this, and then adjusting the particle size to an appropriate value. If it is molded in the press molding process of (1), it will be molded into a cylindrical molding mixture.

なお、ブレンドの際には、CMCなどのバインダを少量添
加してもよいが、前記粗粒状の黒鉛の造形作用によって
十分な造形性が付与されるため、バインダは無添加状態
でもよく、その分主剤である二酸化マンガンの絶対量を
増すことができる。
In addition, at the time of blending, a small amount of a binder such as CMC may be added, but since sufficient shaping property is imparted by the shaping action of the coarse-grained graphite, the binder may be in a non-added state. The absolute amount of manganese dioxide, which is the main agent, can be increased.

成形後は、この筒形正極合剤を正極缶に嵌合し、内周側
にセパレータを介して負極ゲル、集電棒を充填し、封口
ガスケットを介して負極端子板をカシメ付ければ、筒形
アルカリ電池を完成する。
After molding, fit this cylindrical positive electrode mixture into a positive electrode can, fill the inner circumference side with a negative electrode gel and a collector rod through a separator, and crimp the negative electrode terminal plate through a sealing gasket to form a cylindrical shape. Complete the alkaline battery.

なお、本発明に用いた黒鉛に比較する従来の黒鉛は、単
一の粒度分布をもつものでその平均粒径は15〜25μのも
のである。
The conventional graphite, which is compared with the graphite used in the present invention, has a single particle size distribution, and the average particle size is 15 to 25 μm.

《作 用》 前記微粒子状の黒鉛が導電性を高め、電池性能の向上に
寄与する一方で、粗粒状の黒鉛は正極合剤のプレス成形
時における造形性向上に寄与し、バインダなどの添加量
の減少または無添加状態とすることができ、その分二酸
化マンガンを増量できる。
<< Working >> The fine-grained graphite enhances conductivity and contributes to improved battery performance, while coarse-grained graphite contributes to improved moldability during press molding of the positive electrode mixture, and the amount of binder added. The amount of manganese dioxide can be decreased or the amount of manganese dioxide can be increased by that amount.

《実 施 例》 次に本発明の具体的実施例につき説明する。<< Examples >> Next, specific examples of the present invention will be described.

なお、本発明は以下の実施例のみに限定されるものでは
なく、前述した範囲内で種々変更可能である。
The present invention is not limited to the following embodiments, but can be variously modified within the range described above.

以下の表1.に示すように二酸化マンガンに対する各種粒
度の黒鉛の配合比率で正極合剤を作った。
As shown in Table 1 below, the positive electrode mixture was prepared with the compounding ratio of graphite of various particle sizes to manganese dioxide.

なお、いずれの例においても二酸化マンガンに対して黒
鉛の配合比が7重量%となるように調製している。また
サンプルNo.1は従来の単一の粒度分布をもつもの、No.2
は微粒子状黒鉛単体を、No7は粗粒状黒鉛単体を示して
いる。
In each example, the compounding ratio of graphite to manganese dioxide was adjusted to 7% by weight. Sample No. 1 has a conventional single particle size distribution, No. 2
Indicates fine particle graphite alone, and No. 7 indicates coarse granular graphite alone.

したがって、本発明の範囲に含まれる試作品はNo.3〜6
までである。
Therefore, the prototypes included in the scope of the present invention are Nos. 3 to 6
Up to.

但し、黒鉛Aの平均粒径…7.5μ 黒鉛Bの平均粒径…420μ 黒鉛C(従来品)の平均粒径…20μ 次に以上の組成の成形合剤の強度および放電性能を測定
したところ以下の表2.に示す結果を得られた。
However, the average particle size of graphite A is 7.5μ, the average particle size of graphite B is 420μ, the average particle size of graphite C is 20μ, and the strength and discharge performance of the molding mixture having the above composition are measured. The results are shown in Table 2.

この表2.からも明らかなように、比較例に示す微粒子状
黒鉛単体では放電性能にすぐれるが、合剤強度が試作品
中最も低下し、逆に粗粒状黒鉛単体を用いた場合には、
合剤強度が最も高いが、放電性能は劣っている。しかし
ながら、両者を配合した本発明の成形合剤はいずれも従
来品に比べて強度および放電性能を上回っていることが
確認された。
As is clear from Table 2, the particulate graphite alone shown in the comparative example has excellent discharge performance, but the mixture strength is the lowest among the prototypes, and conversely when the coarse graphite alone is used. ,
The mixture strength is the highest, but the discharge performance is inferior. However, it was confirmed that the molding compound of the present invention containing both of them has higher strength and discharge performance than the conventional products.

《効 果》 以上実施例によって詳細に説明したように、この発明に
あっては、正極合剤の造形性および電池性能の向上を図
ることができる。
<< Effects >> As described in detail in the above examples, in the present invention, it is possible to improve the moldability of the positive electrode mixture and the battery performance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二酸化マンガンを主剤として、これに黒鉛
を分散混合し、筒形に成形してなる筒形アルカリ電池用
正極合剤において: 前記黒鉛を粒度分布の異なる微粒子状のものと粗粒状の
ものの二種類で構成してなり、かつ前記微粒子状の黒鉛
としてその平均粒径が5〜30μの鱗状または人造黒鉛を
用いるとともに、前記粗粒状の黒鉛としてその平均粒径
が100〜700μのフレーク状または鱗状黒鉛を用いたこと
を特徴とする筒形アルカリ電池用正極合剤。
1. A cylindrical positive electrode mixture for alkaline batteries, which comprises manganese dioxide as a main component and graphite dispersed therein, and molded into a cylindrical shape. And flake having an average particle size of 100 to 700 μ as the coarse-grained graphite, while using scaly or artificial graphite having an average particle size of 5 to 30 μ as the fine particle graphite. A positive electrode mixture for a cylindrical alkaline battery, which is characterized by using graphite in graphite or scale.
【請求項2】前記二酸化マンガンに対する微粒子状の黒
鉛の配合比が3〜7重量%、粗粒状の黒鉛の配合比が1
〜5重量%であることを特徴とする特許請求の範囲第1
項に記載の筒形アルカリ電池用正極合剤。
2. The compounding ratio of finely divided graphite to manganese dioxide is 3 to 7% by weight, and the compounding ratio of coarse-grained graphite is 1.
Claim 1 characterized in that it is ~ 5% by weight.
The positive electrode mixture for a cylindrical alkaline battery according to item.
JP63111969A 1988-05-09 1988-05-09 Positive mix for cylindrical alkaline batteries Expired - Fee Related JPH07107853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111969A JPH07107853B2 (en) 1988-05-09 1988-05-09 Positive mix for cylindrical alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111969A JPH07107853B2 (en) 1988-05-09 1988-05-09 Positive mix for cylindrical alkaline batteries

Publications (2)

Publication Number Publication Date
JPH01281672A JPH01281672A (en) 1989-11-13
JPH07107853B2 true JPH07107853B2 (en) 1995-11-15

Family

ID=14574676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111969A Expired - Fee Related JPH07107853B2 (en) 1988-05-09 1988-05-09 Positive mix for cylindrical alkaline batteries

Country Status (1)

Country Link
JP (1) JPH07107853B2 (en)

Also Published As

Publication number Publication date
JPH01281672A (en) 1989-11-13

Similar Documents

Publication Publication Date Title
RU94014622A (en) METHOD FOR OBTAINING COTTON TANTAL POWDER AND COTTON TANTAL POWDER
JP2000503467A (en) Zinc anode for electrochemical cells
CN1068537C (en) Powder metallurgical binder and power metallrigical mixed powder
CN110323411A (en) A kind of preparation method of Carbon anode slurry
JP2005056714A (en) Positive electrode mixture and alkaline dry cell using the same
JPH08188407A (en) Filler material
WO2015124094A1 (en) Method for preparing tantalum powder for high-reliability, high specific capacity electrolytic capacitor
JPH02270922A (en) Method for making briquette of carbon powder
JP2000164220A (en) Electrode material for silver oxide battery
JPH07107853B2 (en) Positive mix for cylindrical alkaline batteries
JP3995496B2 (en) Waste plastic-containing granulated coal
CN107513394B (en) Method for improving coking performance of high-expansion strong-caking high-volatile coal
US3389990A (en) Manganese nitride
JP2825058B2 (en) Positive electrode mixture for cylindrical alkaline batteries
JPH1027618A (en) Flat battery
JP5079218B2 (en) Negative electrode active material and alkaline battery using the same
US6358447B1 (en) Process for the production of a positive electrode for an alkaline primary element
JP4517313B2 (en) Positive electrode mix for alkaline batteries
JP3186071B2 (en) Method for producing electrode plate for lead-acid battery and aggregated particles
JP3148817B2 (en) Plasticity control method of kneaded soil
JP2010251221A (en) Electrolytic manganese dioxide composition having superior high rate property
JPH0837008A (en) Paste type lead-acid battery
JPH04296451A (en) Alkaline battery
JPS61208752A (en) Manufacture of positive mixture for alkaline battery
JPH0827536A (en) Production of sintered compact of stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees