JP3148817B2 - Plasticity control method of kneaded soil - Google Patents

Plasticity control method of kneaded soil

Info

Publication number
JP3148817B2
JP3148817B2 JP26817897A JP26817897A JP3148817B2 JP 3148817 B2 JP3148817 B2 JP 3148817B2 JP 26817897 A JP26817897 A JP 26817897A JP 26817897 A JP26817897 A JP 26817897A JP 3148817 B2 JP3148817 B2 JP 3148817B2
Authority
JP
Japan
Prior art keywords
voids
primary particles
clay
particles
plasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26817897A
Other languages
Japanese (ja)
Other versions
JPH1192233A (en
Inventor
靖雄 芝崎
喜一 小田
三郎 佐野
巧 伴野
賢太 小栗
秀治 川合
祐二 野村
晃 小野
Original Assignee
工業技術院長
株式会社イナックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 株式会社イナックス filed Critical 工業技術院長
Priority to JP26817897A priority Critical patent/JP3148817B2/en
Publication of JPH1192233A publication Critical patent/JPH1192233A/en
Application granted granted Critical
Publication of JP3148817B2 publication Critical patent/JP3148817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はアルミナ等の非可
塑性粒子から成る練土の可塑性制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the plasticity of a clay made of non-plastic particles such as alumina.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
アルミナ等ファインセラミックス材料の成形方法として
押出成形が広く用いられている。陶磁器材料の場合に
は、それ自身可塑性である粘土に水を加えて練土とし、
これを押出成形するが、その練土は一般に良好な可塑性
を有していて押出成形を円滑に行うことが可能である。
2. Description of the Related Art
Extrusion molding is widely used as a method for molding fine ceramic materials such as alumina. In the case of ceramic materials, water is added to clay, which is itself plastic, to form a clay,
This is extruded, and the kneaded material generally has good plasticity so that the extrusion can be carried out smoothly.

【0003】しかるに上記アルミナ等ファインセラミッ
クス材料の場合、原料の一次粒子自体が実質上可塑性を
有しない(可塑性を全く有しないか或いは可塑性が極め
て乏しい)ため、ただ単に水を加えて練土としただけで
あると良好に押出成形が行うことができない。
However, in the case of the above-mentioned fine ceramic materials such as alumina, the primary particles themselves have substantially no plasticity (either having no plasticity or very poor plasticity). Extrusion cannot be performed favorably if it is only.

【0004】そこでファインセラミックス材料の場合、
バインダを加えたりそのバインダの種類や量を変えたり
して練土に可塑性を付与するようにしているが、最終的
に練土の可塑性の良否の判断は、練土を触った感じで経
験的に判断したり或いは作成した練土のレオロジー特性
を測定することで行っていた。
In the case of fine ceramic materials,
Plasticity is added to the clay by adding a binder or changing the type and amount of the binder, but ultimately the quality of the plasticity of the clay is determined empirically by touching the clay. The determination is made by measuring the rheological properties of the prepared clay.

【0005】しかしながら、例えばA粉体粒子の場合に
は可塑性を向上させる効果があったバインダーが、B粉
体粒子の場合にはあまり効果を示さないことがあるな
ど、練土の可塑性を左右する決定的な要因が不明であっ
たのが実情であり、そのため従来にあっては試行錯誤を
繰り返しながら求める可塑性の練土を得るしかないとい
うのが実情であった。しかしながらこの場合、最終的に
可塑性の良好な練土を得るに至るまでに多大の労力と時
間とを費やしてしまう。
[0005] However, for example, the binder which has the effect of improving the plasticity in the case of the A powder particles, has little effect in the case of the B powder particles, and thus has an influence on the plasticity of the clay. The decisive factor was unknown, and the fact was that, in the past, the only way to obtain the desired plasticity clay was through trial and error. However, in this case, a great deal of labor and time are required to finally obtain a clay having good plasticity.

【0006】[0006]

【課題を解決するための手段】本願の発明はこのような
課題を解決するためになされたものである。而して請求
項1の方法は、練土の粒子充填構造を、一次粒子の凝集
体である二次粒子の集合から成るものとするとともに、
該二次粒子間に該二次粒子内の一次粒子間空隙よりも大
きな水を含む空隙を、練土を基準として20〜30vo
l%含み、且つ二次粒子内の一次粒子間空隙が粒子体積
に対する体積比で65%以下となるような粒子充填構造
とすることを特徴とする。
The invention of the present application has been made to solve such a problem. According to the method of claim 1, the particle-filled structure of the clay comprises a set of secondary particles that are aggregates of primary particles.
A gap containing water larger than the gap between the primary particles in the secondary particles between the secondary particles is set to 20 to 30 vol.
1%, and the particle filling structure is such that the interparticle gap between the primary particles in the secondary particles is 65% or less in volume ratio to the particle volume.

【0007】請求項2の方法は、練土の粒子充填構造
を、練土中で不溶で吸水性を有し且つそれ自身変形する
空隙形成材を一次粒子間に介在させ、該空隙形成材の介
在部位において該一次粒子間に該空隙形成材の非介在部
位における一次粒子間空隙よりも大きな水を含む空隙
を、練土を基準として20〜30vol%形成させ、且
つ該空隙形成材の非介在部位における一次粒子間空隙
が、粒子体積に対する体積比で65%以下となるような
粒子充填構造とすることを特徴とする。
According to a second aspect of the present invention, the particle-filled structure of the kneaded material is formed such that a void-forming material that is insoluble in water, absorbs water, and deforms itself is interposed between primary particles. In the intervening portion, a void containing water larger than the inter-primary particle void in the non-intervening portion of the void forming material is formed between the primary particles at 20 to 30 vol% based on the kneaded soil, and the void interposing material is not interposed. It is characterized in that it has a particle-filled structure in which the space between primary particles in the site is 65% or less in volume ratio to the particle volume.

【0008】[0008]

【作用及び発明の効果】本発明者は、練土の可塑性を左
右する要因として練土の粒子充填構造に着目し、そして
可塑性の良いとされている粘土に水を加えた練土につい
てその粒子充填構造を調べたところ、一次粒子の凝集体
である二次粒子間に一次粒子間の空隙よりも大きな空隙
が多く存在していることが判った。
The present inventor has paid attention to the particle filling structure of the clay as a factor influencing the plasticity of the clay. Examination of the packing structure revealed that there were many voids between the secondary particles, which were aggregates of the primary particles, larger than the voids between the primary particles.

【0009】一方、それ自身可塑性を有しないアルミナ
の一次粒子(大きさは0.1〜数ミクロン程度)の集合
体に水を加えて練土とし、その可塑性をレオロジー特性
の測定に基づいて判定したところ、可塑性の低いもので
あって上記押出成形等の成形手法で良好に成形できない
ものであった。
On the other hand, water is added to an aggregate of primary particles (having a size of about 0.1 to several microns) of alumina which does not have plasticity itself to form a kneaded material, and the plasticity is determined based on the measurement of rheological properties. As a result, it was a material having low plasticity and could not be favorably molded by a molding technique such as the extrusion molding.

【0010】そこでこの非可塑性粒子粉体から成るアル
ミナの練土に凝集剤を加えて一次粒子を凝集化させ、そ
の凝集体である二次粒子間に二次粒子内の一次粒子間空
隙よりも大きな空隙を多く生ぜしめたところ可塑性が高
まり、押出成形等による成形加工が可能となることを確
認した。本願の請求項1の発明はこのような知見に基づ
いてなされたものである。
[0010] Therefore, an aggregating agent is added to the kneaded alumina made of the non-plastic particle powder to agglomerate the primary particles, and the secondary particles, which are the aggregates, are less than the voids between the primary particles in the secondary particles. It was confirmed that when many large voids were generated, the plasticity was increased, and molding by extrusion molding or the like became possible. The invention of claim 1 of the present application has been made based on such knowledge.

【0011】ここで二次粒子間に上記のような一次粒子
間の空隙よりも大きな空隙を多く形成することによって
可塑性が高まったのは、二次粒子間の大きな空隙が二次
粒子の移動、つまり練土の流動性を高める働きをなし、
結果的に練土の可塑性が高められたものと考えられる。
Here, the plasticity is enhanced by forming more voids between the secondary particles than the voids between the primary particles as described above because the large voids between the secondary particles are caused by the movement of the secondary particles, In other words, it works to increase the fluidity of the clay,
As a result, it is considered that the plasticity of the clay was enhanced.

【0012】本発明では、その空隙の量として練土を基
準として20〜30vol%の範囲が良好であることを
併せて確認した。上記大きさの空隙の量が20vol%
よりも少ないと十分な流動性が得られず、また逆に30
vol%を超えると流動性は高まるものの、いわゆる練
土のコシと言われる保形性、つまり形を保つ性質が損な
われてしまい、却って可塑性を低下させてしまう。
In the present invention, it was also confirmed that the amount of the void was preferably in the range of 20 to 30% by volume based on the clay. The amount of the void having the above size is 20 vol%
If less, sufficient fluidity cannot be obtained, and conversely, 30
If the content exceeds vol%, the fluidity is increased, but the shape retention, which is called the stiffness of the clay, that is, the property of maintaining the shape is impaired, and the plasticity is rather reduced.

【0013】本発明において、上記一次粒子間の空隙よ
りも大きな二次粒子間空隙を上記範囲で生成させるため
の手法として各種の手法を用いることができる。例えば
メチルセルロースや澱粉或いはポリビニルアルコール等
の凝集剤を添加し、且つその添加量をコントロールする
ことによって、或いはpH調整や表面イオン置換等によ
る化学的な処理を施し、またその処理条件をコントロー
ルすることによって、更には粉砕等のメカニカルな処理
を施し、粉体粒子の比表面積を増加させる等によって、
空隙の発生や量をコントロールすることができる。本発
明では、また、二次粒子内の一次粒子間空隙を粒子体積
に対する体積比で65%以下とする。
In the present invention, various techniques can be used as a technique for generating a gap between secondary particles larger than the gap between primary particles in the above range. For example, by adding a coagulant such as methylcellulose, starch or polyvinyl alcohol and controlling the amount of addition, or by performing a chemical treatment such as pH adjustment or surface ion substitution and controlling the treatment conditions. , And further, by performing a mechanical treatment such as pulverization to increase the specific surface area of the powder particles,
The generation and amount of voids can be controlled. In the present invention, the space between the primary particles in the secondary particles is set to 65% or less in terms of a volume ratio to the particle volume.

【0014】練土のいわゆるコシと言われる保形性は、
上記流動性とともに可塑性を左右する要因であり、而し
てその保形性は一次粒子間の空隙が少ない方が良好とな
る。
[0014] The shape retention of so-called koshi, which is called koshi, is
This is a factor that affects the plasticity as well as the fluidity. Thus, the shape retention is better when the voids between the primary particles are smaller.

【0015】つまり一次粒子の充填構造が密である方が
保形性が良好となる。而して本発明においてはその一次
粒子間空隙として粒子体積に対する体積比で65%以下
であるのが良いとの知見を得た。但し下限は25%以上
とするのが良い。体積比を25%未満とするように粒子
を密に充填することは難しいことによる。
In other words, the denser the primary particle packing structure, the better the shape retention. Thus, in the present invention, it has been found that the volume ratio of the primary interparticle space to the particle volume is preferably 65% or less. However, the lower limit is preferably set to 25% or more. This is because it is difficult to densely pack the particles so that the volume ratio is less than 25%.

【0016】このようにすることによって、練土の流動
性とともに保形性を効果的に高めることができ、それら
を総合した特性であるところの可塑性を更に良好なもの
となすことができる。
[0016] By doing so, the flowability and the shape retention of the clay can be effectively enhanced, and the plasticity, which is a combined property thereof, can be further improved.

【0017】尚、一次粒子間の空隙を少なくする手法と
して、一次粒子の粒度分布をブロードにし(広くし)、
充填構造を細密充填できるようにしたり、或いは粉体と
して粗粒と微粒の混合物を用いたり、或いは一次粒子の
粒度を細かくする等の手法を用いることができる。
As a method of reducing the voids between the primary particles, the particle size distribution of the primary particles is broadened (widened),
It is possible to use a technique such that the filling structure can be finely packed, a mixture of coarse particles and fine particles is used as the powder, or the particle size of the primary particles is reduced.

【0018】上述したように陶磁器材料としての粘土
は、粘土粒子自身が水を含んだ状態で可塑性の粒子であ
り、従って陶磁器材料(練土)の場合にはそれ自体が一
定の可塑性を有している。
As described above, clay as a ceramic material is a plastic particle in a state in which the clay particles themselves contain water. Therefore, in the case of a ceramic material (kneaded material), the clay itself has a certain degree of plasticity. ing.

【0019】しかるに上記アルミナ単体からなるような
セラミックス材料の場合、その構成粒子が実質上可塑性
を有しない粒子であるため、その一次粒子の集合体から
成る練土の場合、可塑性が著しく乏しい。
However, in the case of a ceramic material composed of the above-described alumina alone, the constituent particles thereof are particles having substantially no plasticity. Therefore, in the case of a clay made of an aggregate of primary particles, the plasticity is extremely poor.

【0020】ここにおいてこのような非可塑性粒子から
成る練土に本発明を適用した場合、練土に対して良好な
可塑性を付与することができ、押出成形等によって目的
とする形状に良好に成形加工できるようになる。
Here, when the present invention is applied to the kneaded material composed of such non-plastic particles, good plasticity can be imparted to the kneaded material, and it can be formed into a desired shape by extrusion molding or the like. Be able to process.

【0021】一方請求項2の発明は、一次粒子を凝集さ
せて二次粒子を構成するのに代えて空隙形成材を加え、
その空隙形成材の干渉作用で練土における粒子充填構
造、詳しくは空隙の制御を行うことを内容とするもので
ある。
According to a second aspect of the present invention, a void-forming material is added instead of aggregating the primary particles to form secondary particles.
It is intended to control the particle filling structure, more specifically, the voids in the kneaded material by the interference action of the void forming material.

【0022】多糖類の一種であるカードランは、非可塑
性粒子粉体から成るアルミナの練土中で、一次粒子間に
介在して一次粒子間に水を含む空隙を形成するととも
に、自身の変形によって一次粒子の相対移動を助ける働
きをし、練土全体の流動性を向上させることが知られて
いる。
Curdlan, which is a kind of polysaccharide, forms voids containing water between primary particles in a kneaded alumina made of non-plastic particles, and deforms itself. It is known that they act to assist the relative movement of the primary particles, thereby improving the fluidity of the whole clay.

【0023】そこで本発明者等は、カードラン以外の、
練土中で不溶で吸水性のある材料を非可塑性粒子粉体か
ら成るアルミナの練土に添加して一次粒子間に介在さ
せ、それら一次粒子間に水を含む大きな空隙(吸水材料
の非介在部位における一次粒子間空隙より大きな空隙)
を多く形成させたところ可塑性が高まることを確認し
た。
Therefore, the present inventors have proposed a method other than the card run.
A material that is insoluble and water-absorbing in the kneaded soil is added to the kneaded alumina made of non-plastic particles to be interposed between the primary particles, and large voids containing water between the primary particles (non-intervening water-absorbing material) Voids larger than primary interparticle voids at the site)
It was confirmed that the plasticity was increased when a large amount of was formed.

【0024】更にその空隙の量として、練土を基準とし
て20〜30vol%の範囲が適切であることを初めて
確認した。本願の請求項2の発明はこのような知見に基
づいてなされたものである。
Further, it was confirmed for the first time that the range of 20 to 30% by volume based on the kneaded soil was appropriate as the amount of the void. The invention of claim 2 of the present application has been made based on such knowledge.

【0025】上記の空間の量が20vol%よりも少な
いと十分な流動性が得られず、また逆に30vol%を
超えると流動性は高まるものの保形性が損なわれてしま
い、却って可塑性を低下させてしまう。
If the amount of the space is less than 20 vol%, sufficient fluidity cannot be obtained. Conversely, if it exceeds 30 vol%, the fluidity increases but the shape retention is impaired, and the plasticity is rather reduced. Let me do it.

【0026】本願の請求項2の発明において、上記一次
粒子間空隙よりも大きな空隙を上記範囲で生成させる代
表的材料として、練土中で不溶且つ吸水性を有しそれ自
身が変形するゲル状の材料を例示することができるが、
その他各種材料を用いることができる。
[0026] In the invention of claim 2 of the present application, as a typical material for forming voids larger than the voids between the primary particles in the above range, a gel-like material which is insoluble in water, has water absorbency, and is itself deformed. Can be exemplified,
Other various materials can be used.

【0027】例えば練土中で不溶な吸水性のある多糖類
である寒天やコンニャク、或いはその他の練土中で不溶
な吸水性のあるものでそれ自身が変形しやすい性質を持
つ材料ならば良く、且つその添加量をコントロールする
ことによって上記空間の発生や量を制御することができ
る。
For example, agar or konjac, which is a water-absorbing polysaccharide insoluble in kneaded clay, or any other material that is insoluble in kneaded clay and has a property of being easily deformed by itself. The generation and amount of the space can be controlled by controlling the amount of addition.

【0028】この請求項2の発明においても一次粒子間
の空隙、厳密には空隙形成材の非介在部位における一次
粒子間空隙を、粒子体積に対する体積比で65%以下と
すること(但し望ましい下限値は25%)が重要であ
る。
Also in the second aspect of the present invention, the gap between the primary particles, more specifically, the gap between the primary particles in the non-intervening portion of the gap forming material should be 65% or less by volume ratio to the particle volume (however, a desirable lower limit). The value is 25%).

【0029】このようにすることによって、上記請求項
1の発明と同様の理由により練土の保形性を良好とな
し、ひいては可塑性を良好なものとなすことができる。
また一次粒子間の空隙を少なくする手法として上記した
手法を用いることができる。
By doing so, the shape retention of the clay can be made good for the same reason as in the first aspect of the invention, and the plasticity can be made good.
In addition, the above-described method can be used as a method for reducing the gap between the primary particles.

【0030】[0030]

【実施例】次に本発明の実施例を以下に詳述する。粒状
の一次粒子アルミナの粉体(一次粒子の粒径は平均粒径
で0.3μm)に添加材として寒天粉3重量%を加えて
水とともに混合し、アルミナの練土を作製した。
Next, embodiments of the present invention will be described in detail. Granular primary particles Alumina powder (primary particles having an average particle size of 0.3 μm) was mixed with 3 wt% of agar powder as an additive and mixed with water to prepare an alumina clay.

【0031】その練土の粒子充填構造、具体的には粒子
間空隙を調べたところ図1の結果が得られた。尚、空隙
の測定は以下のようにして行った。
Examination of the particle filling structure of the kneaded material, specifically, the voids between the particles revealed the results shown in FIG. The measurement of the void was performed as follows.

【0032】即ち、構造が変化しないよう水を含んだま
まの練土の状態で、液体窒素中で瞬間的に練土内の水を
凍結させた後、−5℃真空中で保持し、氷を昇華させて
凍結乾燥を行った。その凍結乾燥体を水銀圧入式ポロシ
メター(Micromeritics社製Poresizer9320)を用いて細
孔径分布を測定した。
That is, in a state of the clay containing water so that the structure does not change, the water in the clay is instantaneously frozen in liquid nitrogen and then kept at -5 ° C. in vacuum, Was sublimated and freeze-dried. The pore size distribution of the freeze-dried product was measured using a mercury intrusion porosimeter (Poresizer 9320 manufactured by Micromeritics).

【0033】図1において、(A)は横軸に空隙の大き
さを、縦軸に空隙量の累計(空隙の大きい側から小さい
側に向かっての累計)を示しており、また(B)はその
微分値を示している。
In FIG. 1, (A) shows the size of the gap on the abscissa, and the total amount of the gap (total from the side of the larger gap to the smaller side of the gap) on the ordinate, and (B) Indicates its differential value.

【0034】この結果に見られるように、上記のように
して得たアルミナの練土には、図1(B)において孔径
0.1μm辺りに集中して存在する一次粒子間の空隙の
外に、その一次粒子間空隙よりも大きな空隙を相当量形
成している。凍結乾燥体の走査型電子顕微鏡による観察
から、添加した寒天粉が練土中で溶けずに一次粒子間に
介在しており、その寒天粉が空隙形成材(干渉材)とし
て働き、上記大きな空隙を形成していることが確認され
た。
As can be seen from the results, the alumina kneaded material obtained as described above has a structure in which the gap between the primary particles existing around the pore diameter of 0.1 μm in FIG. In addition, a considerable amount of voids larger than the voids between the primary particles are formed. From the observation of the freeze-dried product by a scanning electron microscope, it was found that the added agar powder was not melted in the clay and was interposed between the primary particles, and the agar powder acted as a void forming material (interference material), and the large void Was formed.

【0035】即ち、上記アルミナの練土には大別して孔
径の小さな空隙と孔径の大きな空隙との二種類の空隙が
存在しており、そして孔径の小さい方の空隙は寒天粉の
介在していない部位における一次粒子間の空隙で、また
孔径の大きい方の空隙は、寒天粉の介在部位においてそ
の寒天粉により互いに隔てられた一次粒子と一次粒子と
の間の空隙であることが確認された。
That is, there are roughly two types of voids in the above-mentioned alumina kneaded material, a void having a small pore diameter and a void having a large pore diameter, and the void having the smaller pore diameter is free of agar powder. It was confirmed that the voids between the primary particles at the site and the voids having the larger pore diameter were voids between the primary particles and the primary particles separated from each other by the agar powder at the agar powder intervening site.

【0036】次にこの練土の可塑性を調べたところ、図
5のような結果が得られた。図5ではこのアルミナの練
土の可塑性(図中(ハ))とともに、従来可塑性が良好
であるとされる粘土Hの練土の可塑性(図中(イ))
と、可塑性が悪いとされる粘土Gの練土の可塑性(図中
(ニ))とを示している。
Next, when the plasticity of the kneaded material was examined, the result shown in FIG. 5 was obtained. In FIG. 5, together with the plasticity of the alumina clay ((c) in the figure), the plasticity of the clay H clay which is conventionally considered to have good plasticity ((a) in the figure)
And the plasticity ((d) in the figure) of the clay of clay G which is considered to have poor plasticity.

【0037】これら(イ)と(ニ)との間の領域が、工
業的に押出成形等を行い得る可塑性の良好な領域と考え
られるものであり、而して上記アルミナの練土の可塑性
はこの領域内にあって、可塑性の良い練土ということが
できる。
The region between (a) and (d) is considered to be a region of good plasticity in which extrusion molding and the like can be carried out industrially. In this region, it can be said that the clay has good plasticity.

【0038】因みに、粘土Hの練土及び粘土Gの練土の
それぞれの粒子充填構造、具体的には粒子間空隙を上記
と同様の方法で調べたところ、図2及び図3に示す通り
であった。
Incidentally, the particle packing structure of each of the clay H and the clay G, that is, the voids between the particles were examined by the same method as described above. there were.

【0039】これら図2,図3に示しているように、可
塑性の優れた粘土Hの練土の場合、図2(B)において
孔径の小さい側にピークを有する一次粒子間空隙に対
し、それより大きな空隙が多量に存しているが、可塑性
のそれ程良くない粘土Gの練土の場合、図3(B)にお
いて孔径の小さい側にピークを有する一次粒子間空隙に
対し、それより大きな空隙の量が多くないことが分る。
As shown in FIGS. 2 and 3, in the case of the clay of clay H having excellent plasticity, the voids between the primary particles having a peak on the smaller pore diameter side in FIG. In the case of clay G having a large amount of larger voids but not so good plasticity, in the case of clay G having a peak on the side with a smaller pore diameter in FIG. You can see that the amount is not large.

【0040】尚、図5における横軸は練土の保形性を、
また縦軸は流動性を示している。但し具体的には保形性
は見掛けのヤング率として、また縦軸の流動性は、変形
後期の応力増加範囲で必要とされる仕事量として示して
おり、値が小さいほど流動性は大きくなる。練土の可塑
性は保形性が高く、また流動性が大きいほど良好であ
る。
The horizontal axis in FIG. 5 indicates the shape retention of the clay.
The vertical axis indicates the liquidity. However, specifically, the shape retention is shown as an apparent Young's modulus, and the fluidity on the vertical axis is shown as the work required in the stress increase range in the latter stage of deformation, and the smaller the value, the greater the fluidity . The plasticity of the kneaded soil is higher as the shape retention is higher and the flowability is higher.

【0041】次に、比較のために上記粒状アルミナ粉体
に対して添加材を加えず、アルミナ粉体と水とを混合し
て成る練土、つまり粒状のアルミナ一次粒子の集合体と
水とからなる練土の可塑性を調べたところ、図5の
(ホ)で示すようなものであった。
Next, for the sake of comparison, a kneaded material obtained by mixing alumina powder and water without adding an additive to the above-mentioned granular alumina powder, that is, an aggregate of granular alumina primary particles, water and When the plasticity of the kneaded material consisting of was examined, it was as shown in FIG.

【0042】そして確認のためにその粒状のアルミナ一
次粒子の集合体と水とからなる練土の空隙を調べたとこ
ろ、図4に示す通りであった。この図4に示しているよ
うに、粒状のアルミナ一次粒子の集合体と水とからなる
練土の場合、0.1μmあたりにピークを有する一次粒
子間空隙が多く、従ってその一次粒子間空隙よりも大き
な空隙は少ないことが分る。
For confirmation, the voids in the kneaded material comprising the aggregate of the primary alumina particles and water were examined, and the results were as shown in FIG. As shown in FIG. 4, in the case of the kneaded material composed of aggregates of granular alumina primary particles and water, there are many voids between primary particles having a peak around 0.1 μm. It can be seen that there are few large voids.

【0043】即ち、このような粒状アルミナの一次粒子
からなる粉体に対し、練土中で不溶で吸水性のある材料
を加えて一次粒子間に介在させ、それら一次粒子間に大
きな空隙を形成することで良好な可塑性を付与できるこ
とが、図1と図4との比較及び図5の(ハ)と(ホ)と
の比較によって理解することができる。
That is, to the powder comprising the primary particles of such granular alumina, a material which is insoluble in water and has a water-absorbing property is added and interposed between the primary particles to form large voids between the primary particles. It can be understood from the comparison between FIG. 1 and FIG. 4 and the comparison between (c) and (e) of FIG.

【0044】次に、適正な練土を得るには一次粒子間に
上記空隙形成材(干渉材)により発生する大きな空隙が
どの程度必要であるかを調べるため、上記のようにして
得たアルミナの練土中に形成された一次粒子間の空隙
(空隙形成材の非介在部位における一次粒子間空隙)の
量と、空隙形成材の介在により発生した大きな空隙の量
とを図1より算出し、可塑性評価結果との関係を調べた
ところ表1に示す結果が得られた。
Next, in order to examine how much large voids generated by the void-forming material (interference material) are required between the primary particles to obtain an appropriate kneaded material, the alumina obtained as described above was used. The amount of voids between the primary particles (voids between primary particles in the non-intervening portions of the void forming material) and the amount of large voids generated by the presence of the void forming material were calculated from FIG. When the relationship with the plasticity evaluation results was examined, the results shown in Table 1 were obtained.

【0045】[0045]

【表1】 [Table 1]

【0046】尚空隙量の算出は以下のようにして行っ
た。即ち、添加材無添加の場合の100℃乾燥体の練土
の空隙分布図4(B)は、0.1μmあたりにほぼ単一
のピークを示すのみであることから、この状態は一次粒
子がほぼ完全に充填しており、この練土における空隙は
それらほぼ完全に充填した一次粒子間の空隙から成って
おり、それよりも大きな空隙が殆どない状態として仮定
できる。
The calculation of the void amount was performed as follows. That is, since the void distribution diagram (B) of the dried clay at 100 ° C. without the additive shows only a single peak at about 0.1 μm, this state indicates that the primary particles It is almost completely filled, and the voids in the kneaded material consist of voids between the almost completely filled primary particles, and it can be assumed that there is almost no void larger than that.

【0047】従って、図4(B)に示した乾燥体の空隙
の微分値曲線の上限空隙径は(この場合0.2μm)、
この練土における一次粒子間空隙の上限空隙径に相当す
る。そこでこの一次粒子間空隙の上限空隙径よりも小さ
い空隙を上記寒天粉の非介在部位における一次粒子間空
隙として、それよりも大きな空隙を寒天粉の介在により
発生した大きな空隙とし、そしてそれら2つに分けた空
隙のそれぞれの空隙量を算出した。
Accordingly, the upper limit of the pore diameter in the differential value curve of the pores of the dried body shown in FIG.
This corresponds to the upper limit pore diameter of the voids between primary particles in the kneaded material. Therefore, voids smaller than the upper limit void diameter of the voids between the primary particles are defined as voids between the primary particles in the non-intervening portions of the agar powder, and voids larger than the voids are defined as large voids generated by the agar powder. The amount of each of the divided voids was calculated.

【0048】ここで押出成形等の可塑成形に用いること
ができる練土の可塑性は、流動性を示す仕事量で4以
下、保形性を示す見掛けのヤング率で0.15以上の範
囲でおおよそ示すことができる。
The plasticity of the kneaded material which can be used for plastic molding such as extrusion molding is approximately 4 or less in terms of work showing fluidity and 0.15 or more in terms of apparent Young's modulus showing shape retention. Can be shown.

【0049】表1に示すように上記アルミナの練土は、
一次粒子間の空隙よりも大きな空隙が20〜30%であ
ると、仕事量や見掛けのヤング率が上記範囲に入る。一
方上記空隙が20%よりも少ないと流動性を示す仕事量
が適正範囲以上となるため十分な流動性が得られず、ま
た逆に30%を超えると仕事量は低下し流動性は高まる
ものの、保形性を示す見掛けのヤング率が適正範囲以下
となって保形性が低下してしまい、却って可塑性が低下
してしまう。
As shown in Table 1, the alumina clay was
If the gap larger than the gap between the primary particles is 20 to 30%, the work amount and the apparent Young's modulus fall within the above ranges. On the other hand, if the void is less than 20%, sufficient workability cannot be obtained because the work amount showing fluidity is in an appropriate range or more. Conversely, if it exceeds 30%, work amount decreases and fluidity increases. In addition, the apparent Young's modulus indicating the shape-retaining property is below the appropriate range, and the shape-retaining property is reduced, and the plasticity is rather reduced.

【0050】また可塑性の優れた粘土Hの練土の場合
も、一次粒子が密に充填した部分の一次粒子間空隙より
も大きな空隙(一次粒子の凝集体間の空隙)の量が20
〜30%の間であると可塑性が上記適正範囲に入ること
が分かる。他方可塑性のそれ程良くない粘土Gの練土の
場合、一次粒子間の空隙よりも大きな空隙の量が20〜
30%の間であっても保形性が上記範囲から外れてしま
う。
In the case of the clay H having excellent plasticity, the amount of voids (voids between aggregates of primary particles) larger than the voids between primary particles in a portion where primary particles are densely packed is also 20%.
It can be seen that the plasticity falls within the above-mentioned proper range when it is between 30% and 30%. On the other hand, in the case of clay G having a poor plasticity, the amount of voids larger than the voids between primary particles is 20 to
Even if it is between 30%, the shape retention falls outside the above range.

【0051】その理由は、一次粒子間空隙が粒子体積に
対する体積比で80%以上存在していて、上記アルミナ
の練土や粘土Hの練土に比べ大きく、即ち一次粒子間の
充填が悪く、このため保形性が低下している。
The reason is that the voids between the primary particles are present in a volume ratio of 80% or more with respect to the particle volume, and are larger than the above-mentioned clay of alumina and clay of clay H, that is, the filling between the primary particles is poor. For this reason, the shape retention is reduced.

【0052】また、アルミナ粉体と水のみを混合してな
る練土の場合、一次粒子間の空隙よりも大きな空隙は少
なく、且つ一次粒子間空隙が粒子体積に対する体積比で
70%以上と、アルミナに寒天を添加した練土や粘土H
の練土に比べ大きいため、適正な保形性と流動性が得ら
れていない。
Further, in the case of the clay obtained by mixing only the alumina powder and water, the voids larger than the voids between the primary particles are small, and the voids between the primary particles are 70% or more by volume ratio to the particle volume. Clay or clay H with agar added to alumina
Because of the large size compared to the kneaded clay, proper shape retention and fluidity are not obtained.

【0053】従って一次粒子間の空隙が体積比で65%
以下でないと、いくら一次粒子間よりも大きな空隙が2
0〜30%の上記範囲になるよう調整しても、一次粒子
の充填が悪いため、流動性と保形性のバランスの取れた
練土、即ち可塑性の適正な練土にならないことが理解で
きる。
Therefore, the gap between the primary particles is 65% by volume.
If not less than 2 voids larger than between primary particles
Even if it is adjusted to be in the above range of 0 to 30%, it can be understood that since the filling of the primary particles is poor, the kneaded material having a good balance between the fluidity and the shape retention, that is, the appropriate kneaded material cannot be obtained. .

【0054】尚、上記粒状のアルミナ一次粒子粉体に対
して凝集剤としてのメチルセルロースを1重量%加えて
水とともに練土を形成し、可塑性を調べたところ、図5
の(ロ)で示しているように同じく良好な可塑性を示し
た。
Incidentally, 1% by weight of methylcellulose as an aggregating agent was added to the above-mentioned granular primary alumina powder to form a kneaded soil with water, and the plasticity was examined.
(B) showed good plasticity as well.

【0055】この凝集剤としてメチルセルロースを加え
た場合の練土の粒子充填構造も、表1に示すようにアル
ミナ粉末と水のみの練土に比べて一次粒子間空隙より大
きな二次粒子(一次粒子の凝集体)間空隙が多く、その
量が20〜30%の間であると可塑性が適正範囲に入る
ことが分かり、凝集剤により形成された二次粒子内の一
次粒子間の空隙が体積比で65%以下となっていること
が確認できた。
As shown in Table 1, the particle filling structure of the clay when methylcellulose was added as the coagulant also showed that secondary particles (primary particles) larger than the voids between the primary particles as compared with the clay containing only alumina powder and water. It is understood that the plasticity falls within an appropriate range when the amount of the voids is large and the amount is between 20% and 30%, and the voids between the primary particles in the secondary particles formed by the flocculant have a volume ratio of Was 65% or less.

【0056】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において種々変更を加えた態様で実施可能である。
Although the embodiments of the present invention have been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において得られた粒状アルミナ
粉体の練土の空隙分布を示す図である。
FIG. 1 is a diagram showing a void distribution of a kneaded material of granular alumina powder obtained in an example of the present invention.

【図2】粘土Hの練土の空隙分布を示す図である。FIG. 2 is a view showing a void distribution of a clay H clay.

【図3】粘土Gの練土の空隙分布を示す図である。FIG. 3 is a diagram showing a void distribution of a clay G clay.

【図4】添加材を加えていない粒状アルミナ粉体単体と
水との練土の空隙分布を示す図である。
FIG. 4 is a view showing a void distribution of a kneaded material of granular alumina powder alone without any additive and water.

【図5】図1〜図4の空隙分布をもつ各練土の可塑性を
示す図である。
FIG. 5 is a diagram showing the plasticity of each kneaded material having the void distribution shown in FIGS.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 三郎 愛知県名古屋市千種区北千種3−2− 3,15−24 (72)発明者 伴野 巧 愛知県名古屋市北区八千代町2−109, 八千代寮103 (72)発明者 小栗 賢太 愛知県名古屋市東区砂田橋3−2,103 −1206 (72)発明者 川合 秀治 愛知県半田市瑞穂町2−3−22,イース トタウン206号室 (72)発明者 野村 祐二 愛知県名古屋市北区金城2−1−11,コ ーポ若園E号 (72)発明者 小野 晃 愛知県名古屋市北区光音寺町1−66,エ ステート弦四路306号 審査官 三崎 仁 (56)参考文献 特開 平2−97459(JP,A) 特開 平1−238905(JP,A) 特開 昭63−274647(JP,A) 特開 平4−337002(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/622 - 35/638 B28B 3/20 B28C 7/00 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Saburo Sano 3-2-3, 15-24 Kita Chikusa, Chikusa-ku, Nagoya City, Aichi Prefecture (72) Inventor Takumi 2-109, Yachiyo-cho, Kita-ku, Nagoya City, Aichi Prefecture Yachiyo Dormitory 103 (72) Inventor Kenta Oguri 3-2, 103-1206, Sunadabashi, Higashi-ku, Nagoya-shi, Aichi (72) Inventor Shuji Kawai 2-3-2-22, Mizuho-cho, Handa-city, Aichi Prefecture, East Town Room 206 (72) Invention Person Yuji Nomura 2-1-1, Kinjo, Kita-ku, Nagoya-shi, Aichi, Co., Ltd. E-72 J. Misaki (56) References JP-A-2-97459 (JP, A) JP-A-1-238905 (JP, A) JP-A-63-274647 (JP, A) JP-A-4-337002 (JP, A) (58) Field surveyed (Int.Cl. 7) , DB name) C04B 35/622-35/638 B28B 3/20 B28C 7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 練土の粒子充填構造を、一次粒子の凝集
体である二次粒子の集合から成るものとするとともに、
該二次粒子間に該二次粒子内の一次粒子間空隙よりも大
きな水を含む空隙を、練土を基準として20〜30vo
l%含み、且つ二次粒子内の一次粒子間空隙が粒子体積
に対する体積比で65%以下となるような粒子充填構造
とすることを特徴とするアルミナ等の非可塑性粒子から
成る練土の可塑性制御方法。
Claims: 1. The particle-filled structure of a kneaded material comprises a collection of secondary particles, which are aggregates of primary particles.
A gap containing water larger than the gap between the primary particles in the secondary particles between the secondary particles is set to 20 to 30 vol.
1%, and having a particle-filled structure in which the voids between the primary particles in the secondary particles are 65% or less in volume ratio with respect to the particle volume. Control method.
【請求項2】 練土の粒子充填構造を、練土中で不溶で
吸水性を有し且つそれ自身変形する空隙形成材を一次粒
子間に介在させ、該空隙形成材の介在部位において該一
次粒子間に該空隙形成材の非介在部位における一次粒子
間空隙よりも大きな水を含む空隙を、練土を基準として
20〜30vol%形成させ、且つ該空隙形成材の非介
在部位における一次粒子間空隙が、粒子体積に対する体
積比で65%以下となるような粒子充填構造とすること
を特徴とするアルミナ等の非可塑性粒子から成る練土の
可塑性制御方法。
2. A method for filling a particle of a kneaded material with a void-forming material which is insoluble in water, absorbs water, and deforms itself between primary particles. Between 20% and 30% by volume, based on the kneaded material, of voids containing water larger than the voids between the primary particles in the non-intervening portions of the void-forming material between the particles, and between the primary particles in the voids of the void-forming material. A method for controlling the plasticity of a kneaded material comprising non-plastic particles such as alumina, which has a particle-filled structure in which voids are 65% or less in volume ratio with respect to the particle volume.
JP26817897A 1997-09-12 1997-09-12 Plasticity control method of kneaded soil Expired - Lifetime JP3148817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26817897A JP3148817B2 (en) 1997-09-12 1997-09-12 Plasticity control method of kneaded soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26817897A JP3148817B2 (en) 1997-09-12 1997-09-12 Plasticity control method of kneaded soil

Publications (2)

Publication Number Publication Date
JPH1192233A JPH1192233A (en) 1999-04-06
JP3148817B2 true JP3148817B2 (en) 2001-03-26

Family

ID=17455010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26817897A Expired - Lifetime JP3148817B2 (en) 1997-09-12 1997-09-12 Plasticity control method of kneaded soil

Country Status (1)

Country Link
JP (1) JP3148817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601938B2 (en) 2014-05-15 2017-03-21 Intel Corporation Battery charger for different power sources

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072755A1 (en) * 2005-12-19 2007-06-28 Mitsui Mining & Smelting Co., Ltd. Raw powder mixture for ito sinter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601938B2 (en) 2014-05-15 2017-03-21 Intel Corporation Battery charger for different power sources

Also Published As

Publication number Publication date
JPH1192233A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
JP3215839B2 (en) Synthetic clay for ceramics and method for producing the same
JPH0533643B2 (en)
Juneja et al. Development of Corn Starch-Neusilin UFL2 conjugate as tablet superdisintegrant: Formulation and evaluation of fast disintegrating tablets
CN112521038B (en) Modification and application of concrete recycled aggregate
CN103214604B (en) Inorganic-organic compound dispersing agent for suspension polymerization and application of inorganic-organic compound dispersing agent
JP3148817B2 (en) Plasticity control method of kneaded soil
JP3981988B2 (en) Polished fired body and method for producing the same
CN105601154B (en) A kind of graphene reinforcing agent and preparation method thereof
JP5575728B2 (en) Cellulose ethers suitable for extrusion of cement-bound articles with improved properties
CN106459464A (en) Polymer-based foam compositions comprising inorganic particulate fillers
KR100983104B1 (en) Porous soil block
JP3490864B2 (en) Method for producing ceramic spherical granules
Majeed et al. The effects of using nanomaterials to improvement soft soils
JP3409183B2 (en) Method for producing granules for ferrite molding and molded and sintered bodies thereof
GB2469546A (en) Granulates with smooth particles and binder
Balasubramanian et al. Effect of Externally Applied Plasticizer on Compaction Behavior of Spray‐Dried Powders
JP3316243B2 (en) Highly dispersible granulated silica powder and method for producing the same
KR101514906B1 (en) Heat insulation material and production method for same
JP2514668B2 (en) Ground improvement and stabilization briquette body
JP4698022B2 (en) Method for producing filled polytetrafluoroethylene molding powder
WO2017140781A1 (en) Stabilizers for improving the storage stability of building material dry formulations containing polymer powder
JPH0789754A (en) Cement coloring material and its production
JP2000119060A (en) Highly plastic alumina paste and its production
JP3849760B2 (en) Hydraulic composition for extrusion molding and cured body thereof
JP3711247B2 (en) Filter element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term