JP2000119060A - Highly plastic alumina paste and its production - Google Patents

Highly plastic alumina paste and its production

Info

Publication number
JP2000119060A
JP2000119060A JP10290689A JP29068998A JP2000119060A JP 2000119060 A JP2000119060 A JP 2000119060A JP 10290689 A JP10290689 A JP 10290689A JP 29068998 A JP29068998 A JP 29068998A JP 2000119060 A JP2000119060 A JP 2000119060A
Authority
JP
Japan
Prior art keywords
agar
alumina
kneaded
plasticity
alumina paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10290689A
Other languages
Japanese (ja)
Inventor
Akira Ono
晃 小野
Yasuo Shibazaki
靖雄 芝崎
Kiichi Oda
喜一 小田
Saburo Sano
三郎 佐野
Takumi Tomono
巧 伴野
Kenta Oguri
賢太 小栗
Hideji Kawai
秀治 川合
Yuji Nomura
祐二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
YKK Corp
Nikko KK
Original Assignee
Agency of Industrial Science and Technology
Nikko Co Ltd
YKK Corp
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nikko Co Ltd, YKK Corp, Nikko KK filed Critical Agency of Industrial Science and Technology
Priority to JP10290689A priority Critical patent/JP2000119060A/en
Publication of JP2000119060A publication Critical patent/JP2000119060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly plastic alumina paste useful as a ceramic stock by incorporating alumina particles with agar-agar. SOLUTION: This highly plastic alumina paste is obtained by melting agar powder under boiling followed by cooling to form agar gel which is then kneaded with alumina particles; alternatively, by adding alumina particles to an aqueous solution of agar powder which is melted under boiling in advance, followed by cooling the system to effect coating the alumina surface with agar-agar followed by dehydration; wherein it is preferable that the agar-agar to be used as a starting material is >=5 g/cm2 in jelly strength, and the agar content of the final alumina paste is 0.5-10 wt.%. This alumina paste obtained by mixing (kneading) process is capable of controlling its pore size depending on its gel size, therefore being advantageous for making porous forms; whereas another version of this alumina paste obtained by coating process is hard to produce pores because the agar-agar as binder uniformly and extremely thinly adheres to the alumina, therefore affording a dense sintered compact, dense/high- density molded form or molded form with controlled pore size. The above method for producing this alumina paste is effective in cost reduction and operability improvement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い可塑性を保有
するアルミナ練土及びその製造方法に関するもので、セ
ラミックス用成型材料として好適なアルミナ粒子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina kneaded clay having high plasticity and a method for producing the same, and more particularly to an alumina particle suitable as a molding material for ceramics.

【0002】[0002]

【従来の技術】アルミナはセラミックス原料として広く
活用されている。そのアルミナの製造方法はバイヤー法
などで製造されており、従来アルミナ原料として製造さ
れているのはアルミナ単相である。しかし、粘土と比較
してアルミナの可塑性は乏しいことが水田、芝崎、酒
井、片桐、藤本;粉体および粉末冶金、35巻、7号
(1988)、619頁などで指摘されている。
2. Description of the Related Art Alumina is widely used as a ceramic material. Alumina is produced by a Bayer method or the like, and the conventional alumina raw material is an alumina single phase. However, it is pointed out that the plasticity of alumina is lower than that of clay in rice fields, Shibazaki, Sakai, Katagiri, Fujimoto; Powder and Powder Metallurgy, Vol. 35, No. 7, (1988), p. 619.

【0003】そのため、アルミナセラミックスを、押出
し成型や射出成形などの可塑成形で作る場合は、成形助
剤として有機物を添加する必要がある。しかし、従来の
有機添加物では添加することにより粘着力の増大が起き
たり、分散媒として有機溶媒を用いるため有機溶媒の揮
発等により作業性が悪化する。また、ほとんどの有機バ
インダーが化学的に合成されており合成時にも環境に悪
影響を及ぼす。
[0003] Therefore, when producing alumina ceramics by plastic molding such as extrusion molding or injection molding, it is necessary to add an organic substance as a molding aid. However, in the case of the conventional organic additives, the addition increases the adhesive strength, and the use of an organic solvent as a dispersion medium deteriorates the workability due to volatilization of the organic solvent. In addition, most of the organic binders are chemically synthesized, and have an adverse effect on the environment during the synthesis.

【0004】水系のバインダーとしての有機物も在る
が、コストが高くなる。
[0004] Although there is an organic substance as an aqueous binder, the cost increases.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、セラ
ミックス原料として高可塑性に富む、アルミナ練土及び
その製造方法を提供することにある。特にアルミナの水
系練土の可塑性を向上させることにある。さらには安価
で入手が容易である寒天を水系での成型用バインダーと
して用いることによりコストの低減、作業性の向上が見
込まれる。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alumina kneaded clay having high plasticity as a ceramic raw material and a method for producing the same. In particular, it is to improve the plasticity of the aqueous clay of alumina. Furthermore, by using agar which is inexpensive and easily available as a binder for molding in an aqueous system, cost reduction and improvement in workability are expected.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、アルミナ粒子に寒天を添加し練土を作製するこ
とにより上記課題が解決されることを見出し本発明に至
った。すなわち、本発明は次の(1)〜(7)である。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by adding agar to alumina particles to prepare a kneaded material, and have reached the present invention. That is, the present invention includes the following (1) to (7).

【0007】(1)アルミナに寒天を添加してなること
を特徴とする高可塑性アルミナ練土。 (2)アルミナ表面を寒天で被覆してなる上記(1)記
載の高可塑性アルミナ練土。 (3)寒天の1.5%ゼリー強度が5g/cm2以上で
ある上記(1)又は(2)記載の高可塑性アルミナ練
土。 (4)アルミナに対する寒天の含有量が0.5〜10重
量%である上記(1)〜(3)のいずれかに記載の高可
塑性アルミナ練土。
(1) A highly plastic alumina kneaded clay characterized by adding agar to alumina. (2) The highly plastic alumina kneaded clay according to the above (1), wherein the alumina surface is coated with agar. (3) The highly plastic alumina kneaded material according to the above (1) or (2), wherein the agar has a 1.5% jelly strength of 5 g / cm 2 or more. (4) The highly plastic alumina kneaded clay according to any one of (1) to (3), wherein the content of agar to alumina is 0.5 to 10% by weight.

【0008】(5)寒天粉末を溶解させた後、冷却し、
膨潤させた寒天を作製し、これを粉砕した後アルミナ粒
子と混合し練土とすることを特徴とする高可塑性アルミ
ナ練土の製造方法。 (6)寒天粉末を溶解させ、この中にアルミナ粒子を加
えた後、冷却することによりアルミナ表面に寒天を被覆
することを特徴とする高可塑性アルミナ練土の製造方
法。 (7)アルミナに対する寒天の添加量が0.5〜10重
量%である前記(5)ないし(6)のいずれかに記載の
高可塑性アルミナ練土の製造方法。
(5) After dissolving the agar powder, it is cooled,
A method for producing highly plasticized alumina kneaded clay, comprising preparing a swollen agar, pulverizing the agar, and mixing with alumina particles to form a kneaded clay. (6) A method for producing highly plastic alumina kneaded material, comprising dissolving agar powder, adding alumina particles to the powder, and cooling the resulting solution to coat the agar on the alumina surface. (7) The method for producing a highly plastic kneaded alumina according to any one of the above (5) to (6), wherein the amount of agar added to the alumina is 0.5 to 10% by weight.

【0009】本発明のアルミナ練土はアルミナ粒子に寒
天を添加したものである。添加方法には以下の2通りが
ある。即ち、寒天粉末を煮溶かした後冷却し寒天ゲルを
作製した後ゲルとアルミナ粒子とを混合混練し練土を得
る方法、寒天粉末を煮溶かした水溶液の中にアルミナ粒
子を加えた後冷却しアルミナ粒子表面に寒天を被覆さ
せ、脱水後練土とする方法である。本発明においてアル
ミナ粒子は球状、板状、棒状などの形状は問わない。ま
た、アルミナ粒子の粒子径も微細なほど好ましいが特に
限定されない。
The alumina kneaded material of the present invention is obtained by adding agar to alumina particles. There are the following two addition methods. That is, a method of obtaining a kneaded material by mixing and kneading the gel and alumina particles after preparing an agar gel by cooling after boiling the agar powder, adding alumina particles to an aqueous solution obtained by boiling the agar powder, and then cooling. This is a method in which agar is coated on the surface of the alumina particles, and the deaerated soil is obtained after dehydration. In the present invention, the shape of the alumina particles such as a sphere, a plate and a bar is not limited. The finer the particle size of the alumina particles, the better, but not particularly limited.

【0010】寒天の種類も特に限定されない。寒天は原
料や作製方法によりゼリー強度等の性質が異なるが、ゼ
リー強度が5g/cm2以上であればバインダーとして
用いることができる。又、アルミナに対する寒天量は
0.5〜10重量%であることが好ましい。0.5重量
%未満であるとバインダーとしての効果が十分でなく期
待されるほどの可塑性を示さず、10重量%を超えると
練土が糊状或いはゲル状となってしまい不都合である。
The type of agar is not particularly limited. Agar has different properties, such as jelly strength, depending on the raw material and method of preparation, but can be used as a binder if the jelly strength is 5 g / cm 2 or more. Further, the amount of agar based on alumina is preferably 0.5 to 10% by weight. If the amount is less than 0.5% by weight, the effect as a binder is not sufficient and the plasticity as expected is not exhibited. If the amount exceeds 10% by weight, the clay becomes paste or gel, which is inconvenient.

【0011】このように、本発明の特長は高可塑性アル
ミナ練土は安価で入手の容易な寒天を用いることによ
り、可塑性に乏しいアルミナを良好な可塑性を示す練土
とできることにある。寒天の添加方法の違いにより成形
体の気孔率が異なる。アルミナ粒子と寒天ゲルの混合練
土はゲルサイズにより気孔径を制御でき、多孔体作成に
有利である。これらとは異なり、アルミナ表面を寒天で
被覆してなる高可塑性アルミナ練土では、バインダーが
均質に、しかもごく薄くアルミナ上に付着しているため
気孔ができにくく緻密な焼結体を得ることができる。
As described above, the feature of the present invention is that a highly plastic alumina kneaded clay can be used as an inexpensive and easily available agar to convert alumina having poor plasticity into a kneaded clay exhibiting good plasticity. The porosity of the molded article differs depending on the method of adding agar. The kneaded mixture of alumina particles and agar gel can control the pore size by the gel size, which is advantageous for forming a porous body. Unlike these, in highly plasticized alumina kneaded clay in which the alumina surface is coated with agar, the binder is homogeneous and very thinly adhered on the alumina, so that it is difficult to form pores and a dense sintered body can be obtained. it can.

【0012】[0012]

【発明の実施の形態】可塑性の評価は、万能試験機を用
いた圧縮試験により行った(試験片サイズ:φ33h4
0)。この評価は、練土の可塑性評価法として知られて
いるペッファーコーン試験と同じ傾向を示している。ま
た、圧縮という実際の成形法に近い操作で評価できるた
めこの方法を用いた。評価法の概略を図1、図2に示
す。圧縮試験から求められる変位−荷重曲線より変位−
圧縮曲線を求め、この初期立ち上がりの傾きを保形性の
指標、変位−荷重曲線の後半部の積分値を流動性の指標
として評価を行っている。保形性が高く、流動性が良い
ものが可塑性が良いということとなる。すなわち図3の
傾きが緩いほど可塑性が良いという評価である。
BEST MODE FOR CARRYING OUT THE INVENTION Evaluation of plasticity was carried out by a compression test using a universal testing machine (test piece size: φ33h4).
0). This evaluation shows the same tendency as the Peffer cone test which is known as a method for evaluating the plasticity of the clay. This method was used because it can be evaluated by an operation similar to the actual molding method of compression. The outline of the evaluation method is shown in FIGS. Displacement determined from compression test-Displacement from load curve-
A compression curve is determined, and the slope of the initial rise is evaluated as an index of shape retention, and the integral value of the latter half of the displacement-load curve is evaluated as an index of fluidity. Higher shape retention and better fluidity means better plasticity. That is, the evaluation is such that the gentler the slope in FIG. 3, the better the plasticity.

【0013】実施例1 アルミナ粒子として住友化学製ローソーダアルミナAE
S11C(比表面積6.6m2/g、中心粒径0.36
μmのα−アルミナ粒子)を用いた。寒天粉末として伊
那食品工業製T−1(ゼリー強度900g/cm2)を
用いた。寒天粉末3部を沸騰させた蒸留水30部中に加
え溶解させ、その後冷却することにより寒天ゲルを作製
した。このゲルを目開き1ミリのふるいを用いて裏ごし
し、その後アルミナ100部と混合、混練し練土を作製
した。可塑性の評価は上記圧縮試験にて行った。可塑性
評価結果を図4に示す。出発原料のローソーダアルミナ
に比較して可塑性が向上した。
Example 1 As alumina particles, low soda alumina AE manufactured by Sumitomo Chemical Co., Ltd.
S11C (specific surface area 6.6 m 2 / g, center particle diameter 0.36
μm α-alumina particles). T-1 (jelly strength 900 g / cm 2 ) manufactured by Ina Food Industry Co., Ltd. was used as the agar powder. 3 parts of agar powder were added to and dissolved in 30 parts of boiling distilled water, and then cooled to prepare an agar gel. This gel was sifted using a sieve having a mesh size of 1 mm, and then mixed and kneaded with 100 parts of alumina to prepare a kneaded material. Evaluation of plasticity was performed by the above-mentioned compression test. FIG. 4 shows the plasticity evaluation results. The plasticity was improved as compared with the raw material low soda alumina.

【0014】実施例2 アルミナ粒子として住友化学製ローソーダアルミナAE
S11Cを用いた。寒天粉末として伊那食品工業製ウル
トラ寒天AX−30(ゼリー強度10g/cm2)を用
いた。寒天粉末3部を沸騰させた蒸留水30部中に加え
溶解させ、その後冷却することにより寒天ゲルを作製し
た。このゲルを目開き1ミリのふるいを用いて裏ごし
し、その後アルミナ100部と混合、混練し練土を作製
した。可塑性の評価は上記圧縮試験にて行った。可塑性
評価結果を図4に示す。実施例1に及ばないが、出発原
料に比較して可塑性が向上している。
Example 2 As alumina particles, low soda alumina AE manufactured by Sumitomo Chemical Co., Ltd.
S11C was used. Ina Food Industry Ultra Agar AX-30 (jelly strength 10 g / cm 2 ) was used as the agar powder. 3 parts of agar powder were added to and dissolved in 30 parts of boiling distilled water, and then cooled to prepare an agar gel. This gel was sifted using a sieve having a mesh size of 1 mm, and then mixed and kneaded with 100 parts of alumina to prepare a kneaded material. Evaluation of plasticity was performed by the above-mentioned compression test. FIG. 4 shows the plasticity evaluation results. Although not comparable to Example 1, the plasticity is improved as compared with the starting material.

【0015】実施例3 アルミナ粒子として住友化学製ローソーダアルミナAE
S11Cを用いた。寒天粉末として伊那食品工業製T−
1(ゼリー強度900g/cm2)を用いた。寒天粉末
3部を沸騰させた蒸留水1000部中に加え溶解させ、
その中にアルミナ100部を加え混合した。この後撹拌
しながら放冷し遠心分離により固液分離を行い、このケ
ーキを適度に乾燥させアルミナ練土とした。可塑性の評
価は上記圧縮試験にて行った。可塑性評価結果を図4に
示す。可塑性は実施例1よりも向上している。
Example 3 Low Soda Alumina AE manufactured by Sumitomo Chemical Co., Ltd. as alumina particles
S11C was used. T- made by Ina Food Industry as agar powder
1 (jelly strength 900 g / cm 2 ). 3 parts of agar powder is added to and dissolved in 1000 parts of boiling distilled water,
100 parts of alumina was added and mixed therein. Thereafter, the mixture was allowed to cool while stirring, and solid-liquid separation was performed by centrifugal separation. The cake was appropriately dried to obtain alumina clay. Evaluation of plasticity was performed by the above-mentioned compression test. FIG. 4 shows the plasticity evaluation results. The plasticity is higher than in Example 1.

【0016】実施例4 アルミナ粒子として住友化学製ローソーダアルミナAE
S11Cを用いた。寒天粉末として伊那食品工業製ウル
トラ寒天AX−30(ゼリー強度10g/cm2)を用
いた。寒天粉末3部を沸騰させた蒸留水1000部中に
加え溶解させ、その中にアルミナ100部を加え混合し
た。この後、撹拌しながら放冷し遠心分離により固液分
離を行い、このケーキを適度に乾燥させアルミナ練土と
した。可塑性の評価は上記圧縮試験にて行った。可塑性
評価結果を図4に示す。可塑性は実施例2よりも向上し
ている。
Example 4 As alumina particles, low soda alumina AE manufactured by Sumitomo Chemical Co., Ltd.
S11C was used. Ina Food Industry Ultra Agar AX-30 (jelly strength 10 g / cm 2 ) was used as the agar powder. 3 parts of agar powder were added to and dissolved in 1000 parts of boiling distilled water, and 100 parts of alumina was added thereto and mixed. Thereafter, the mixture was allowed to cool while stirring, and solid-liquid separation was performed by centrifugation. This cake was appropriately dried to obtain alumina kneaded material. Evaluation of plasticity was performed by the above-mentioned compression test. FIG. 4 shows the plasticity evaluation results. The plasticity is higher than in Example 2.

【0017】実施例5 アルミナ粒子として住友化学製高純度アルミナAKP2
0(比表面積4.7m2/g、中心粒径0.53μmの
α−アルミナ粒子)を用いた。寒天粉末として伊那食品
工業製T−1(ゼリー強度900g/cm2)を用い
た。寒天粉末0.5、1、3、5、10部それぞれを沸
騰させた蒸留水1000部中に加え溶解させ、この中に
アルミナ100部を加え混合した。その後、撹拌しなが
ら放冷し遠心分離により固液分離を行い、このケーキを
適度に乾燥させアルミナ練土とした。可塑性の評価は上
記圧縮試験にて行った。可塑性評価結果を図5に示す。
可塑性は各分量とも向上した。又、寒天量が増えるほど
可塑性が良くなった。
Example 5 As alumina particles, high-purity alumina AKP2 manufactured by Sumitomo Chemical Co., Ltd.
0 (α-alumina particles having a specific surface area of 4.7 m 2 / g and a central particle diameter of 0.53 μm) were used. T-1 (jelly strength 900 g / cm 2 ) manufactured by Ina Food Industry Co., Ltd. was used as the agar powder. 0.5, 1, 3, 5, and 10 parts of the agar powder were added and dissolved in 1000 parts of boiling distilled water, and 100 parts of alumina was added and mixed therein. Thereafter, the mixture was allowed to cool while stirring, and solid-liquid separation was performed by centrifugation. This cake was appropriately dried to obtain alumina kneaded material. Evaluation of plasticity was performed by the above-mentioned compression test. FIG. 5 shows the plasticity evaluation results.
The plasticity improved with each dose. Also, the plasticity improved as the amount of agar increased.

【0018】実施例6 アルミナ粒子としてYKK製板状アルミナYFA006
10(比表面積7.6m2/g、中心粒径0.60μ
m、アスペクト比10のα−アルミナ粒子)を用いた。
寒天粉末として伊那食品工業製AX−100、ZR、M
7、T1(それぞれのゼリー強度100、420、73
0、900g/cm2)を用いた。寒天粉末3部それぞ
れを沸騰させた蒸留水1000部中に加え溶解させ、こ
の中にアルミナ100部を加え混合した。その後、撹拌
しながら放冷し遠心分離により固液分離を行い、このケ
ーキを適度に乾燥させアルミナ練土とした。可塑性の評
価は上記圧縮試験にて行った。可塑性評価結果を図6に
示す。可塑性はゼリー強度の増加に伴い向上した。
Example 6 Plate-shaped alumina YFA006 made of YKK was used as the alumina particles.
10 (specific surface area: 7.6 m 2 / g, center particle diameter: 0.60 μm
m, α-alumina particles having an aspect ratio of 10).
AX-100, ZR, M made by Ina Food Industry as agar powder
7, T1 (each jelly strength 100, 420, 73
0, 900 g / cm 2 ). 3 parts of the agar powder were added to and dissolved in 1000 parts of boiling distilled water, and 100 parts of alumina was added thereto and mixed. Thereafter, the mixture was allowed to cool while stirring, and solid-liquid separation was performed by centrifugation. This cake was appropriately dried to obtain alumina kneaded material. Evaluation of plasticity was performed by the above-mentioned compression test. FIG. 6 shows the plasticity evaluation results. Plasticity improved with increasing jelly strength.

【0019】[0019]

【発明の効果】本発明によれば高可塑性を有するアルミ
ナ練土が得られ、緻密で密度の高い成形体或いは気孔径
を制御された成形体を得ることができる。従って、構造
用部品、電子部品、多孔材料その他の分野に耐熱性、電
気絶縁性、機械的強度等の優れた材料として広く応用す
ることができる。又、バインダーとして安価で入手の容
易な寒天を用いており、水と練り合わせるだけで良好な
練土を得ることができるため、コストの低減、作業製の
改善に効果がある。
According to the present invention, an alumina kneaded material having high plasticity can be obtained, and a compact having a high density and a compact having a controlled pore diameter can be obtained. Therefore, it can be widely applied to structural components, electronic components, porous materials, and other fields as materials having excellent heat resistance, electrical insulation, mechanical strength, and the like. In addition, since agar which is inexpensive and easily available is used as a binder, and good kneaded soil can be obtained only by kneading with water, it is effective in reducing costs and improving workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】流動性の求め方を示すグラフである。FIG. 1 is a graph showing how to determine fluidity.

【図2】保形性の求め方を示すグラフである。FIG. 2 is a graph showing how to obtain shape retention.

【図3】可塑性評価図の見方の説明図である。FIG. 3 is an explanatory diagram of how to read a plasticity evaluation diagram.

【図4】実施例の可塑性評価結果を示すグラフである。FIG. 4 is a graph showing plasticity evaluation results of Examples.

【図5】実施例5における寒天添加量によるアルミナ練
土の可塑性評価結果を示すグラフである。
FIG. 5 is a graph showing the results of plasticity evaluation of alumina kneaded clay according to the amount of agar added in Example 5.

【図6】実施例6における寒天添加によるアルミナ練土
の可塑性評価結果を示すグラフである。
FIG. 6 is a graph showing the results of evaluating the plasticity of the alumina kneaded material by adding agar in Example 6.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 晃 愛知県名古屋市北区光音寺町1−66,エス テート弦四路306号室 (72)発明者 芝崎 靖雄 愛知県名古屋市熱田区大宝2−4 白鳥パ ークハイツ大宝団地9棟601 (72)発明者 小田 喜一 愛知県名古屋市千種区千代ケ丘5 コミュ ニタスS−715 (72)発明者 佐野 三郎 愛知県名古屋市千種区北千種3−2−3, 15−24 (72)発明者 伴野 巧 愛知県名古屋市北区八千代町2−109,八 千代寮103 (72)発明者 小栗 賢太 愛知県名古屋市東区砂田橋3−2,103− 1206 (72)発明者 川合 秀治 愛知県半田市瑞穂町2−3−22,イースト タウン206号室 (72)発明者 野村 祐二 愛知県名古屋市北区金城2−1−11,コー ポ若園E号 Fターム(参考) 4G030 AA36 BA12 BA18 BA20 BA21 GA07 GA14 4G076 AA26 AB02 AB11 BF02 DA18 DA30  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Ono 1-66, Koonji-cho, Kita-ku, Nagoya-shi, Aichi Prefecture, Estate String Fourth Road Room 306 (72) Inventor Yasuo Shibasaki 2-4 Daiho, Atsuta-ku, Nagoya-shi, Aichi Prefecture Shiratori Park Heights Daihodan 9 Building 601 (72) Inventor Kiichi Oda 5 Chiyogaoka, Chigusa-ku, Nagoya-shi, Aichi 5 Communitas S-715 (72) Inventor Saburo Sano 3-2-3, 15 −24 (72) Inventor Takumi Banno 2-109, Yachiyo Ryo 103, Yachiyo-cho, Kita-ku, Nagoya-shi, Aichi 103 (72) Inventor Kenta Oguri 3-2, 103-1206, Sunadabashi, Higashi-ku, Nagoya-shi, Aichi (72) Inventor Shuji Kawai 2-3-2-22 Mizuho-cho, Handa-shi, Aichi Prefecture, Room 206, East Town (72) Inventor Yuji Nomura 2-1-11 Kinjo, Kita-ku, Nagoya-shi, Aichi, Corp. No. F term (reference) 4G030 AA36 BA12 BA18 BA20 BA21 GA07 GA14 4G076 AA26 AB02 AB11 BF02 DA18 DA30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルミナに寒天を添加してなることを特
徴とする高可塑性アルミナ練土。
1. A highly plasticized alumina kneaded clay characterized by adding agar to alumina.
【請求項2】 アルミナ表面を寒天で被覆してなる請求
項1記載の高可塑性アルミナ練土。
2. The highly plasticized alumina kneaded clay according to claim 1, wherein the alumina surface is coated with agar.
【請求項3】 寒天の1.5%ゼリー強度が5g/cm
2以上である請求項1又は2記載の高可塑性アルミナ練
土。
3. The agar has a 1.5% jelly strength of 5 g / cm.
The highly plastic alumina kneaded clay according to claim 1 or 2, which is 2 or more.
【請求項4】 アルミナに対する寒天の含有量が0.5
〜10重量%である請求項1ないし3のいずれかに記載
の高可塑性アルミナ練土。
4. An agar content of 0.5 to alumina.
The highly plastic alumina clay according to any one of claims 1 to 3, which is 10 to 10% by weight.
【請求項5】 寒天粉末を溶解させた後、冷却し、膨潤
させた寒天を作製し、これを粉砕した後アルミナ粒子と
混合し練土とすることを特徴とする高可塑性アルミナ練
土の製造方法。
5. A highly plasticized alumina kneaded clay characterized by dissolving agar powder, cooling and swelling agar to prepare a swollen agar, pulverizing the agar, and mixing it with alumina particles to form a kneaded soil. Method.
【請求項6】 寒天粉末を溶解させ、この中にアルミナ
粒子を加えた後、冷却することによりアルミナ表面に寒
天を被覆することを特徴とする高可塑性アルミナ練土の
製造方法。
6. A method for producing a highly plasticized alumina kneaded material, comprising dissolving agar powder, adding alumina particles therein, and then cooling the agar on the alumina surface.
【請求項7】 アルミナに対する寒天の添加量が0.5
〜10重量%である請求項5ないし6のいずれかに記載
の高可塑性アルミナ練土の製造方法。
7. The amount of agar added to alumina is 0.5
The method for producing highly plasticized alumina kneaded material according to any one of claims 5 to 6, wherein the amount is from 10 to 10% by weight.
JP10290689A 1998-10-13 1998-10-13 Highly plastic alumina paste and its production Pending JP2000119060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10290689A JP2000119060A (en) 1998-10-13 1998-10-13 Highly plastic alumina paste and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10290689A JP2000119060A (en) 1998-10-13 1998-10-13 Highly plastic alumina paste and its production

Publications (1)

Publication Number Publication Date
JP2000119060A true JP2000119060A (en) 2000-04-25

Family

ID=17759239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10290689A Pending JP2000119060A (en) 1998-10-13 1998-10-13 Highly plastic alumina paste and its production

Country Status (1)

Country Link
JP (1) JP2000119060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022938A (en) * 2011-07-26 2013-02-04 Denso Corp Method of manufacturing ceramic honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022938A (en) * 2011-07-26 2013-02-04 Denso Corp Method of manufacturing ceramic honeycomb structure

Similar Documents

Publication Publication Date Title
CN112047753B (en) Porous ceramic and preparation method and application thereof
JP2007331978A (en) Composition for extrusion molding or injection molding and method for manufacturing molded product
CN104987120B (en) A kind of preparation method of molecular screen membrane supporter
JP2000119060A (en) Highly plastic alumina paste and its production
JPH06184349A (en) Interconnected porous body and its production
JP3490864B2 (en) Method for producing ceramic spherical granules
JP2001130969A (en) Granule for compacting ceramic, ceramic compacted body therefrom and sintered body
JPH04325604A (en) Production of porous sintered body
JP2002544014A (en) Boron carbide casting
JP2630441B2 (en) Method for producing silicon nitride sintered body
JPS6317496B2 (en)
JPH02160679A (en) Production of alumina-based porous material
JP2596080B2 (en) Ceramic raw material for dry molding and method for producing ceramic molded body using the same
JPH0656506A (en) Production of ceramic material and its molding using finely powdered fire-proofing oxide
TW200407276A (en) Composition of sanitary ware substrate, the manufacturing method thereof, and the manufacturing method of sanitary ware using the composition of sanitary ware substrate
JPH0466605A (en) Noble metal sintered body-made ornament and industrial art works and manufacture thereof
JPH061673A (en) Production of porous ceramic
JPH0834664A (en) Production of beta-alumina solid state electrolyte
JPH1192233A (en) Control of plasticity of clay paste
JPH05163082A (en) Production of porous sintered compact
JP2003192453A (en) Method for granulating ceramic powder and ceramic granule using the same
JPS6033251A (en) Manufacture of ceramic sheet
JPS63225571A (en) Method of preparing ceramic raw material for extrusion molding
JPH0558715A (en) Production of alumina base plate
JPH07133104A (en) Silica gel aggregate and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050623