JPH07107102B2 - Fiber reinforced resin molding - Google Patents

Fiber reinforced resin molding

Info

Publication number
JPH07107102B2
JPH07107102B2 JP27215887A JP27215887A JPH07107102B2 JP H07107102 B2 JPH07107102 B2 JP H07107102B2 JP 27215887 A JP27215887 A JP 27215887A JP 27215887 A JP27215887 A JP 27215887A JP H07107102 B2 JPH07107102 B2 JP H07107102B2
Authority
JP
Japan
Prior art keywords
fiber
pva
resin
frp
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27215887A
Other languages
Japanese (ja)
Other versions
JPH01113437A (en
Inventor
昭雄 溝辺
知男 佐伯
功 桜木
正一 西山
秀樹 保城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27215887A priority Critical patent/JPH07107102B2/en
Priority to DE19883854253 priority patent/DE3854253T2/en
Priority to ES88117568T priority patent/ES2077560T3/en
Priority to EP88117568A priority patent/EP0313068B1/en
Publication of JPH01113437A publication Critical patent/JPH01113437A/en
Publication of JPH07107102B2 publication Critical patent/JPH07107102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、偏平な断面を有し、かつ結晶の長さと幅の比
が大きいポリビニルアルコール系合成繊維(以下PVA系
繊維と略記する)を補強材とする繊維強化樹脂成形物
(以下FRPと略記する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention provides a polyvinyl alcohol-based synthetic fiber (hereinafter abbreviated as PVA-based fiber) having a flat cross section and a large crystal length-width ratio. The present invention relates to a fiber-reinforced resin molded product (hereinafter abbreviated as FRP) used as a reinforcing material.

〈従来の技術〉 従来よりFRPの補強材としてガラス繊維が最も一般的で
あり、幅広い分野で使用されている。しかし最近になつ
て需要分野の多様化及び高機能化が要求され、特に耐衝
撃性及び軽量性を満足する補強材として有機繊維が注目
されるようになつてきた。
<Prior Art> Conventionally, glass fiber is the most popular as a reinforcing material for FRP and is used in a wide range of fields. However, in recent years, diversification of demand fields and high functionality have been demanded, and in particular, organic fibers have been attracting attention as a reinforcing material satisfying impact resistance and light weight.

PVA系繊維は汎用有機繊維の中でも最も高強度・高弾性
であり、その性能を生かして多くの産業資材用途に用い
られているが、FRP用補強材としては充分な補強物性及
び補強に適した繊維形態を有するものが得られていなか
つた。
PVA fibers have the highest strength and elasticity among general-purpose organic fibers and are used in many industrial material applications by taking advantage of their performance, but they are suitable for reinforcing physical properties and reinforcement as reinforcing materials for FRP. No one having a fiber morphology has been obtained.

補強用繊維に要求される性能は、第1に高強度・高弾性
であるといわれている。繊維が充分な強度・弾性を有し
ていない場合には、得られる繊維補強成形物は当然のこ
とながら強靱性を有しないことになる。
The performance required of the reinforcing fiber is said to be firstly high strength and high elasticity. When the fibers do not have sufficient strength and elasticity, the obtained fiber-reinforced molded product naturally does not have toughness.

第2に要求される性能は、補強繊維がFRP用樹脂との接
着性に優れていることとされている。補強繊維とFRP用
樹脂との接着が不充分な場合、繊維補強成形体は、外部
からの応力に対し補強繊維の強度・弾性が充分に利用さ
れず補強効果が得られないままクラツクや破壊が生ずる
ことになる。繊維とFRP用樹脂との接着性を向上させる
には繊維の表面積を大きくすることが有効であり、具体
的には繊維断面の偏平化、異形化、細デニール化等の方
法がある。
Secondly, the performance required is that the reinforcing fiber has excellent adhesiveness with the FRP resin. When the adhesion between the reinforcing fiber and the FRP resin is insufficient, the fiber-reinforced molded product will not be cracked or broken while the strength and elasticity of the reinforcing fiber are not fully utilized against external stress and the reinforcing effect cannot be obtained. Will occur. It is effective to increase the surface area of the fiber in order to improve the adhesiveness between the fiber and the FRP resin, and specifically, there are methods such as flattening, deforming, and fine denier of the cross section of the fiber.

PVA系繊維の製造方法のうち最も代表的な方法は、PVA水
溶液を脱水能を有する塩類を含む常温の凝固溶中に湿式
紡糸し、延伸、熱処理し、必要に応じてアセタール化を
行う方法である。この方法で得られるPVA系繊維は、よ
く知られているようにスキン・コアの二層構造を有する
まゆ形断面で比較的大きな表面積を有しているものの、
全延伸倍率8倍程度にしか延伸できず強度は約7g/dにす
ぎず、強度の点から補強用繊維としては到底満足できる
ものではない。
The most typical method of producing PVA-based fibers is a method in which a PVA aqueous solution is wet-spun during coagulation / melting at room temperature containing salts having a dehydrating ability, stretched, heat-treated, and optionally acetalized. is there. Although the PVA-based fiber obtained by this method has a relatively large surface area with a cocoon-shaped cross section having a two-layer structure of a skin core as well known,
Since it can be drawn only at a total draw ratio of about 8 times and the strength is only about 7 g / d, it is unsatisfactory as a reinforcing fiber from the viewpoint of strength.

またより高強度のPVA系繊維を得る方法として、特公昭4
8−32623号、特公昭53−1368号、特開昭60−126312号及
び特開昭61−108712号等の公報で提案された方法があ
る。しかしながらこれらの方法で得られる繊維は、強度
・弾性が大幅に改善されているものの非常に均質である
ため断面が円形に近く、補強繊維としては表面積が小さ
いためにFRP用樹脂との接着力が低く、このような繊維
を用いても、得られるFRPは機械的物性の点で満足のい
くものではない。
Also, as a method for obtaining higher strength PVA-based fibers,
There are methods proposed in the publications such as 8-32623, JP-B-53-1368, JP-A-60-126312 and JP-A-61-108712. However, although the fibers obtained by these methods have greatly improved strength and elasticity, they are extremely homogeneous and have a cross section close to a circle. As the reinforcing fibers have a small surface area, they have an adhesive force with FRP resin. It is low, and even with such fibers, the FRP obtained is not satisfactory in terms of mechanical properties.

一方、表面積を意図的に大きくする手段として、異型ノ
ズルを用いて紡糸し断面を異形化する方法がある。しか
しこの方法ではPVA系繊維の場合紡糸ドラフトを大きく
する必要があり、従つて通常の円形ノズルを用いた場合
よりも大幅に延伸性が低下し強度が低くなるばかりか、
紡糸性が悪くなり生産性も低下するので好ましくない。
また別の方法として、繊維のデニールを小さくすること
によつて単位量当りの繊維の表面積を大きくする方法も
あるが、細デニール化の方向は紡糸性及び生産性の低下
をきたし、更に得られる繊維のマトリツクス中での分散
性を悪化させることになり好ましくない。
On the other hand, as a means for intentionally increasing the surface area, there is a method in which a modified nozzle is used for spinning and the cross section is modified. However, in this method, in the case of PVA type fibers, it is necessary to increase the spinning draft, and accordingly, not only the drawability is greatly reduced and the strength is lowered as compared with the case of using a normal circular nozzle,
It is not preferable because the spinnability is deteriorated and the productivity is reduced.
Another method is to increase the surface area of the fiber per unit amount by decreasing the denier of the fiber, but the direction of fine denier causes a decrease in spinnability and productivity and is further obtained. This is not preferable because the dispersibility of the fiber in the matrix is deteriorated.

以上のように従来知られているPVA系繊維で、高強度・
高弾性であり、かつFRP用樹脂との接着性を共に満足す
るものはなく、したがつて高強度・高弾性でかつ耐衝撃
性に優れたPVA系繊維強化樹脂成形物は得られていなか
つた。
As described above, the PVA-based fibers that have been known so far have high strength and
There is nothing that has both high elasticity and adhesiveness with FRP resin, so no PVA-based fiber reinforced resin molded product with high strength, high elasticity and excellent impact resistance has been obtained. .

〈発明が解決しようとする問題点〉 上述の点に鑑み本発明は、高強度及び高弾性であり、か
つ耐衝撃性に優れたFRPを提供することを目的とするも
のである。
<Problems to be Solved by the Invention> In view of the above points, the present invention has an object to provide an FRP that has high strength and high elasticity and is excellent in impact resistance.

〈問題点を解決するための手段〉 本発明者らは、優れた機械的物性を有するFRPを開発す
るために種々のPVA系繊維の補強効果について検討した
結果、補強効果は、補強繊維の強度・弾性率よりも、な
ぜかはわからないが、繊維の結晶の長さ(L)と幅
(W)の比(以後L/Wと略記する)の方がより密接に関
係し、充分な補強効果を得るにはL/Wが2.1以上で、かつ
断面充実度が65%以下であることが不可欠であり、好ま
しくはL/Wが2.3以上で断面充実度が60%以下であること
を見出し本発明に至つた。繊維の結晶の長さLはその繊
維の機械的物性及び補強効果とはあまり相関がなく、L/
Wとしてはじめて強い相関が現われるのである。
<Means for Solving Problems> As a result of examining the reinforcing effect of various PVA-based fibers in order to develop an FRP having excellent mechanical properties, the reinforcing effect was found to be the strength of the reinforcing fiber.・ The ratio of the length (L) to the width (W) of the fiber crystal (hereinafter abbreviated as L / W) is more closely related than the elastic modulus, but a sufficient reinforcing effect is obtained. It is essential that the L / W is 2.1 or more and the cross-section solidity is 65% or less, and preferably, the L / W is 2.3 or more and the cross-section solidity is 60% or less. Invented. The crystal length L of the fiber has little correlation with the mechanical properties and reinforcing effect of the fiber, and L /
The strong correlation appears for the first time as W.

本発明で用いられるPVA系樹脂の有効な製造方法は、硼
酸または硼酸塩を含有するPVA水溶液を紡糸原液とし、
脱水能を有する塩類を含む55〜95℃のアルカリ性凝固溶
に湿式紡糸し、得られた紡糸原糸を17倍以上の延伸倍率
で延伸を行う方法である。かかる方法は、従来20〜50℃
の凝固溶温度で実施されているのに対し、これを55〜95
℃と高温にすることを特徴とするものである。得られる
繊維は、断面が偏平であり、また延伸性が大幅に向上す
るため繊維のL/Wが大きくなつて繊維の機械的性質も著
しく向上する。その理由についてはよくわからないが、
従来の紡糸方法とは凝固機構が全く異なるものと考えら
れる。
An effective method for producing a PVA-based resin used in the present invention is a spinning stock solution of a PVA aqueous solution containing boric acid or a borate salt,
This is a method of wet spinning into an alkaline coagulation solution at 55 to 95 ° C. containing a salt having a dehydrating ability, and stretching the resulting spun raw yarn at a draw ratio of 17 times or more. Such a method is conventionally 20 ~ 50 ℃
This is performed at a solidification melting temperature of
It is characterized in that the temperature is raised to ℃. The obtained fiber has a flat cross section, and since the drawability is greatly improved, the L / W of the fiber is increased and the mechanical properties of the fiber are also significantly improved. I'm not sure why, but
It is considered that the solidification mechanism is completely different from that of the conventional spinning method.

以下本発明で用いられるPVA系繊維の製造方法の1例を
詳細に説明する。
Hereinafter, one example of the method for producing the PVA fiber used in the present invention will be described in detail.

用いるPVAの重合度は1500以上、好ましくは2000以上、
更に好ましくは3000以上である。
The degree of polymerization of PVA used is 1500 or more, preferably 2000 or more,
More preferably, it is 3000 or more.

紡糸原液は、該PVAの5〜30重量%の濃度の水溶液で、
硼酸または硼酸塩を該PVAに対し、0.5〜5重量%含有す
るものでPVAの濃度は好ましくは6〜25重量%、更に好
ましくは7〜18重量%であつて、PVAの重合度に応じて
適宜調節するのが好ましい。
The spinning solution is an aqueous solution having a concentration of 5 to 30% by weight of the PVA,
The content of boric acid or borate is 0.5 to 5% by weight based on the PVA, and the concentration of PVA is preferably 6 to 25% by weight, more preferably 7 to 18% by weight, depending on the degree of polymerization of PVA. It is preferable to adjust it appropriately.

紡糸原液温度は85〜125℃、好ましくは95〜120℃であ
り、低すぎると延伸性を阻害し、高すぎると原液の沸騰
をきたす。また紡糸調子を安定化させるため、酢酸など
の有機酸または硝酸等の無機酸を紡糸原液に適当量添加
することもできる。
The spinning dope temperature is 85 to 125 ° C., preferably 95 to 120 ° C. If it is too low, the drawability is hindered, and if it is too high, the stock solution boils. In order to stabilize the spinning condition, an appropriate amount of organic acid such as acetic acid or inorganic acid such as nitric acid may be added to the stock solution for spinning.

凝固溶の温度は55〜95℃、好ましくは60〜80℃である。
55℃以下では繊維の断面があまり偏平とならず、また延
伸性が低いためL/Wが大きくならない。一方95℃以上で
は、凝固浴の沸騰及び単繊維間で膠着が生じるため好ま
しくない。
The temperature for solidification and dissolution is 55 to 95 ° C, preferably 60 to 80 ° C.
When the temperature is 55 ° C or lower, the cross section of the fiber is not so flat, and the drawability is low, so that the L / W does not increase. On the other hand, if the temperature is 95 ° C or higher, it is not preferable because boiling of the coagulating bath and sticking between the single fibers occur.

凝固浴のアルカリ成分としては水酸化ナトリウム、水酸
化カリウム等の苛性アルカリが用いられ、その濃度は2
〜200g/l、好ましくは5〜50g/lである。また、凝固浴
の塩類成分としては硫酸ナトリウム、炭酸ナトリウム等
の脱水能を有する塩が用いられ、濃度は100g/l〜飽和濃
度であり、飽和に近い方が好ましい。
A caustic alkali such as sodium hydroxide or potassium hydroxide is used as the alkali component of the coagulation bath, and the concentration thereof is 2
~ 200 g / l, preferably 5-50 g / l. Further, as the salt component of the coagulation bath, a salt having a dehydrating ability such as sodium sulfate and sodium carbonate is used, and the concentration is 100 g / l to a saturated concentration, and it is preferable that the concentration is close to saturation.

紡糸ノズルは通常の円型ノズルあるいはそれに近い形状
のノズルが用いられる 紡糸後の繊維はアルカリの中和、湿熱延伸、水洗、乾
燥、延伸、熱処理を常法に従つて実施すればよいが少な
くとも17倍以上、好ましくは20倍以上の延伸を行なう必
要がある。延伸倍率を大きくする程L/Wが大きくなり、1
7倍未満ではL/Wが2.1に達しない。
As the spinning nozzle, an ordinary circular nozzle or a nozzle having a shape close to it is used. For the fiber after spinning, alkali neutralization, wet heat drawing, washing with water, drying, drawing and heat treatment may be carried out in accordance with a usual method, but at least 17 It is necessary to perform stretching at least twice, preferably at least 20 times. The larger the draw ratio, the larger the L / W.
If it is less than 7 times, the L / W will not reach 2.1.

PVA系繊維の太さに関しては、通常のFRPに用いられてい
る程度、たとえば0.1〜100デニール位のものが採用され
る。
Regarding the thickness of the PVA-based fiber, a fiber having a thickness used in ordinary FRP, for example, 0.1 to 100 denier is used.

本発明において用いられる樹脂は、特に限定されるもの
ではなく、不飽和ポリエステル系樹脂、フエノール系樹
脂、エポキシ系樹脂、メラミン系樹脂等の熱硬化性樹脂
やポリエステル樹脂、ポリアミド樹脂、ポリエチレン樹
脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂等の熱可
塑性樹脂のいずれを用いてもかまわない。
The resin used in the present invention is not particularly limited, and is a thermosetting resin such as unsaturated polyester resin, phenol resin, epoxy resin, melamine resin, polyester resin, polyamide resin, polyethylene resin, polypropylene. Either resin or thermoplastic resin such as polyvinyl chloride resin may be used.

本発明においては、かかるPVA系繊維を短繊維あるいは
チヨツプドストランドで使用してもかまわないし、用途
によつてロービング、織物、不織布状態で使用しても良
い。
In the present invention, such a PVA fiber may be used as a short fiber or a chopped strand, or may be used in a roving, woven or non-woven state depending on the application.

本発明の樹脂成形物中に占めるPVA系繊維の割合は1〜5
0重量%が好ましい。また本発明の樹脂成形物中には、P
VA系繊維および樹脂の他に、他の繊維、充填剤、硬化
剤、増粘剤、着色剤等が添加されていてもよい。
The ratio of the PVA fiber in the resin molded product of the present invention is 1 to 5
0% by weight is preferred. In the resin molded product of the present invention, P
In addition to the VA fiber and the resin, other fibers, fillers, curing agents, thickeners, coloring agents and the like may be added.

成形物の製造方法としては、ニーダーで該PVA系繊維と
熱硬化性樹脂を混合し、このバルクモウルデイングコン
パウンドを圧縮成形あるいは射出成形する方法や熱硬化
性樹脂と該PVA系繊維のチヨツプドストランドを合わせ
ポリエチレンフイルム等で両面をカバーし、シートモウ
ルデイングコンパウンドとしたものを成形する方法、あ
いるは常法のハンドレイアツプ法によつて成形を行なう
方法等がとられる。いずれにしてもかかるPVA系繊維は
汎用のガラス繊維と同様に通常のFRP製造方法によつて
成形体とすることが可能である。
As a method for producing a molded product, a method of mixing the PVA-based fiber and the thermosetting resin with a kneader and subjecting the bulk molding compound to compression molding or injection molding, or a method of molding the thermosetting resin and the PVA-based fiber A method for forming a sheet molding compound by covering the opposite sides with polyethylene film or the like and forming a sheet molding compound, or a method for forming by a conventional handlay-up method, and the like are used. In any case, the PVA-based fiber can be formed into a molded body by the usual FRP manufacturing method, like the general-purpose glass fiber.

〈発明の効果〉 本発明によつて得られるFRPは、次の様な特長を有す
る。
<Effects of the Invention> The FRP obtained according to the present invention has the following features.

1)従来のPVA系繊維に比べて本発明で用いる繊維はL/W
が大きく、優れた機械的性能を有し、かつ断面充実度が
65%以下というように断面が偏平で、表面積が大きいた
め、得られるFRPは、高強度・高弾性率で耐衝撃性が高
い。
1) Compared to conventional PVA fiber, the fiber used in the present invention is L / W
Is large, has excellent mechanical performance, and has a
Since the cross section is flat such as 65% or less and the surface area is large, the obtained FRP has high strength and high elastic modulus and high impact resistance.

2)汎用のガラス繊維と比較してもFRPの機械的物性が
はるかに優れている上に、表面平滑性が向上し、軽量化
が計れる。
2) The mechanical properties of FRP are far superior to those of general-purpose glass fiber, and the surface smoothness is improved, and the weight can be reduced.

以上の優れた性能を生かして、本発明の繊維強化樹脂組
成物は建築資材、住宅機材、工業部品、輸送機器や自動
車、舟艇等の広範な用途に展開が可能である。
By utilizing the above excellent performance, the fiber-reinforced resin composition of the present invention can be applied to a wide range of applications such as building materials, housing equipment, industrial parts, transportation equipment, automobiles, boats and the like.

以下実施例によつて更に具体的に説明する。なお本発明
で規定する断面充実度(断面の偏平さの度合であって、
数値の小さい方が偏平である)、結晶の長さと幅の比
(L/W)及び機械的性質は以下の方法で測定されるもの
である。
Hereinafter, the present invention will be described more specifically with reference to Examples. Note that the cross-sectional solidity defined in the present invention (the degree of flatness of the cross-section,
The smaller the number is, the flatter it is), the length-width ratio (L / W) and the mechanical properties of the crystal are measured by the following methods.

○断面充実度 繊維の断面写真を約100mm2に拡大描写しその断面積Fを
求める。
○ Cross-section perfection A cross-sectional photograph of the fiber is enlarged to about 100 mm 2 and the cross-sectional area F is obtained.

次に断面中最も広い幅Bを求め次式により算出した。Next, the widest width B in the cross section was obtained and calculated by the following formula.

尚1本のマルチフイラメントヤーンから任意に取り出し
た20本の単繊維についてこれを求め、その平均値を以て
該マルチフイラメントヤーンを構成する繊維の断面充実
度と規定する。
In addition, this value is obtained for 20 single fibers arbitrarily taken out from one multifilament yarn, and the average value thereof is defined as the cross-sectional solidity of the fibers constituting the multifilament yarn.

○結晶の長さと幅の比 公知の広角X線回折法により次の条件で測定した。○ Ratio of crystal length and width It was measured under the following conditions by a known wide-angle X-ray diffraction method.

広角X線 (1)理学電機(株)製回転対陰極形X線回折装置 (Type RAD−rA)で40kV、100mA CuKα(グラフアイトモノクロメーター) シンチレーションカウンター使用 (2)ゴニオメーター スリツト系:DS1/2°,SS1/2°,RS0.15mm 走査速度:2θ=1/2°/分 (3)試料(125mgの繊維を長さ2.5cm、巾1.5cmに平行
に並べたもの)を繊維試料台に取り付け、透過法にて面
指数(020),(100)の回折曲線を測定し、各曲線の半
価幅B(hkl)を得た。
Wide-angle X-ray (1) Rigaku Denki Co., Ltd. rotating anticathode type X-ray diffractometer (Type RAD-rA) with 40kV, 100mA CuKα (Graphite Monochromator) scintillation counter (2) Goniometer slit system: DS1 / 2 °, SS1 / 2 °, RS0.15mm Scanning speed: 2θ = 1/2 ° / min (3) Sample (125 mg of fibers arranged in parallel with 2.5 cm in length and 1.5 cm in width) on the fiber sample stand Then, the diffraction curves of surface indices (020) and (100) were measured by the transmission method, and the half width B (hkl) of each curve was obtained.

結晶サイズの比(L/w) 上記透過法により得られた面指数(020),(100)のピ
ークの半価幅B(hkl)の値からScherrerの式を用いて
各々の結晶サイズを算出した。
Ratio of crystal size (L / w) Calculate each crystal size from Scherrer's formula from the value of half-value width B (hkl) of peaks of plane index (020) and (100) obtained by the above transmission method. did.

D(hkl)=Kλ/Bo(hkl)COSθ(hkl) 但しK=0.9 λ=1.5418(Å) Bo:Jonesの方法によるスリツトの補正後の回折曲線の広
がり(radian) θ(hkl):ブラツグ角(deg.) L/W=D(020)/D(100)として求めた。
D (hkl) = Kλ / Bo (hkl) COSθ (hkl) where K = 0.9 λ = 1.5418 (Å) The spread of the diffraction curve after correction of the slit by the method of Bo: Jones (radian) θ (hkl): Bragg angle (Deg.) L / W = D (020) / D (100).

○乾破断強伸度、初期弾性率 (1)試料……マルチフイラメントヤーン (2)乾破断強伸度、初期弾性率……温度20℃、相対湿
度65%の雰囲気下でJIS−1017に準拠し、試長20cm引張
り速度10cm/分でインストロン試験機にて測定、初期弾
性率はその伸長〜荷重曲線より求めた。
○ Dry rupture strength / elongation, initial elastic modulus (1) Sample …… Multifilament yarn (2) Dry rupture strength / elongation, initial elastic modulus …… Complies with JIS-1017 in an atmosphere of temperature 20 ℃ and relative humidity 65% Then, it was measured with an Instron tester at a test length of 20 cm and a pulling speed of 10 cm / min, and the initial elastic modulus was obtained from its elongation-load curve.

(3)測定数……10回の測定を行い、その平均値を求め
た。
(3) Number of measurements: 10 measurements were performed and the average value was calculated.

実施例1〜3、比較例1,3 重合度3500の完全ケン化PVAを水に9重量%の濃度に溶
解し、これに硼酸をPVAに対して3.5重量%加え紡糸原液
を調整した。次にこの紡糸原液を105℃に加熱し、水酸
化ナトリウム15g/lおよび硫酸ナトリウム350g/lを含む6
0℃(実施例1)、70℃(実施例2)、90℃(実施例
3)、30℃(比較例1)の各温度の水溶液からなる凝固
浴に1000ホールの円形ノズルを有する口金を通じて紡糸
し、6m/分の速度で離浴させた。引続き常法に従つてロ
ーラー延伸、中和、湿熱延伸、水洗及び乾燥を行ない、
230℃で乾燥延伸をして単繊維繊度2drの補強繊維を製造
した。全延伸倍率は22.5(実施例1)、26.8(実施例
2)、25.4(実施例3)、14.6(比較例1)であつた。
Examples 1 to 3, Comparative Examples 1 and 3 Fully saponified PVA having a degree of polymerization of 3500 was dissolved in water to a concentration of 9% by weight, and boric acid was added to the PVA at 3.5% by weight to prepare a spinning dope. The spinning dope is then heated to 105 ° C and contains 6 g of sodium hydroxide and 350 g / l of sodium sulphate.
Through a die having a 1000-hole circular nozzle in a coagulating bath made of an aqueous solution at each temperature of 0 ° C. (Example 1), 70 ° C. (Example 2), 90 ° C. (Example 3) and 30 ° C. (Comparative Example 1). It was spun and allowed to leave the bath at a speed of 6 m / min. Subsequently, roller stretching, neutralization, wet heat stretching, washing with water and drying are carried out according to a conventional method.
Dry-stretching was performed at 230 ° C. to produce a reinforcing fiber having a single fiber fineness of 2 dr. The total draw ratio was 22.5 (Example 1), 26.8 (Example 2), 25.4 (Example 3) and 14.6 (Comparative Example 1).

次に不飽和ポリエステル樹脂(武田薬品製;ポリマール
6709)150部、MgO(協和化学製;キヨーワマグ40F)2
部、離型剤(日本油脂製;ジンクステアレート)8部、
硬化剤(日本石油製;パーブチルZ)0.5部およびCaCO3
(日東粉化工業製;Sライト♯1200)275部をニーダーに
入れ15分間均一混合した後に、上記PVA繊維あるいは市
販ガラス繊維(比較例3)の3mm切断品を100部加えてさ
らに5分間定速撹拌し、BMC(バルクモウルデイングコ
ンパウンド)を得た。得られたBMCを鋳型に入れて160
℃、10分間、100kg/cm2圧縮成形して厚み5mmのFRPを調
整した。以上の結果を第1表に示す。
Next, unsaturated polyester resin (manufactured by Takeda Yakuhin; Polymer
6709) 150 parts, MgO (Kyowa Chemical Co., Ltd .; Kyowamag 40F) 2
Parts, release agent (manufactured by NOF CORPORATION; zinc stearate) 8 parts,
Hardener (Nippon Petroleum; Perbutyl Z) 0.5 part and CaCO 3
(Nitto Koka Kogyo; S Light # 1200) 275 parts were put in a kneader and mixed uniformly for 15 minutes. Then, 100 parts of the PVA fiber or commercially available glass fiber (comparative example 3) cut into 3 mm was added and further fixed for 5 minutes. After rapid stirring, BMC (bulk molding compound) was obtained. Put the obtained BMC in a mold and 160
FRP having a thickness of 5 mm was prepared by compression molding at 100 kg / cm 2 for 10 minutes at ℃. The above results are shown in Table 1.

比較例2 重合度3500の完全ケン化PVAを10重量%の濃度でジメチ
ルスルホキシドに溶解して紡糸原液とし、これを50ホー
ルのノズルから10℃のメタノール凝固浴に乾・湿式紡糸
した。得られた紡糸原糸を脱溶媒しつつ、6倍の湿延伸
を行ない乾燥させた。次いで240℃で乾熱延伸を実施
し、全延伸倍率を24倍とした。得られた繊維の断面充実
度は92%と非常に高くほぼ円形であつた。またL/Wは2.6
と大きく、強度21.0g/d、弾性率530g/dであつた。この
繊維を使用し、前記実施例と同様にしてFRPを作製し
た。この結果を第1表に示す。
Comparative Example 2 A fully saponified PVA having a degree of polymerization of 3500 was dissolved in dimethylsulfoxide at a concentration of 10% by weight to prepare a spinning stock solution, which was dry-wet spun through a 50-hole nozzle into a methanol coagulation bath at 10 ° C. The obtained spun raw yarn was subjected to 6 times wet drawing while being desolvated and dried. Next, dry heat drawing was carried out at 240 ° C., and the total draw ratio was 24 times. The cross-sectional solidity of the obtained fiber was extremely high at 92% and was almost circular. L / W is 2.6
The strength was 21.0 g / d and the elastic modulus was 530 g / d. Using this fiber, an FRP was prepared in the same manner as in the above-mentioned example. The results are shown in Table 1.

第1表よりL/Wが2.1以上であり、かつ断面充実度が65%
以下であるPVA繊維を用いたFRPは、曲げ強度及び耐衝撃
性能が優れていることが明らかである。
From Table 1, L / W is 2.1 or more, and the cross-sectional solidity is 65%.
It is clear that the following FRP using PVA fiber is excellent in bending strength and impact resistance.

曲げ強度性能評価方法;JIS K 6911に準ずる。 Bending strength performance evaluation method: According to JIS K 6911.

落球衝撃試験評価方法;JIS K 7211に準ずる。Falling ball impact test evaluation method; conforms to JIS K 7211.

実施例4,5 比較例4.5 第2表に示す断面充実度並びにL/Wの単繊維繊度2drのPV
A繊維にスチレン可溶性酢酸ビニル(大日本インキ製)
を1%/繊維付着させ、1インチに切断したものからチ
ヨツプドストランドマツトを作製し、不飽和ポリエステ
ル樹脂100部、MgO2部、離型剤8部、硬化剤(パーブチ
ルZ)3部およびCaCO3300部を均一混合したものに含浸
させてシートモウルデイングコンパウンド(SMC)を製
造した。このSMCを鋳型に入れて160℃、10分間、100kg/
cm2で圧縮成形して厚み5mmのFRPを得た。第2表からも
明らかなように本発明のPVA系繊維で補強されたSMCから
製造したFRPは、曲げ強度及び耐衝撃性能が優れてい
る。またさらに断面充実度及びL/Wの異なるPVA繊維を用
いても第1表と同様な傾向が見られた。
Examples 4 and 5 Comparative Example 4.5 PV with cross-sectional solidity and L / W monofilament fineness 2dr shown in Table 2
Styrene-soluble vinyl acetate on A fiber (Dainippon Ink)
1% / fiber attached and cut into 1 inch to make a stranded strand mat. 100 parts of unsaturated polyester resin, 2 parts of MgO, 8 parts of release agent, 3 parts of curing agent (perbutyl Z) and A sheet molding compound (SMC) was manufactured by impregnating 300 parts of CaCO 3 into a homogeneous mixture. Put this SMC in a mold, 160 ℃, 10 minutes, 100kg /
A FRP having a thickness of 5 mm was obtained by compression molding at cm 2 . As is clear from Table 2, the FRP manufactured from the SMC reinforced with the PVA fiber of the present invention has excellent bending strength and impact resistance. Further, the same tendency as in Table 1 was observed even when PVA fibers having different cross-section perfection and L / W were used.

フロントページの続き (72)発明者 西山 正一 岡山県岡山市海岸通1丁目2番1号 株式 会社クラレ内 (72)発明者 保城 秀樹 岡山県岡山市海岸通1丁目2番1号 株式 会社クラレ内 (56)参考文献 特開 昭49−62550(JP,A) 実開 昭61−202443(JP,U)Front page continued (72) Inventor Shoichi Nishiyama 1-2-1 Kaigan-dori, Okayama-shi, Okayama Kuraray Co., Ltd. (72) Hideki Hojo 1-2-1 Kaigan-dori, Okayama-shi, Okayama Stock Company Within Kuraray (56) Reference JP-A-49-62550 (JP, A) Actually-opened 61-202443 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】断面充実度が65%以下であり、かつ結晶の
長さと幅の比が2.1以上であるポリビニルアルコール系
合成繊維を補強材とする繊維強化樹脂成形物。
1. A fiber-reinforced resin molded article comprising a polyvinyl alcohol-based synthetic fiber as a reinforcing material, which has a cross-sectional solidity of 65% or less and a crystal length / width ratio of 2.1 or more.
JP27215887A 1987-10-22 1987-10-27 Fiber reinforced resin molding Expired - Lifetime JPH07107102B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27215887A JPH07107102B2 (en) 1987-10-27 1987-10-27 Fiber reinforced resin molding
DE19883854253 DE3854253T2 (en) 1987-10-22 1988-10-21 Polyvinyl alcohol fibers with thin cross-section and application for reinforced articles.
ES88117568T ES2077560T3 (en) 1987-10-22 1988-10-21 FIBERS OF POLYVINYL ALCOHOL OF FINE CROSS SECTION, AND USE FOR REINFORCED ITEMS.
EP88117568A EP0313068B1 (en) 1987-10-22 1988-10-21 Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27215887A JPH07107102B2 (en) 1987-10-27 1987-10-27 Fiber reinforced resin molding

Publications (2)

Publication Number Publication Date
JPH01113437A JPH01113437A (en) 1989-05-02
JPH07107102B2 true JPH07107102B2 (en) 1995-11-15

Family

ID=17509897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27215887A Expired - Lifetime JPH07107102B2 (en) 1987-10-22 1987-10-27 Fiber reinforced resin molding

Country Status (1)

Country Link
JP (1) JPH07107102B2 (en)

Also Published As

Publication number Publication date
JPH01113437A (en) 1989-05-02

Similar Documents

Publication Publication Date Title
DE2847782C2 (en) Composite polymer material
EP0146084B2 (en) Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
KR101335140B1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
EP2130954B1 (en) Polypropylene fiber, method of producing the same and utilization of the same
JP4974675B2 (en) Production method of chopped strand
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
WO1986007393A1 (en) Tire cord made of polyvinyl alcohol
US5512368A (en) Fibers reinforced with inorganic whiskers
JP4278969B2 (en) Carbon fiber bundle, chopped carbon fiber bundle and carbon fiber reinforced resin composition for fiber reinforced resin exhibiting high conductivity
JPH07107102B2 (en) Fiber reinforced resin molding
JP2017057538A (en) Composite fiber and manufacturing method therefor, composite material and manufacturing method therefor
JP2653682B2 (en) Polyvinyl alcohol-based synthetic fiber and method for producing the same
JP2565517B2 (en) Fiber reinforced hydraulic molding
JP2867087B2 (en) Polypropylene fiber and fiber reinforced cement molding
JPS6241311A (en) Improved polypropylene monofilament and production thereof
EP0313068A2 (en) Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
JP3266673B2 (en) Polyvinyl alcohol-based synthetic fiber
JPS6254754A (en) Phenolic resin molding material for power transmitting material
JP2656339B2 (en) High strength polyvinyl alcohol fiber
JP3013426B2 (en) Carbon fiber reinforced thermoplastic resin composition
JP3316300B2 (en) Polyvinyl alcohol fiber excellent in durability and method for producing the same
RU2457290C2 (en) Polypropylene fibres, production methods thereof and use thereof
JPH07107103B2 (en) Fiber reinforced rubber molding
JPH0364463B2 (en)
Broutman Properties of phenolic fiber‐reinforced polymers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term