JPH07107103B2 - Fiber reinforced rubber molding - Google Patents
Fiber reinforced rubber moldingInfo
- Publication number
- JPH07107103B2 JPH07107103B2 JP33384587A JP33384587A JPH07107103B2 JP H07107103 B2 JPH07107103 B2 JP H07107103B2 JP 33384587 A JP33384587 A JP 33384587A JP 33384587 A JP33384587 A JP 33384587A JP H07107103 B2 JPH07107103 B2 JP H07107103B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- fiber
- pva
- strength
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は偏平な断面を有し、かつ結晶の幅に対する長さ
の比が大きいポリビニルアルコール系合成繊維(以下PV
A系繊維と略記する)で補強されたゴム成形物に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention has a polyvinyl alcohol-based synthetic fiber (hereinafter referred to as PV) having a flat cross section and a large ratio of length to width of crystal.
The present invention relates to a rubber molded product reinforced with A type fiber).
〈従来の技術〉 タイヤ・ゴムターポリン・ゴムホース等、一般にゴム製
品は通常、強度向上、形態安定性、耐圧性向上等をはか
る為に繊維で補強されている。<Prior Art> Generally, rubber products such as tires, rubber tarpaulins, and rubber hoses are generally reinforced with fibers in order to improve strength, form stability, and pressure resistance.
最近の軽薄短小化傾向および高機能化傾向は着実に進ん
でおり、ゴム成形物に用いられる補強繊維も従来の有機
繊維よりも高強力・高弾性のものが注目を集める様にな
つてきた。高強力・高弾性の繊維を使うことにより、使
用する繊維量を減らすことができ、さらにゴム使用量も
減らすことができ軽くて取扱い性の優れた、ゴム成形物
が得られるという特徴がある。Recently, the trend toward lighter, thinner, shorter, smaller, and higher-performance products has been steadily progressing, and the reinforcing fibers used in rubber moldings have become stronger and more elastic than conventional organic fibers, and have attracted attention. By using high-strength and high-elasticity fibers, the amount of fibers used can be reduced, and the amount of rubber used can also be reduced, resulting in a rubber molded product that is light and easy to handle.
近年、高強力・高弾性繊維としてアラミド繊維がゴム成
形物に使用されるケースが散見されるが、ゴムとの接着
性、耐久性等がいまだ十分でなく、さらに高価格のため
にあまり使用されていないのが現状である。In recent years, it has been found that aramid fiber is used as a high-strength / high-elasticity fiber in rubber moldings, but its adhesiveness with rubber, durability, etc. are not yet sufficient, and it is used so much because of its high price. The current situation is not.
また、汎用繊維の中でPVA系繊維は最も高強度・高弾性
でありゴムとの接着性に優れることから、ゴム資材用の
補強に強く用いられているが、より一層の高強度化・高
弾性化・高耐久性等が求められており、この要求に対し
て現行PVA系繊維では十分に応えることが難しくなつて
いる。特にゴム成形物において高耐久性を得るには繊維
とゴムとの接着力が重要であり、十分に接着して一体化
した動きをしないと、繊維とゴム間あるいは繊維同志の
摩擦が起きて発熱する為、繊維寿命の低下をきたし耐久
性が悪くなる。In addition, PVA-based fibers have the highest strength and elasticity among general-purpose fibers and are excellent in adhesiveness with rubber, so they are strongly used for reinforcement for rubber materials. There is a demand for elasticity and high durability, and it is becoming difficult for the current PVA-based fibers to sufficiently meet this demand. Especially in rubber moldings, the adhesive strength between fibers and rubber is important to obtain high durability. If they are not sufficiently adhered and integrated, friction between fibers and rubber or between fibers will occur and heat will be generated. Therefore, the fiber life is shortened and the durability is deteriorated.
上記問題に対し、本発明者らは鋭意検討した結果、特定
の条件を満足するPVA系繊維を用いることにより、従来
より一層高強度・高弾性・高耐久性に優れかつ低価格の
点をも満足するゴム成形物が得られることを見い出し
た。Against the above problems, as a result of intensive investigations by the present inventors, by using a PVA-based fiber satisfying specific conditions, it is possible to obtain higher strength, higher elasticity, higher durability, and lower cost than ever before. It has been found that a satisfactory rubber molding can be obtained.
〈発明が解決しようとする問題点〉 本発明の目的は、ゴム補強性に優れた特定のPVA系繊維
を補強材とする高性能ゴム成形物を提供することにあ
る。<Problems to be Solved by the Invention> An object of the present invention is to provide a high-performance rubber molded product having a specific PVA-based fiber excellent in rubber-reinforcing property as a reinforcing material.
〈問題点を解決するための手段〉 本発明者らは、優れた性能を有するゴム成形物を開発す
る為に、種々のPVA系繊維の補強効果について検討した
結果、その効果は補強繊維の高強度・高弾性もさること
ながら、なぜかわからないが繊維の結晶の長さ(L)と
幅(W)の比(以後L/Wと略記する)の方がより密接に
関係し、高耐久性を得るには、L/Wが2.1以上であり、か
つ以下に説明する断面充実度が65%以下であることが不
可欠であること、好ましくはL/Wが2.3以上であり、そし
て断面充実度が65%以下であることを見い出し本発明に
至つた。<Means for Solving Problems> The inventors of the present invention investigated the reinforcing effect of various PVA-based fibers in order to develop a rubber molded product having excellent performance. In addition to strength and high elasticity, it is not clear why, but the ratio of the length (L) to the width (W) of the fiber crystal (hereinafter abbreviated as L / W) is more closely related and has high durability. In order to obtain, it is essential that the L / W is 2.1 or more and the cross-sectional solidity described below is 65% or less, preferably the L / W is 2.3 or more, and the cross-sectional solidity is The present invention was found to be 65% or less.
繊維の結晶の長さLはその繊維の機械的物性および耐久
性とはあまり相関がなく、L/Wとしてはじめて強い相関
が現われるのである。L/Wが2.1未満では屈曲疲労を受け
た時の耐久性が劣り、実用上好ましくない。また断面充
実度が65%を超える場合は繊維の表面積が小さくなり、
十分な接着力が得られず好ましくない。The crystal length L of the fiber has little correlation with the mechanical properties and durability of the fiber, and a strong correlation appears for the first time as L / W. If the L / W is less than 2.1, the durability when subjected to bending fatigue is poor, which is not preferable in practice. If the cross-sectional solidity exceeds 65%, the surface area of the fiber will decrease,
It is not preferable because sufficient adhesive force cannot be obtained.
本発明で用いられるPVA系繊維の有効な製造方法は、硼
酸または硼酸塩を含有するPVA水溶液を紡糸原液とし、
脱水能を有する塩類を含む55〜95℃のアルカリ性凝固浴
に湿式紡糸し、得られた紡糸原糸を17倍以上の延伸倍率
で延伸を行う方法である。かかる方法は、従来20〜50℃
の凝固浴温度で実施されているのに対し、これを55〜95
℃と高温にすることを特徴とするものである。得られる
繊維は、断面が偏平であり、また延伸性が大幅に向上す
るため繊維のL/Wが大きくなつて繊維の機械的性質も著
しく向上する。その理由についてはよくわからないが、
従来の紡糸方法とは凝固機構が全く異なるものと考えら
れる。An effective method for producing a PVA-based fiber used in the present invention is a spinning stock solution of a PVA aqueous solution containing boric acid or borate,
This is a method in which wet spinning is performed in an alkaline coagulation bath at 55 to 95 ° C. containing a salt having a dehydrating ability, and the obtained spun raw yarn is drawn at a draw ratio of 17 times or more. Such a method is conventionally 20 ~ 50 ℃
This is carried out at 55-95, whereas it is carried out at the coagulation bath temperature of
It is characterized in that the temperature is raised to ℃. The obtained fiber has a flat cross section, and since the drawability is greatly improved, the L / W of the fiber is increased and the mechanical properties of the fiber are also significantly improved. I'm not sure why, but
It is considered that the solidification mechanism is completely different from that of the conventional spinning method.
以下本発明で用いられるPVA系繊維の製造方法の一例を
詳細に説明する。Hereinafter, an example of the method for producing the PVA fiber used in the present invention will be described in detail.
用いるPVAの重合度は1500以上、好ましくは2000以上、
更に好ましくは3000以上である。The degree of polymerization of PVA used is 1500 or more, preferably 2000 or more,
More preferably, it is 3000 or more.
紡糸原液は、該PVAの5〜30重量%の濃度の水溶液で、
硼酸または硼酸塩を該PVAに対し、0.5〜5重量%含有す
るものでPVAの濃度は好ましくは6〜25重量%、更に好
ましくは7〜18重量%であつて、PVAの重合度に応じて
適宜調節するのが好ましい。The spinning solution is an aqueous solution having a concentration of 5 to 30% by weight of the PVA,
The content of boric acid or borate is 0.5 to 5% by weight based on the PVA, and the concentration of PVA is preferably 6 to 25% by weight, more preferably 7 to 18% by weight, depending on the degree of polymerization of PVA. It is preferable to adjust it appropriately.
紡糸原液温度は85〜125℃、好ましくは95〜120℃であ
り、低すぎると延伸性を阻害し、高すぎると原液の沸騰
をきたす。また紡糸調子を安定化させるため、酢酸など
の有機酸または硝酸等の無機酸を紡糸原液に適当量添加
することもできる。The spinning dope temperature is 85 to 125 ° C., preferably 95 to 120 ° C. If it is too low, the drawability is hindered, and if it is too high, the stock solution boils. In order to stabilize the spinning condition, an appropriate amount of organic acid such as acetic acid or inorganic acid such as nitric acid may be added to the stock solution for spinning.
凝固浴の温度は55〜95℃、好ましくは60〜80℃である。
55℃以下では繊維の断面があまり偏平とならず、また延
伸性が低いためL/Wが大きくならない。一方95℃以上で
は、凝固浴の沸騰及び単繊維間で膠着が生じるため好ま
しくない。The temperature of the coagulation bath is 55 to 95 ° C, preferably 60 to 80 ° C.
When the temperature is 55 ° C or lower, the cross section of the fiber is not so flat, and the drawability is low, so that the L / W does not increase. On the other hand, if the temperature is 95 ° C or higher, it is not preferable because boiling of the coagulating bath and sticking between the single fibers occur.
凝固浴のアルカリ成分としては水酸化ナトリウム、水酸
化カリウム等の苛性アルカリが用いられ、その濃度は2
〜200g/l、好ましくは5〜50g/lである。また、凝固浴
の塩類成分としては硫酸ナトリウム、炭酸ナトリウム等
の脱水能を有する塩が用いられ、濃度は100g/l〜飽和濃
度であり、飽和に近い方が好ましい。A caustic alkali such as sodium hydroxide or potassium hydroxide is used as the alkali component of the coagulation bath, and the concentration thereof is 2
~ 200 g / l, preferably 5-50 g / l. Further, as the salt component of the coagulation bath, a salt having a dehydrating ability such as sodium sulfate and sodium carbonate is used, and the concentration is 100 g / l to a saturated concentration, and it is preferable that the concentration is close to saturation.
紡糸ノズルは通常の円型ノズルあるいはそれに近い形状
のノズルが用いられる。As the spinning nozzle, an ordinary circular nozzle or a nozzle having a shape close to it is used.
紡糸後の繊維はアルカリの中和、湿熱延伸、水洗、乾
燥、延伸、熱処理を常法に従つて実施すればよいが少な
くとも17倍以上、好ましくは20倍以上の延伸を行なう必
要がある。延伸倍率を大きくする程L/Wが大きくなり、1
7倍未満ではL/Wが2.1に達しない。The fiber after spinning may be subjected to alkali neutralization, wet heat drawing, washing with water, drying, drawing and heat treatment according to a conventional method, but it is necessary to draw at least 17 times or more, preferably 20 times or more. The larger the draw ratio, the larger the L / W.
If it is less than 7 times, the L / W will not reach 2.1.
本発明において用いられるゴムは特に限定されるもので
はなく、天然ゴム(NR)、合成ゴム(スチレン−ブタジ
エンゴム(SBR)、クロロプレンゴム(CR)、ニトリル
ゴム(NBR)、エチレン−プロピレンジエンゴム(EPD
M)、その他の合成ゴム)等を用いることができる。ま
た、それらを併用することも可能であり、ラテツクス状
で使用してもさしつかえない。The rubber used in the present invention is not particularly limited, and natural rubber (NR), synthetic rubber (styrene-butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), ethylene-propylene diene rubber ( EPD
M), other synthetic rubbers) and the like can be used. It is also possible to use them in combination, and they may be used in the form of a latex.
本発明においては、かかるPVA系繊維を織物、あるいは
撚糸状態で使用するが、用途によつては不織布、短繊
維、チヨツプドストランド等の状態で使用してもかまわ
ない。In the present invention, such a PVA fiber is used in a woven or twisted state, but it may be used in a state of a non-woven fabric, a short fiber, a chopped strand or the like depending on the application.
ゴム成形物の製造方法は、公知のPVA系繊維を単に前述
した繊維に変えるのみで従来と全く同様な方法でよい。The method for producing the rubber molded product may be the same as the conventional method, except that the known PVA-based fiber is simply changed to the above-mentioned fiber.
例えば、該PVA系繊維を撚糸してコード化した後、必要
に応じて接着処理を行ない製織、製編してゴムと重ね合
せたり、PVA系繊維を製織、製編後必要に応じて接着処
理を行なつてゴムと成形する等の一般的な方法によりゴ
ム成形物とすればよい。For example, after twisting and coding the PVA-based fiber, if necessary, adhesion treatment is performed, weaving, knitting and overlapping with rubber, or weaving PVA-based fiber, and adhering treatment as necessary after knitting. Then, a rubber molded product may be obtained by a general method such as the step of molding with a rubber.
〈発明の効果〉 本発明のゴム成形物は次の様な特長を有する。<Effect of the Invention> The rubber molded product of the present invention has the following features.
1)従来のPVA系繊維に比べて本発明に用いる繊維はL/W
が大きく、優れた機械的性能を有し、かつ断面充実度が
65%以下というように断面が偏平で表面積が大きい為、
得られるゴム成形物はゴムとの接着が良好で、かつ屈曲
疲労後の強力保持率の良い、高強力・高弾性で高耐久性
のものである。1) Compared with the conventional PVA fiber, the fiber used in the present invention is L / W
Is large, has excellent mechanical performance, and has a
Since the cross section is flat and the surface area is large, such as 65% or less,
The obtained rubber molded product has good adhesion to rubber, good strength retention after bending fatigue, high strength, high elasticity and high durability.
2)従来のPVA系繊維に比べて少ない糸量で同等の強度
のものを成形できるので成形物を軽量化でき、また、表
面平滑性も改善される。2) Compared with conventional PVA-based fibers, it is possible to mold the same strength with a smaller amount of yarn, so that the weight of the molded product can be reduced and the surface smoothness is also improved.
以上の優れた性能を生かして、本発明の成形物は各種タ
イヤ用部材、ターポリン、シート、各種ホース類、ダイ
ヤフラム等の用途に適用することができる。By utilizing the above excellent performance, the molded product of the present invention can be applied to various tire members, tarpaulins, sheets, various hoses, diaphragms and the like.
以下、実施例によつて更に具体的に説明する。なお、本
発明で規定する断面充実度(断面の偏平さの度合い。数
値の小さいほうが偏平である)、結晶の長さと幅の比
(L/W)及び機械的性質は以下の方法で測定されるもの
である。Hereinafter, it will be described more specifically by way of examples. The cross-sectional solidity (degree of flatness of cross-section; smaller number means flatness), the ratio of crystal length to width (L / W), and mechanical properties specified in the present invention are measured by the following methods. It is something.
○断面充実度 繊維の断面写真を約100mm2に拡大描写しその断面積Fを
求める。○ Cross-section perfection A cross-sectional photograph of the fiber is enlarged to about 100 mm 2 and the cross-sectional area F is obtained.
次に断面中最も広い幅Bを求め次式により算出した。Next, the widest width B in the cross section was obtained and calculated by the following formula.
尚1本のマルチフイラメントヤーンから任意に取り出し
た20本の単繊維についてこれを求め、その平均値を以て
該マルチフイラメントヤーンを構成する繊維の断面充実
度と規定する。 In addition, this value is obtained for 20 single fibers arbitrarily taken out from one multifilament yarn, and the average value thereof is defined as the cross-sectional solidity of the fibers constituting the multifilament yarn.
○結晶の長さと幅の比 公知の広角X線回折法により次の条件で測定した。○ Ratio of crystal length and width It was measured under the following conditions by a known wide-angle X-ray diffraction method.
広角X線 (1)理学電機(株)製回転対陰極形X線回折装置 (Type RAD−rA)で40kV、100mA CuK α(グラフアイトモノクロメーター) シンチレーションカウンター使用 (2)ゴニオメーター スリツト系:DS1/2°,SS1/2°,RS0.15mm 走査速度:2θ=1/2°/分 (3)試料(125mgの繊維を長さ2.5cm、巾1.5cmに平行
に並べたもの)を繊維試料台に取り付け、透過法にて面
指数(020),(100)の回折曲線を測定し、各曲線の半
価幅B(hkl)を得た。Wide-angle X-ray (1) Rigaku Denki Co., Ltd. rotating anticathode X-ray diffractometer (Type RAD-rA) 40kV, 100mA CuK α (Graphite Monochromator) with scintillation counter (2) Goniometer slit system: DS1 / 2 °, SS1 / 2 °, RS0.15mm Scanning speed: 2θ = 1/2 ° / min (3) Fiber sample of sample (125 mg fibers arranged in parallel with length 2.5 cm and width 1.5 cm) The sample was attached to a table and the diffraction curves of surface indices (020) and (100) were measured by the transmission method to obtain the half-value width B (hkl) of each curve.
結晶サイズの比(L/W) 上記透過法により得られた面指数(020),(100)のピ
ークの半価幅B(hkl)の値からScherrerの式を用いて
各々の結晶サイズを算出した。Ratio of crystal size (L / W) Calculate each crystal size from Scherrer's formula from the half-value width B (hkl) of the peaks of plane index (020) and (100) obtained by the above transmission method. did.
D(hkl)=Kλ/Bo(hkl)COSθ(hkl) 但し K=0.9 λ=1.5418(Å) Bo:Jonesの方法によるスリツトの補正 後の回折曲線の広がり(radian) θ(hkl):ブラツグ角(deg.) L/W=D(020)/D(100)として求めた。D (hkl) = Kλ / Bo (hkl) COSθ (hkl) However, K = 0.9 λ = 1.5418 (Å) Bo: Jones method of correcting the slit after the diffraction curve spread (radian) θ (hkl): Bragg angle (Deg.) L / W = D (020) / D (100).
○乾破断強伸度、初期弾性率 (1)試料……マルチフイラメントヤーン (2)乾破断強伸度、初期弾性率……温度20℃、相対湿
度65%の雰囲気下でJIS−1017に準拠し、試長20cm引張
り速度10cm/分でインストロン試験機にて測定、初期弾
性率はその伸長〜荷重曲線より求めた。○ Dry rupture strength / elongation, initial elastic modulus (1) Sample …… Multifilament yarn (2) Dry rupture strength / elongation, initial elastic modulus …… Complies with JIS-1017 in an atmosphere of temperature 20 ℃ and relative humidity 65% Then, it was measured with an Instron tester at a test length of 20 cm and a pulling speed of 10 cm / min, and the initial elastic modulus was obtained from its elongation-load curve.
(3)測定数……10回の測定を行い、その平均値を求め
た。(3) Number of measurements: 10 measurements were performed and the average value was calculated.
実施例1〜3 比較例1,2 重合度3500の完全ケン化PVAを水に9重量%の濃度に溶
解し、これに硼酸をPVAに対して3.5重量%加え紡糸原液
を調整した。次にこの紡糸原液を105℃に加熱し水酸化
ナトリウム15g/l、および硫酸ナトリウム350g/lを含む6
0℃(実施例1)、70℃(実施例2、比較例1)、90℃
(実施例3)、30℃(比較例2)の各温度の水溶液から
なる凝固浴に1000ホールの円形ノズルを有する口金を通
じて紡糸し6m/分の速度で離浴させた。引続き常法に従
つてローラー延伸、中和、湿熱延伸、水洗および乾燥を
行ない、230℃で乾燥延伸をしてヤーンを製造した。全
延伸倍率は22.5(実施例1)、26.8(実施例2)、25.4
(実施例3)、16.2(比較例1)、14.6(比較例2)で
あつた。Examples 1 to 3 Comparative Examples 1 and 2 Completely saponified PVA having a degree of polymerization of 3500 was dissolved in water to a concentration of 9% by weight, and boric acid was added thereto at 3.5% by weight to prepare a spinning dope. This spinning dope is then heated to 105 ° C. and contains 15 g / l sodium hydroxide and 350 g / l sodium sulfate.
0 ° C (Example 1), 70 ° C (Example 2, Comparative Example 1), 90 ° C
(Example 3) A coagulation bath consisting of an aqueous solution at each temperature of 30 ° C (Comparative Example 2) was spun through a spinneret having a 1000-hole circular nozzle, and was spun at a speed of 6 m / min. Subsequently, roller drawing, neutralization, wet heat drawing, washing with water and drying were carried out according to a conventional method, and dry drawing was carried out at 230 ° C to produce a yarn. The total draw ratio is 22.5 (Example 1), 26.8 (Example 2), 25.4
(Example 3), 16.2 (Comparative Example 1) and 14.6 (Comparative Example 2).
次いでヤーンに下撚、上撚共30T/10cmの撚をかけて1800
D/1×2のコードを作製し、これにRFL接着処理を行なつ
て、デイツプコードとし、さらにスダレ状にデイツプコ
ードを並べた後、ゴムを積層して加硫し繊維補強ゴムシ
ートを得た。このものを屈曲疲労試験機により屈曲した
後コードを取り出して残存強力を測定した。以上の結果
を第1表に示す。Next, twist the lower and upper twists of the yarn to the yarn by 30T / 10cm and then 1800
A D / 1 × 2 cord was prepared, and RFL adhesion treatment was performed on the cord to form a dipped cord. The dipped cords were further arranged in a dull shape, and rubber was laminated and vulcanized to obtain a fiber-reinforced rubber sheet. After bending this with a bending fatigue tester, the cord was taken out and the residual strength was measured. The above results are shown in Table 1.
比較例3 重合度3500の完全ケン化PVAを10重量%の濃度でジメチ
ルスルホキシドに溶解して紡糸原液とし、これを50ホー
ルのノズルから10℃のメタノール凝固浴に乾・湿式紡糸
した。得られた紡糸原液を脱溶媒しつつ、6倍の湿延伸
を行ない乾燥させた。次いで240℃で乾燥延伸を実施
し、全延伸倍率を24倍とした。Comparative Example 3 A fully saponified PVA having a degree of polymerization of 3500 was dissolved in dimethylsulfoxide at a concentration of 10% by weight to prepare a spinning stock solution, which was dry-wet spun from a 50-hole nozzle into a methanol coagulation bath at 10 ° C. The spinning stock solution thus obtained was subjected to 6 times wet stretching while being desolvated and dried. Then, dry stretching was carried out at 240 ° C., and the total stretching ratio was 24 times.
この繊維を使用し前記実施例と同様にして繊維補強ゴム
シートを作製した。この結果を第1表に示す。Using this fiber, a fiber-reinforced rubber sheet was produced in the same manner as in the above-mentioned example. The results are shown in Table 1.
第1表から明らかなように本発明のPVA系繊維を用いた
ゴムシートは接着性能および屈曲疲労後の強力残存率も
良好である。As is clear from Table 1, the rubber sheet using the PVA-based fiber of the present invention has a good adhesive property and a good strength remaining rate after bending fatigue.
接着力性能評価方法……デイツプコードを一定間隔に並
べて生ゴム中に埋め込み加硫後3本のコードを同時に引
き剥す力を測定 屈曲後コード強力保持率評価方法…… ベルト屈曲法により25万回屈曲後、ゴム中よりコードを
取り出して強力を測定し屈曲前コード強力との比で求め
た。 Adhesive strength performance evaluation method …… Deep cords are placed at regular intervals and embedded in raw rubber, and after vulcanization, the force to peel off three cords simultaneously is measured. Flexural cord strength retention rate evaluation method …… After bending 250,000 times by the belt bending method The cord was taken out of the rubber, the strength was measured, and the strength was determined by the ratio with the strength of the cord before bending.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 正一 岡山県岡山市海岸通1丁目2番1号 株式 会社クラレ内 (72)発明者 桜木 功 大阪府大阪市北区梅田1丁目12番39号 株 式会社クラレ内 (56)参考文献 特公 昭46−40767(JP,B1) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shoichi Nishiyama 1-2-1, Kaigan-dori, Okayama-shi, Okayama Kuraray Co., Ltd. (72) Inventor Isao Sakuragi 1-12-39, Umeda, Kita-ku, Osaka-shi, Osaka Kuraray Co., Ltd. (56) References Japanese Patent Publication No. 40-40767 (JP, B1)
Claims (1)
幅に対する長さの比が2.1以上であるポリビニルアルコ
ール系合成繊維で強化されたゴム成形物。1. A rubber molded product reinforced with a polyvinyl alcohol-based synthetic fiber having a cross-sectional solidity of 65% or less and a ratio of length to crystal width of 2.1 or more.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33384587A JPH07107103B2 (en) | 1987-12-28 | 1987-12-28 | Fiber reinforced rubber molding |
DE19883854253 DE3854253T2 (en) | 1987-10-22 | 1988-10-21 | Polyvinyl alcohol fibers with thin cross-section and application for reinforced articles. |
ES88117568T ES2077560T3 (en) | 1987-10-22 | 1988-10-21 | FIBERS OF POLYVINYL ALCOHOL OF FINE CROSS SECTION, AND USE FOR REINFORCED ITEMS. |
EP88117568A EP0313068B1 (en) | 1987-10-22 | 1988-10-21 | Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33384587A JPH07107103B2 (en) | 1987-12-28 | 1987-12-28 | Fiber reinforced rubber molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01174531A JPH01174531A (en) | 1989-07-11 |
JPH07107103B2 true JPH07107103B2 (en) | 1995-11-15 |
Family
ID=18270587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33384587A Expired - Fee Related JPH07107103B2 (en) | 1987-10-22 | 1987-12-28 | Fiber reinforced rubber molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107103B2 (en) |
-
1987
- 1987-12-28 JP JP33384587A patent/JPH07107103B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01174531A (en) | 1989-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001083874A1 (en) | Rubber-reinforcing fiber, process for producing the same, and rubber product and pneumatic tire each made with the same | |
WO2012132975A1 (en) | Polyester fiber for rubber reinforcement and process for producing same | |
JP2007297761A (en) | Cellulose dipped cord for rubber reinforcement | |
WO1986007393A1 (en) | Tire cord made of polyvinyl alcohol | |
JP2007297760A (en) | Cellulose raw cord for rubber reinforcement | |
JP2004308027A (en) | Polyketone fiber cord for reinforcing rubber and tire using the same | |
JPH11222775A (en) | Cord for reinforcing rubber | |
JPH07107103B2 (en) | Fiber reinforced rubber molding | |
JP5542085B2 (en) | Method for producing pretreated polyester fiber | |
JP5233849B2 (en) | Method for producing rubber cord for reinforcing rubber | |
JP2545915B2 (en) | Rubber reinforcing cord and manufacturing method thereof | |
JP4544829B2 (en) | Polyketone fiber cord and tire using the same | |
KR101312798B1 (en) | Tire Cord Fabric and Method for Manufacturing The Same | |
JPH06207338A (en) | Polyvinyl alcohol cord and its production | |
KR100721447B1 (en) | Hose rubber products using cellulose fiber | |
JP3157587B2 (en) | Polyamide fiber cord for rubber reinforcement | |
JP3157590B2 (en) | Polyamide fiber cord for rubber reinforcement | |
JP4304123B2 (en) | Polyketone fiber cord and method for producing the same | |
JP2012214911A (en) | Polyester fiber for rubber reinforcement | |
JP2012057279A (en) | Cellulosic fiber cord for reinforcing rubber | |
JPS6071240A (en) | Manufacture of tire reinforcing cord | |
JP3316300B2 (en) | Polyvinyl alcohol fiber excellent in durability and method for producing the same | |
JP3183479B2 (en) | High moisture-heat resistance high-strength polyvinyl alcohol fiber and method for producing the same | |
JP3791629B2 (en) | Rubber reinforcing fiber structure and method for producing the same | |
JP2000290880A (en) | Production of rubber hose reinforcing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |