JPH07106917B2 - Glass lens forming method and apparatus thereof - Google Patents

Glass lens forming method and apparatus thereof

Info

Publication number
JPH07106917B2
JPH07106917B2 JP27510188A JP27510188A JPH07106917B2 JP H07106917 B2 JPH07106917 B2 JP H07106917B2 JP 27510188 A JP27510188 A JP 27510188A JP 27510188 A JP27510188 A JP 27510188A JP H07106917 B2 JPH07106917 B2 JP H07106917B2
Authority
JP
Japan
Prior art keywords
glass
pressure
lens
temperature
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27510188A
Other languages
Japanese (ja)
Other versions
JPH02124727A (en
Inventor
寿雄 栢木
伸司 波田
Original Assignee
ホーヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーヤ株式会社 filed Critical ホーヤ株式会社
Priority to JP27510188A priority Critical patent/JPH07106917B2/en
Publication of JPH02124727A publication Critical patent/JPH02124727A/en
Publication of JPH07106917B2 publication Critical patent/JPH07106917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラスレンズの成形方法及びその装置に係わ
り、特に直径が大きいガラスレンズ、両凹レンズ、メニ
スカスレンズ等を成形するのに好適な成形方法及びその
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method for molding a glass lens and an apparatus therefor, and particularly, a molding method suitable for molding a glass lens, a biconcave lens, a meniscus lens, etc. having a large diameter. A method and an apparatus thereof.

〔従来の技術〕[Conventional technology]

近年、研磨仕上げを必要とするガラスレンズの加工方法
に代わって、予め計量されたガラス素材(ガラスゴブ)
を加熱軟化した後、超精密型を使用して、その面をガラ
ス面に転写させる精密プレス加工方法が注目されてい
る。
In recent years, instead of glass lens processing methods that require polishing finish, pre-measured glass materials (glass gobs)
Attention has been paid to a precision press working method in which the surface is transferred to a glass surface by using an ultraprecision mold after heating and softening.

今までにこの種のガラスレンズ成形方法および装置につ
いては数多くの発明提案がなされ、径の小さなレンズ、
両凸レンズ等の製造については既に多くの実績を挙げて
いる。
Many invention proposals have been made so far for this type of glass lens molding method and apparatus, and a lens having a small diameter,
We have already made many achievements in the manufacture of biconvex lenses.

その理由は、本発明者によって、次の点にあることが判
った。すなわち、加圧によって超精密型表面をレンズに
転写した後レンズと型の双方を転移温度以下まで降温さ
せる際に、径の小さなレンズの場合には、被成形ガラス
と型の熱膨張係数の違いによる、両者の収縮量の差が小
さいため、従ってガラスと型の接触点のズレが小さいか
らであり、また両凸レンズの場合には、レンズの収縮時
に、型がその収縮を妨げない形状であるからである。
The reason for this has been found out by the inventor to be as follows. That is, when the surface of the ultra-precision mold is transferred to the lens by pressurization and then both the lens and the mold are cooled to a temperature below the transition temperature, in the case of a lens with a small diameter, the difference in the coefficient of thermal expansion between the glass being molded and the mold This is because the difference in the amount of contraction between the two is small, and therefore the deviation of the contact point between the glass and the mold is small, and in the case of a biconvex lens, the mold has a shape that does not prevent the contraction when the lens contracts. Because.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、型とレンズの接触点のズレが大きい大径レンズ
や、型によってガラスの収縮が妨げられる両凹レンズ、
メニスカスレンズ等の成形の場合には、得られたレンズ
を干渉計で測定することによって、レンズ中央部に湾曲
した干渉縞が認められ、精度の高いレンズを得ることが
難しいと言った問題があった。
However, large-diameter lenses where the contact point between the mold and the lens is large, or biconcave lenses where the contraction of the glass is blocked by the mold,
In the case of molding a meniscus lens, etc., there is a problem that it is difficult to obtain a highly accurate lens by measuring the obtained lens with an interferometer and a curved interference fringe is observed in the center of the lens. It was

特に、両凹レンズ、メニスカスレンズ等の場合には、徐
冷時に被成形ガラスの中央部と外周部との間で温度差が
生じ、外周部から内部方向へ順に冷却されるため外周部
から先に固化し、ガラス内部の収縮が型により阻害され
るので、転移温度までガラスを加圧し続けるとワレが発
生し、また加圧を弱めてもレンズ全体が成形時の形状を
保って一様に収縮せず、干渉計測定によってレンズの中
央部に干渉縞の湾曲が認められることになる。また、こ
の温度差を無くするように非常にゆっくりした徐冷を行
うと、徐冷に長時間を要し、生産効率を極度に悪化さ
せ、生産方式として不適である。
In particular, in the case of a biconcave lens, a meniscus lens, etc., a temperature difference occurs between the central portion and the outer peripheral portion of the glass to be molded during slow cooling, and the outer peripheral portion is cooled in order from the outer peripheral portion to the inner portion, so that the outer peripheral portion comes first. As the mold solidifies and the shrinkage inside the glass is blocked by the mold, if the glass is continuously pressed to the transition temperature, cracks will occur, and even if the pressure is weakened, the entire lens will maintain the shape at the time of molding and shrink uniformly. Instead, the interferometer measurement will show the curvature of the interference fringes in the center of the lens. Further, if the extremely slow gradual cooling is performed so as to eliminate this temperature difference, the gradual cooling requires a long time, and the production efficiency is extremely deteriorated, which is not suitable as a production method.

本発明は、上記問題点乃至欠点を除去するためになされ
たものであり、その目的は大径レンズ、両凹レンズ、メ
ニスカスレンズ等においても形状精度を高めることがで
きるガラスレンズの成形方法と装置を提供することであ
る。
The present invention has been made to eliminate the above problems and drawbacks, and an object thereof is to provide a glass lens molding method and apparatus capable of increasing the shape accuracy even in a large-diameter lens, a biconcave lens, a meniscus lens, and the like. Is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために、本発明によるガラスレンズ
の成形方法は、成形型に入れられ所定の温度に加熱され
たガラスの第1の加圧を行い、そのとき、この第1加圧
後の温度から転移温度までの降温の間に発生するガラス
の収縮量以上の加圧代を残し、次に、加圧力を弱めて降
温を行い、ガラスの転移温度近くで、前記加圧残り代が
零になるまで再加圧し、そして加圧力を弱めて転移温度
まで徐冷し、更に冷却することを特徴とする。
In order to achieve this object, the glass lens molding method according to the present invention performs a first pressurization of glass which is placed in a mold and heated to a predetermined temperature, and at that time, after the first pressurization, A pressure margin of more than the amount of shrinkage of the glass generated during the temperature decrease from the temperature to the transition temperature is left, then the pressure is weakened to lower the temperature, and the pressure residual margin is zero near the glass transition temperature. It is characterized in that it is re-pressurized until it becomes, and the applied pressure is weakened and gradually cooled to the transition temperature, and further cooled.

更に、本発明によるガラスレンズの成功装置は、ガラス
レンズのレンズ面に対応する成形面を有する上型と下型
を備えた成形型と、加圧成形のために、前記上型と下型
の少なくとも一方を加圧するための加圧手段と、第1加
圧後の加圧残り代を設定するための、加圧手段または被
加圧型の変位を検出する位置センサ、およびこの位置セ
ンサからの信号に基づいて加圧手段を制御する制御機構
と、被成形ガラスと成形型の温度調整手段とを具備する
ことを特徴とする。
Furthermore, the glass lens success device according to the present invention comprises a mold having an upper mold and a lower mold having a molding surface corresponding to the lens surface of the glass lens, and a pressure mold for the upper mold and the lower mold. Pressure means for pressurizing at least one, a position sensor for detecting displacement of the pressurizing means or the pressurizing die for setting the remaining pressure after the first pressurization, and a signal from this position sensor It is characterized by comprising a control mechanism for controlling the pressurizing means based on the above, and a temperature adjusting means for the glass to be molded and the molding die.

〔実施例〕〔Example〕

次に、図を参照して本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例によるガラスレンズ成形装置全
体を概略的に示している。函体1aによって密閉された加
熱成形室1内には、上型2と下型3が配置され、この上
型2と下型3はそれぞれ断熱ベース9,10を介して上部固
定軸4と下部可動軸5の先端に固定されている。下部可
動軸5は図示していない加圧シリンダに連結され、加圧
時に上昇駆動される。更に、下型3の動作位置を検出す
るために、下部可動軸5には検出片7が取付けられ、こ
の検出片7に応答する位置センサ8(例えば、微小位置
間隔の検出精度が良い渦流式変位センサ)が図示してい
ない手段によって函体1aに固定配置されている。この位
置センサ8からの信号は図示していない制御機構に供給
される。制御機構はシーケンサまたはコンピュータを含
み、前記信号に基づいて、下部可動軸5の動作を制御す
る。
FIG. 1 schematically shows the whole glass lens forming apparatus according to an embodiment of the present invention. An upper mold 2 and a lower mold 3 are arranged in a heat molding chamber 1 which is closed by a box 1a, and the upper mold 2 and the lower mold 3 are provided with an upper fixed shaft 4 and a lower part via heat insulating bases 9 and 10, respectively. It is fixed to the tip of the movable shaft 5. The lower movable shaft 5 is connected to a pressurizing cylinder (not shown) and is driven to move upward when pressurizing. Further, in order to detect the operating position of the lower die 3, a detection piece 7 is attached to the lower movable shaft 5, and a position sensor 8 that responds to the detection piece 7 (for example, an eddy current type with a high detection accuracy of a minute position interval). A displacement sensor) is fixedly arranged on the box 1a by means not shown. The signal from the position sensor 8 is supplied to a control mechanism (not shown). The control mechanism includes a sequencer or a computer, and controls the operation of the lower movable shaft 5 based on the signal.

第2a図は第1回目の加圧後の加圧代(隙間Δt)を残し
た成形型の状態を示し、第2b図は再加圧を行い、完全に
押し切った成形型の状態を示している。
Figure 2a shows the state of the mold with the pressure margin (gap Δt) left after the first press, and Figure 2b shows the state of the mold completely repressed and completely pressed. There is.

成形型は、レンズ面に対応する精密成形面を有する上下
キャビティダイ12,13と、キャビティダイ12,13を周囲か
ら保持している胴型11,15と、ベース16,17からなってい
る。キャビティダイ12と胴型11が、第1図に示した上型
2を形成し、キャビティダイ13と胴型15が下型3を形成
している。キャビティダイ12,13の材質は例えば緻密な
セラミックス、胴型11,15とベース16,17は例えば耐酸化
性の良いタングステン合金である。この場合の膨張係数
の関係は、セラミックス<タングステン合金≪ガラスで
ある。なお、キャビティダイ12,13によって成形される
被成形ガラスは番号14で示してある。
The molding die includes upper and lower cavity dies 12, 13 having precision molding surfaces corresponding to the lens surfaces, body dies 11, 15 holding the cavity dies 12, 13 from the periphery, and bases 16, 17. The cavity die 12 and the body die 11 form the upper die 2 shown in FIG. 1, and the cavity die 13 and the body die 15 form the lower die 3. The material of the cavity dies 12 and 13 is, for example, a dense ceramic, and the body dies 11 and 15 and the bases 16 and 17 are, for example, a tungsten alloy having good oxidation resistance. In this case, the relationship of expansion coefficient is ceramics <tungsten alloy << glass. Glass to be molded by the cavity dies 12 and 13 is indicated by numeral 14.

次に、上記構造の成形装置によるガラスレンズの成形方
法について説明する。
Next, a method of molding a glass lens by the molding device having the above structure will be described.

下型3の内部にセットされたキャビティダイ13の上に被
成形ガラス14を載せた後、加熱成形室1内を不活性ガス
(窒素ガス)で充満させ、加熱昇温を行う。そしてプレ
ス可能な設定温度に達し、均熱化を行った後で、図示し
ていない加圧シリンダに連結された下部可動軸5によっ
て、下型3を上昇させ、そして固定された上型2との間
で第1回目の加圧成形を行う。この加圧ストロークは前
記の位置センサ8と図示していない制御機構によって加
圧シリンダを停止することによって次のように制限され
る。すなわち、後述の第2回目の加圧成形のために所定
の加圧代(第2a図のΔt参照)を残すように制限され
る。この所定の加圧残り代Δtは、第1回目の加圧が終
了してからガラスを転移温度に降温させるまでの間に生
ずるガラスの熱収縮量、すなわち第1回目以降のガラス
の熱収縮量よりも大きく設定され、例えば10〜100μm
であり、レンズの形状や大きさによって異なる。加圧残
り代Δtは更に、次の二点、を考慮して適切な値に
選定される。
After the glass to be molded 14 is placed on the cavity die 13 set inside the lower mold 3, the inside of the heat molding chamber 1 is filled with an inert gas (nitrogen gas), and the temperature is raised by heating. Then, after reaching a pressable set temperature and performing soaking, the lower mold 3 is raised by the lower movable shaft 5 connected to a pressure cylinder (not shown), and the fixed upper mold 2 and The first pressure molding is performed between the two. This pressurizing stroke is limited as follows by stopping the pressurizing cylinder by the position sensor 8 and a control mechanism (not shown). That is, the pressure is limited so as to leave a predetermined pressure margin (see Δt in FIG. 2a) for the second pressure molding described later. The predetermined pressure residual amount Δt is the amount of heat shrinkage of the glass that occurs between the time when the first pressurization is finished and the time when the glass is cooled to the transition temperature, that is, the amount of heat shrinkage of the glass after the first time. Is set larger than, for example, 10 to 100 μm
And depends on the shape and size of the lens. The remaining pressure margin Δt is further selected to an appropriate value in consideration of the following two points.

加圧ストロークは大きい方が、プレス時に小さな力
で良く伸びる。
The larger the pressurizing stroke, the better the stretching with a small force during pressing.

しかし、第2回目の加圧ストロークを大きくする
と、第1回目のプレス時にレンズ周囲部の伸びが甘くな
りすぎて、第2プレスを行っても、完全な形状精度を出
せない。
However, if the second pressurizing stroke is increased, the elongation of the lens peripheral portion becomes too weak during the first pressing, and the complete shape accuracy cannot be obtained even if the second pressing is performed.

第1回目の加圧成形後、転移温度近くまでガラスを降温
して均熱化を行い、第2回目の加圧成形を行う。この加
圧成形は前記の加圧残り代Δtが零になるまで行われ、
完全に押し切られる。次に、転移温度まで徐冷され、更
に冷却されて成形型からレンズが取り出される。
After the first pressure molding, the temperature of the glass is lowered to near the transition temperature to make the temperature uniform, and the second pressure molding is performed. This pressure molding is performed until the pressure residual amount Δt becomes zero,
It is completely pushed down. Next, the lens is taken out from the mold after being gradually cooled to the transition temperature and further cooled.

このようにして成形されるガラスレンズは、干渉縞の湾
曲等の乱れを発生しない。従って、径の大きなレンズお
よび両凹、メニスカス形状のレンズにおいても、本発明
の装置と方法を採用することによって、充分に満足する
精度のガラスレンズ成形が可能である。
The glass lens molded in this manner does not cause disturbance such as interference fringe curve. Therefore, even for a lens having a large diameter, a biconcave lens, and a meniscus lens, it is possible to mold a glass lens with sufficiently satisfactory accuracy by adopting the apparatus and method of the present invention.

次に、凹メニスカスレンズの実際の成形例について説明
する。ガラスは転移温度430℃のホーヤ硝種名FD5(重フ
リント系ガラス)を用い、キャビティダイ12,13は膨張
係数4×10-6mm/℃の炭化珪素を、胴型11,15は膨張係数
5×10-6mm/℃のタングステン合金を用い、外径が20m
m、上面と下面の曲率半径Rがそれぞれ20mmと22mm、最
も薄い中心肉厚が1.2mmのレンズを成形した。
Next, an actual molding example of the concave meniscus lens will be described. As the glass, Hoya glass type FD5 (heavy flint type glass) with a transition temperature of 430 ° C is used, the cavity dies 12 and 13 are made of silicon carbide having an expansion coefficient of 4 × 10 -6 mm / ° C, and the barrel dies 11 and 15 are made of an expansion coefficient of 5 × 10 -6 mm / ° C tungsten alloy with an outer diameter of 20 m
m, a radius of curvature R of the upper surface and a lower surface of 20 mm, and a thinnest center wall thickness of 1.2 mm were molded.

第1回目のプレスは温度550℃で荷重160kgで行い、加圧
代Δtを30μm残した。次に、加圧荷重を低圧に切り換
え、同時に40℃/分で降温を行った。このときの荷重
は、降温に伴う部材(型、断熱材等)の収縮を補う動作
を行なうのに充分な大きさとした。
The first press was carried out at a temperature of 550 ° C. and a load of 160 kg, leaving a pressure margin Δt of 30 μm. Next, the pressurizing load was switched to a low pressure, and at the same time, the temperature was lowered at 40 ° C / min. The load at this time was set to be large enough to compensate for the contraction of the member (mold, heat insulating material, etc.) accompanying the temperature decrease.

第2回目のプレスは、転移温度に近い480℃において、
加圧残り代がほぼ零になるまで、プレスを行なった。こ
のときの圧力は前回に比較して若干低い120kg程度であ
り、加圧後は再度低圧を切り換え、転移温度まで徐冷を
行い、その後急冷を行って成形型からレンズを取り出し
た。
The second press at 480 ° C, which is close to the transition temperature,
Pressing was performed until the remaining pressure was almost zero. The pressure at this time was about 120 kg, which is slightly lower than the previous pressure, and after pressurization, the low pressure was switched again to gradually cool to the transition temperature, and then rapidly cool to take out the lens from the molding die.

上記の成形方法で得られたレンズを、フィゾー式干渉計
で干渉縞を測定した結果、干渉縞の乱れ、特に湾曲は認
められなかった。
As a result of measuring the interference fringes of the lens obtained by the above molding method with a Fizeau interferometer, the interference fringes were not disturbed, and no particular curvature was observed.

なお、上記成形例のように、温度550℃でプレスを行
い、ガラスが固化する転移温度(430℃)付近まで降温
した場合の、膨張係数の差によって発生する隙間は第3
図において、Δt:3.4μm、Δt1:1.5μm、Δt2:0.1μ
m程度生ずることになり、算出値で見る限り、Δt>Δ
t1+Δt2となり、ガラスに粘性流動が起こる温度域では
加圧し続けることによって、レンズの中央部に発生する
精度不良(縞の湾曲)は発生しないように思われる。
As in the above molding example, when pressing was performed at a temperature of 550 ° C. and the temperature was lowered to around the transition temperature (430 ° C.) at which glass solidifies, the gap generated by the difference in expansion coefficient was the third.
In the figure, Δt: 3.4μm, Δt 1 : 1.5μm, Δt 2 : 0.1μ
As a result of calculation, Δt> Δ
It becomes t 1 + Δt 2 , and it seems that the inaccuracy (curve of stripes) that occurs in the central part of the lens does not occur by continuing to pressurize in the temperature range where viscous flow occurs in the glass.

しかし、現実には徐冷工程において、胴型11,15、キャ
ビティダイ12,13およびレンズ14には、中央部と外周部
との間で温度差が生じ、外周部より内部方向へ順に冷却
され、ガラスの径方向の収縮が型により阻害され、転移
温度まで加圧し続けるとワレが発生し、また加圧を弱め
ても、干渉縞の湾曲が発生することになる。また、この
温度差を無くするような徐冷を行う場合には、徐冷に長
時間を要し、生産効率を極度に悪化させ、生産方式とし
て採用できない。
However, in reality, in the slow cooling process, a temperature difference occurs between the central portion and the outer peripheral portion of the barrel dies 11 and 15, the cavity dies 12 and 13, and the lens 14, and they are sequentially cooled inward from the outer peripheral portion. The contraction of the glass in the radial direction is hindered by the mold, and cracking occurs if pressure is continuously applied to the transition temperature, and even if the pressure is weakened, bending of interference fringes occurs. Further, in the case of carrying out slow cooling so as to eliminate this temperature difference, slow cooling requires a long time, and production efficiency is extremely deteriorated, so that it cannot be adopted as a production system.

そこで、上記実施例のように第2回目のプレスを行う際
に、Δt>Δt1+Δt2とする必要があるのである。
Therefore, it is necessary to satisfy Δt> Δt 1 + Δt 2 when the second pressing is performed as in the above embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、加圧を2回に分けて行
い、最初の加圧の際、それ以降発生するガラスの収縮量
以上の加圧代を残し、次に減圧した後に降温を行い、転
移温度近くで再度加圧を行うようにしたので、径の大き
いレンズおよびすべての形状のレンズにおいて干渉縞の
乱れが発生せず、形状精度の高いガラスレンズが得られ
るいう優れた効果を奏するものである。
As described above, according to the present invention, the pressurization is performed in two steps, and at the time of the first pressurization, a pressurizing amount equal to or more than the shrinkage amount of the glass that occurs thereafter is left, and then the temperature is reduced and then the temperature is lowered. By applying pressure again near the transition temperature, interference fringes do not occur in lenses with large diameters and lenses of all shapes, and it is possible to obtain a glass lens with high shape accuracy. It plays.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例によるガラスレンズ成形装置
全体の概略図、第2a図は、最初の加圧後の加圧代を残し
た状態を示す型の縦断面図、第2b図は再加圧を行って完
全に押し切った状態を示す型の縦断面図、第3図は第2
回目の加圧の前の状態を示す型の縦断面図である。 1……加熱成形室、1a……函体、2……上型、3……下
型、4……上部固定軸、5……加圧手段(下部固定
軸)、7……検出片、8……位置センサ、9,10……断熱
ベース、11,15……胴型、12,13……キャビティダイ、14
……被成形ガラス、16,17……ベース、Δt……加圧残
り代、Δt1,Δt2……キャビティダイと被成形ガラスの
隙間
FIG. 1 is a schematic view of an entire glass lens molding apparatus according to an embodiment of the present invention, FIG. 2a is a vertical cross-sectional view of a mold showing a state in which a pressure margin after the first pressure is left, and FIG. FIG. 3 is a vertical cross-sectional view of the mold showing a state in which the mold is completely pressed by re-pressurizing.
It is a longitudinal cross-sectional view of a mold showing a state before the second pressurization. 1 ... Heat molding chamber, 1a ... Box, 2 ... Upper mold, 3 ... Lower mold, 4 ... Upper fixed shaft, 5 ... Pressurizing means (lower fixed shaft), 7 ... Detection piece, 8 ... Position sensor, 9,10 ... Insulation base, 11,15 ... Body type, 12,13 ... Cavity die, 14
…… Glass to be molded, 16,17 …… Base, Δt …… Pressure remaining margin, Δt 1 , Δt 2 …… Gap between cavity die and glass to be molded

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】成形型に入れられ所定の温度に加熱された
ガラスの第1の加圧を行い、そのとき、この第1加圧後
の温度から転移温度までの降温の間に発生するガラスの
収縮量以上の加圧代を残し、 次に、加圧力を弱めて降温を行い、 ガラスの転移温度近くで、前記加圧残り代が零になるま
で再加圧し、 そして加圧力を弱めて転移温度まで徐冷し、更に冷却す
ることを特徴とするガラスレンズの成形方法。
1. A glass which is placed in a mold and heated to a predetermined temperature for a first pressurization, and at that time, a glass which is generated during a temperature decrease from the temperature after the first pressurization to a transition temperature. Then, the pressure is reduced by lowering the pressure, and the temperature is lowered again near the transition temperature of the glass until the remaining pressure is zero, and the pressure is reduced. A method for molding a glass lens, which comprises gradually cooling to a transition temperature and further cooling.
【請求項2】ガラスレンズのレンズ面に対応する成形面
を有する上型と下型を備えた成形型と、 加圧成形のために、前記上型と下型の少なくとも一方を
加圧するための加圧手段と、 第1加圧後の加圧残り代を設定するための、加圧手段ま
たは被加圧型の変位を検出する位置センサ、およびこの
位置センサからの信号に基づいて加圧手段を制御する制
御機構と、 被成形ガラスと成形型の温度調整手段とを具備すること
を特徴とするガラスレンズの成形装置。
2. A molding die having an upper die and a lower die having a molding surface corresponding to the lens surface of the glass lens, and for pressurizing at least one of the upper die and the lower die for pressure molding. The pressure applying means, the position sensor for detecting the displacement of the pressure applying means or the pressurizing die for setting the remaining pressure after the first pressure application, and the pressure applying means based on the signal from the position sensor. An apparatus for forming a glass lens, comprising: a control mechanism for controlling; and a means for adjusting the temperature of a glass to be formed and a forming die.
JP27510188A 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof Expired - Lifetime JPH07106917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27510188A JPH07106917B2 (en) 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27510188A JPH07106917B2 (en) 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof

Publications (2)

Publication Number Publication Date
JPH02124727A JPH02124727A (en) 1990-05-14
JPH07106917B2 true JPH07106917B2 (en) 1995-11-15

Family

ID=17550778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27510188A Expired - Lifetime JPH07106917B2 (en) 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof

Country Status (1)

Country Link
JP (1) JPH07106917B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349031C (en) * 2005-03-25 2007-11-14 莱阳市康友玻璃材料有限责任公司 Method for making automobile headlamp aspheric lens
CN113562961B (en) * 2021-07-12 2022-12-20 三瑞科技(江西)有限公司 Low-defective-rate glass insulator compression molding process

Also Published As

Publication number Publication date
JPH02124727A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
US4591373A (en) Method for molding high-precision glass products
US5275637A (en) Method of manufacturing a glass optical part
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JPH07106917B2 (en) Glass lens forming method and apparatus thereof
JPH0431328A (en) Mold structure for forming optical element and press-molding method
EP0599037A2 (en) Molding machine for making an optical element and method of making the same
JP2504817B2 (en) Optical element molding method
JP2000247653A (en) Metal mold for forming optical element and optical element
JPS61291427A (en) Molded lens and production thererof
JPS6379727A (en) Method for forming optical element
JPH0624992B2 (en) Mold for press lens and molding method thereof
JPH0248498B2 (en) KOGAKUBUHINNOSEIKEISOCHI
JP2954427B2 (en) Glass forming method
JPH01208334A (en) Molding of optical element and mold therefor
JPH02164730A (en) Optical element forming mold and method for forming optical element
JPH0455134B2 (en)
JPS62297229A (en) Forming of optical glass element
JPH0519490B2 (en)
JPH08133767A (en) Optical element forming method
JP2651260B2 (en) Manufacturing method of glass optical parts
JPH09286622A (en) Optical device producing device
JPH0372016B2 (en)
JPS63182223A (en) Method for molding glass lens
JPH0741327A (en) Optical element forming method
JPH10167737A (en) Forming of optical glass element and apparatus therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

EXPY Cancellation because of completion of term