JPH07106904A - Crystal vibrator - Google Patents

Crystal vibrator

Info

Publication number
JPH07106904A
JPH07106904A JP26783393A JP26783393A JPH07106904A JP H07106904 A JPH07106904 A JP H07106904A JP 26783393 A JP26783393 A JP 26783393A JP 26783393 A JP26783393 A JP 26783393A JP H07106904 A JPH07106904 A JP H07106904A
Authority
JP
Japan
Prior art keywords
crystal
container
oscillator
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26783393A
Other languages
Japanese (ja)
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP26783393A priority Critical patent/JPH07106904A/en
Publication of JPH07106904A publication Critical patent/JPH07106904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To provide a crystal vibrator which is applicable to an oscillator by controlling the inside atmosphere of an airtight container of the crystal vibrator in order to shorten the rise time of the oscillator. CONSTITUTION:The helium gas is used in an airtight container of a crystal oscillator and the pressure of this gas is set at 50-5000Pa. Otherwise the nitrogen gas or the dried air is used at 100-10000Pa. By controlling a heat transmission speed to a crystal vibrator piece fromt he container, the starting time of an oscillator can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】水晶振動子の容器内部の雰囲気に
関する。
[Industrial application] The present invention relates to an atmosphere inside a container of a crystal unit.

【0002】[0002]

【従来の技術】従来水晶振動子の容器内部の雰囲気は乾
燥空気、窒素ガス、アルゴンガス、の常圧又は加圧にす
るか、又は真空にするのが一般的であった。
2. Description of the Related Art Conventionally, the atmosphere inside the container of a crystal oscillator is generally atmospheric pressure or pressure of dry air, nitrogen gas, argon gas, or vacuum.

【0003】[0003]

【発明が解決しようとする課題】恒温槽を用いた高安定
水晶発振器に使用する厚み辷り水晶振動子において、初
期の立ち上がり時間を短縮しようとして恒温槽の電力を
大きくすると、発振周波数がオーバーシュートして立ち
上がり時間の短縮が困難であるという課題があった。
In a thick crystal oscillator used in a highly stable crystal oscillator using a constant temperature oven, if the power of the constant temperature oven is increased in order to shorten the initial rise time, the oscillation frequency overshoots. Therefore, there is a problem that it is difficult to shorten the rise time.

【0004】[0004]

【課題を解決するための手段】課題を解決する手段とし
て、水晶振動子の気密容器内部のガスをヘリウムガスに
し、その圧力を50〜5000Paに選定することによ
り、または窒素ガスまたは乾燥空気にし、その圧力を1
00〜10000Paに選定することにより容器から水
晶振動片への熱の伝達速度を調節することで、発振器の
立ち上がり時の発振周波数のオーバーシュートを軽減し
て立ち上がり時間の短縮を図り課題を解決した。
As means for solving the problems, the gas inside the airtight container of the crystal unit is helium gas, and the pressure is selected to be 50 to 5000 Pa, or nitrogen gas or dry air is used. The pressure is 1
By adjusting the heat transfer rate from the container to the crystal vibrating piece by selecting from 00 to 10000 Pa, the overshoot of the oscillation frequency at the time of the rise of the oscillator is reduced to shorten the rise time and solve the problem.

【0005】[0005]

【実施例】ガスの熱伝導率は、いずれも100℃におい
て空気=3.17×10-4W/cm・deg、窒素ガス
=3.12×10-4W/cm・deg、ヘリウムガス=
17.06×10-4W/cm・degである。空気と窒
素ガスの熱伝導率はほぼ等しいが、ヘリウムガスは明ら
かに熱伝導率が大きい。
[Examples] The thermal conductivities of gases are as follows: air = 3.17 × 10 −4 W / cm · deg, nitrogen gas = 3.12 × 10 −4 W / cm · deg, helium gas = 100 ° C.
It is 17.06 × 10 −4 W / cm · deg. The thermal conductivity of air and nitrogen gas are almost equal, but the thermal conductivity of helium gas is obviously high.

【0006】発振周波数を決定している素子は、水晶振
動子の中の水晶片である。恒温槽を用いた発振器におい
て、その立ち上がり特性を決定する要素は、水晶片を如
何に早く万辺なく設定した温度になるようにするかにか
かっている。水晶片への熱の伝達の経路は、容器壁面か
ら容器内の雰囲気を通して伝わる伝導熱、容器壁面から
輻射されて伝わる輻射熱、水晶片の支持部から伝わる伝
導熱、等がある。
The element that determines the oscillation frequency is the crystal piece in the crystal unit. In an oscillator using a thermostatic chamber, the factor that determines the rising characteristics depends on how quickly the crystal piece reaches a temperature that is set to everywhere. The heat transfer path to the crystal piece includes conduction heat transmitted from the container wall surface through the atmosphere in the container, radiant heat radiated from the container wall surface, and conduction heat transferred from the support portion of the crystal piece.

【0007】支持部からの熱及び容器壁面からの輻射熱
はその水晶振動子で固有に決まってしまう。この熱の内
輻射熱は小さく、ほとんどが支持部からの熱である。支
持部から供給される熱は、水晶片には支持部との接続部
から供給される。このことは、水晶片を支持部との接続
部から局部的に加熱する結果になる。熱伝導の点から考
察すると、熱伝導率は水晶=0.14W/cm・de
g,真ちゅう=1.4W/cm・degと水晶は通常支
持部に使用される金属に比べて一桁悪い。水晶の熱伝導
の悪さは、単に熱伝達の遅れのみならず水晶片に歪を生
じ、周波数変動の要因となるので、出来るだけ歪を生じ
させないようにすることが必要である。このためには水
晶片全体を一様に加熱する必要がある。
The heat from the supporting portion and the radiant heat from the wall surface of the container are uniquely determined by the crystal oscillator. The radiant heat of this heat is small, and most of it is the heat from the supporting portion. The heat supplied from the support part is supplied to the crystal piece from the connection part with the support part. This results in local heating of the crystal piece from the connection with the support. From the viewpoint of thermal conductivity, the thermal conductivity is quartz = 0.14 W / cm · de.
g, brass = 1.4 W / cm · deg, which is an order of magnitude worse than the metal used for the support. Poor heat conduction of the crystal not only causes a delay in heat transfer but also causes distortion in the crystal piece and causes frequency fluctuations. Therefore, it is necessary to prevent distortion as much as possible. For this purpose, it is necessary to uniformly heat the entire crystal piece.

【0008】水晶片全体を一様に加熱するには、水晶片
への熱の伝達の度合いの一番大きい雰囲気による伝導熱
の利用が肝心である。この気密容器内の雰囲気を介して
の伝導熱の量は、支持部から水晶片への伝達熱によって
生ずる不具合を相殺するだけの熱量にする必要がある。
水晶振動子の気密容器内のガス、空気、窒素ガス、ヘリ
ウムガスについて考察すれば、図1に充填ガスの種類し
充填気圧に対する周波数の立ち上がり時間、即ち通電開
始から周波数の安定する迄の時間の関係を示す。このグ
ラフから、窒素ガス、乾燥空気では、100〜1000
0Paが適当であり、ヘリュームガスでは、50〜50
00Paが適当である。
In order to uniformly heat the entire crystal piece, it is important to use conduction heat in an atmosphere having the highest degree of heat transfer to the crystal piece. The amount of conduction heat through the atmosphere in the airtight container needs to be sufficient to offset the trouble caused by the heat transferred from the support portion to the crystal piece.
Considering the gas, air, nitrogen gas, and helium gas in the airtight container of the crystal unit, Fig. 1 shows the rising time of the frequency with respect to the type of the filling gas and the filling pressure, that is, the time from the start of energization to the stabilization of the frequency. Show the relationship. From this graph, with nitrogen gas and dry air, 100 to 1000
0 Pa is suitable, and 50 ~ 50 for Helium gas.
00 Pa is suitable.

【0009】図2に示す様に、充填ガスの気圧と水晶振
動子のCI(クリスタル インピーダンス)の関係を示
す。このグラフによれば、充填ガスの気圧が低い方がC
Iが低くなることを示している。しかし、10000P
aより充填ガスの気圧が下がってもCIはあまり下がら
なくなる。このことから、水晶振動子の充填ガスの気圧
は10000Pa以下で使用する。以上図1及び図2か
ら、水晶振動子の機密容器内の充填ガスの種類とその気
圧は、ヘリウムガスの場合は50〜5000Pa、窒素
ガス又は乾燥空気の場合は100〜10000Paが適
当である。
As shown in FIG. 2, the relationship between the atmospheric pressure of the filling gas and the CI (crystal impedance) of the crystal unit is shown. According to this graph, the lower the atmospheric pressure of the filling gas is C
It shows that I becomes low. But 10,000P
Even if the pressure of the filling gas becomes lower than that of a, the CI does not decrease much. From this, the pressure of the filling gas of the crystal oscillator is 10,000 Pa or less. From FIG. 1 and FIG. 2 described above, it is appropriate that the type and pressure of the filling gas in the airtight container of the crystal unit be 50 to 5000 Pa in the case of helium gas and 100 to 10000 Pa in the case of nitrogen gas or dry air.

【0010】[0010]

【発明の効果】水晶振動子の気密容器の雰囲気を調整す
ることにより、恒温槽を使用した発振器において、発振
周波数の立ち上がり特性を著しく改善出来たので、この
水晶振動子を用いることにより恒温槽を使用した発振器
の生産性が著しく向上し、コストダウンが実現されただ
けでなく、発振器の特性が安定化したので、信頼性も向
上し安価な製品が提供出来るようになった。
EFFECTS OF THE INVENTION By adjusting the atmosphere of the airtight container of the crystal oscillator, the rising characteristic of the oscillation frequency can be remarkably improved in the oscillator using the constant temperature oven. Not only was the productivity of the oscillator used greatly improved and the cost was reduced, but the characteristics of the oscillator were stabilized, so reliability was improved and inexpensive products could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガスの種類と気密容器内の圧力による発振器の
立ち上がり時間の関係をし示すグラフである。
FIG. 1 is a graph showing the relationship between the rise time of an oscillator depending on the type of gas and the pressure in an airtight container.

【図2】ガスの圧力と水晶振動子のCIの関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between gas pressure and CI of a crystal resonator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密封された容器に水晶振片を収容して成
る水晶振動子において、容器から水晶振動片への熱の伝
達速度を調節するため気密容器内部の雰囲気を変化させ
たことを特徴とする水晶振動子。
1. A crystal unit comprising a crystal swing piece housed in a hermetically sealed container, wherein an atmosphere inside the airtight container is changed in order to adjust a heat transfer rate from the container to the crystal swing plate. And a crystal unit.
【請求項2】 容器内部の雰囲気を圧力50〜5000
Paのヘリウムガスにしたことを特徴とする特許請求の
範囲第1項記載の水晶振動子。
2. The atmosphere inside the container is set to a pressure of 50 to 5000.
The crystal resonator according to claim 1, wherein the helium gas is Pa.
【請求項3】 容器内部の雰囲気を圧力100〜100
00Paの窒素ガスまたは乾燥空気にしたことを特徴と
する特許請求の範囲第1項記載の水晶振動子。
3. The pressure inside the container is 100 to 100.
The crystal unit according to claim 1, wherein nitrogen gas or dry air of 00 Pa is used.
JP26783393A 1993-09-30 1993-09-30 Crystal vibrator Pending JPH07106904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26783393A JPH07106904A (en) 1993-09-30 1993-09-30 Crystal vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26783393A JPH07106904A (en) 1993-09-30 1993-09-30 Crystal vibrator

Publications (1)

Publication Number Publication Date
JPH07106904A true JPH07106904A (en) 1995-04-21

Family

ID=17450258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26783393A Pending JPH07106904A (en) 1993-09-30 1993-09-30 Crystal vibrator

Country Status (1)

Country Link
JP (1) JPH07106904A (en)

Similar Documents

Publication Publication Date Title
WO1997003236A3 (en) System and method for thermal processing of a semiconductor substrate
JP4354347B2 (en) Crystal oscillator
EP1476796A4 (en) Oscillator with frequency stabilizing circuit and method of constructing same
US4259606A (en) Fast warm-up oven controlled piezoelectric oscillator
JPH04196528A (en) Magnetron etching system
US20080314320A1 (en) Chamber Mount for High Temperature Application of AIN Heaters
JPH07106904A (en) Crystal vibrator
JPH06338751A (en) Crystal resonator
JPH0750523A (en) Constant temperature control crystal oscillator
JP2002045683A (en) Substrate processing device
JP2000164588A (en) Substrate-heating method and device
TW202228258A (en) Oven controlled crystal oscillator
JPS622811Y2 (en)
JPH097960A (en) Method and apparatus for plasma cvd processing
US4845337A (en) Ovenized oscillator assembly
JP3153658B2 (en) Plasma processing method
SU974351A1 (en) Thermostat for quartz resonator
JP2022122459A (en) crystal oscillator
RU1637622C (en) Two-frequency stabilized gaz laser
JPH058271B2 (en)
JP2007043549A (en) Frequency adjustment method of piezo-electric oscillating element and frequency adjustment device of piezo-electric oscillating element
JPH056654Y2 (en)
JPS63124424A (en) Heating method for sample
JPS63164424A (en) Vapor growth method
JPH0130426B2 (en)