JPH06338751A - Crystal resonator - Google Patents

Crystal resonator

Info

Publication number
JPH06338751A
JPH06338751A JP15300293A JP15300293A JPH06338751A JP H06338751 A JPH06338751 A JP H06338751A JP 15300293 A JP15300293 A JP 15300293A JP 15300293 A JP15300293 A JP 15300293A JP H06338751 A JPH06338751 A JP H06338751A
Authority
JP
Japan
Prior art keywords
pressure
crystal
container
oscillator
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15300293A
Other languages
Japanese (ja)
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP15300293A priority Critical patent/JPH06338751A/en
Publication of JPH06338751A publication Critical patent/JPH06338751A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a crystal resonator adapted to an oscillator by adjusting the atmosphere in the air-tight vessel of the crystal resonator in onder to reduce the overshoot of the oscillation frequency at the time of the rise of an oscillator to shorten the rise time. CONSTITUTION:Gaseous argon is used as gas in the air-tight vessel of the crystal resonator and its pressure is set to 50000+ or -10000Pa or gaseous nitrogen or dry air is used as this gas and its pressure is set to 35000+ or -75000Pa to control the transmission speed of heat from the vessel to the crystal resonator piece, thereby reducing the overshoot of the oscillation frequency at the time of the rise of the oscillator to shorten the rise time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】水晶振動子の容器内部の雰囲気に
関する。
[Industrial application] The present invention relates to an atmosphere inside a container of a crystal unit.

【0002】[0002]

【従来の技術】従来水晶振動子の容器内部の雰囲気は乾
燥空気、窒素ガス、アルゴンガス、の常圧又は加圧にす
るか、又は真空にするのが一般的であった。
2. Description of the Related Art Conventionally, the atmosphere inside the container of a crystal oscillator has generally been atmospheric pressure or pressure of dry air, nitrogen gas, argon gas, or vacuum.

【0003】[0003]

【発明が解決しようとする課題】恒温槽を用いた高安定
水晶発振器に使用する厚み辷り水晶振動子において、初
期の立ち上がり時間を短縮しようとして恒温槽の電力を
大きくすると、発振周波数がオーバーシュートして立ち
上がり時間の短縮が困難であるという課題があった。
In a thick crystal oscillator used in a highly stable crystal oscillator using a constant temperature oven, the oscillation frequency overshoots when the power of the constant temperature oven is increased in order to shorten the initial rise time. Therefore, there is a problem that it is difficult to shorten the rise time.

【0004】[0004]

【課題を解決するための手段】課題を解決する手段とし
て、水晶振動子の気密容器内部のガスをアルゴンガスに
し、その圧力を50000±10000Paに選定する
ことにより、または窒素ガスまたは乾燥空気にし、その
圧力を35000±7500Paに選定することにより
容器から水晶振動片への熱の伝達速度を調節すること
で、発振器の立ち上がり時の発振周波数のオーバーシュ
ートを軽減して立ち上がり時間の短縮を図り課題を解決
した。
As means for solving the problems, as a gas in the airtight container of the crystal unit, argon gas is used, and the pressure is selected to be 50,000 ± 10000 Pa, or nitrogen gas or dry air is used. By adjusting the heat transfer rate from the container to the crystal vibrating piece by selecting the pressure to be 35000 ± 7500 Pa, the overshoot of the oscillation frequency at the time of the rise of the oscillator is reduced and the rise time is shortened. Settled.

【0005】[0005]

【実施例】ガスの熱伝導率は、空気=2.6×10-4
/cm・deg、窒素ガス=2.61×10-4W/cm
・deg、アルゴンガス=1.77×10-4W/cm・
degである。空気と窒素ガスの熱伝導率はほぼ等しい
が、アルゴンガスは明らかに熱伝導率が小さい。
[Example] The thermal conductivity of gas is air = 2.6 × 10 −4 W
/ Cm · deg, nitrogen gas = 2.61 × 10 −4 W / cm
・ Deg, argon gas = 1.77 × 10 -4 W / cm ・
It is deg. The thermal conductivities of air and nitrogen gas are almost equal, but that of argon gas is obviously low.

【0006】発振周波数を決定している素子は、水晶振
動子の中の水晶片である。恒温槽を用いた発振器におい
て、その立ち上がり特性を決定する要素は、水晶片を如
何に早く万辺なく設定した温度になるようにするかにか
かっている。水晶片への熱の伝達の経路は、容器壁面か
ら容器内の雰囲気を通して伝わる伝導熱、容器壁面から
輻射されて伝わる輻射熱、水晶片の支持部から伝わる伝
導熱、等がある。
The element that determines the oscillation frequency is the crystal piece in the crystal unit. In an oscillator using a constant temperature oven, the factor that determines the rising characteristics depends on how quickly the crystal piece reaches a temperature that is set to everywhere. The heat transfer path to the crystal piece includes conductive heat transmitted from the container wall surface through the atmosphere in the container, radiant heat radiated from the container wall surface, and conductive heat transferred from the support part of the crystal piece.

【0007】支持部からの熱及び容器壁面からの輻射熱
はその水晶振動子で固有に決まってしまう。この熱の内
輻射熱は小さく、ほとんどが支持部からの熱である。支
持部から供給される熱は、水晶片には支持部との接続部
から供給される。このことは、水晶片を支持部との接続
部から局部的に加熱する結果になる。熱伝導の点から考
察すると、熱伝導率は水晶=0.14W/cm・de
g,真ちゅう=1.4W/cm・degと水晶は通常支
持部に使用される金属に比べて一桁悪い。水晶の熱伝導
の悪さは、単に熱伝達の遅れのみならず水晶片に歪を生
じ、周波数変動の要因となるので、出来るだけ歪を生じ
させないようにすることが必要である。このためには水
晶片全体を一様に加熱する必要がある。
The heat from the supporting portion and the radiant heat from the wall surface of the container are uniquely determined by the crystal oscillator. The radiant heat of this heat is small, and most of it is heat from the supporting portion. The heat supplied from the support part is supplied to the crystal piece from the connection part with the support part. This results in local heating of the crystal piece from the connection with the support. From the viewpoint of thermal conductivity, the thermal conductivity is quartz = 0.14 W / cm · de.
g, brass = 1.4 W / cm · deg, which is an order of magnitude worse than the metal used for the support. Poor heat conduction of the crystal not only causes a delay in heat transfer but also causes distortion in the crystal piece and causes frequency fluctuations. Therefore, it is necessary to prevent distortion as much as possible. For this purpose, it is necessary to uniformly heat the entire crystal piece.

【0008】水晶片全体を一様に加熱するには、水晶片
への熱の伝達の度合いの一番大きい雰囲気による伝導熱
の利用が肝心である。この気密容器内の雰囲気を介して
の伝導熱の量は、支持部から水晶片への伝達熱によって
生ずる不具合を相殺するだけの熱量にする必要がある。
水晶振動子の気密容器内のガス、空気、窒素ガス、アル
ゴンガスについて考察すれば、図1に示す様に圧力を1
01080Paにした場合は、周波数の立ち上がりは早
いが一度オーバーシュートして下がって来るので、安定
になるまでに時間がかかる。これの原因は、気密容器内
の雰囲気による水晶片への熱の伝達が大きい為で、対策
は気密容器内の雰囲気の熱伝導率を小さくすればよい。
方法は、ガスの圧力を下げて熱伝導率を調節して、オー
バーシュートを起こさず、しかも支持部からの熱にバラ
ンスして水晶片全体に熱を供給することで解決した。
In order to uniformly heat the entire crystal piece, it is essential to use conduction heat in an atmosphere having the highest degree of heat transfer to the crystal piece. The amount of conduction heat through the atmosphere in the airtight container needs to be sufficient to offset the trouble caused by the heat transferred from the support portion to the crystal piece.
Considering the gas, air, nitrogen gas, and argon gas in the airtight container of the crystal unit, the pressure is set to 1 as shown in FIG.
When the pressure is set to 01080 Pa, the frequency rises quickly, but since it overshoots once and then falls, it takes time to stabilize. The cause of this is that heat is largely transferred to the crystal piece by the atmosphere in the airtight container, and the countermeasure may be to reduce the thermal conductivity of the atmosphere in the airtight container.
The method was solved by lowering the pressure of the gas and adjusting the thermal conductivity so as not to cause overshoot and to supply heat to the entire crystal piece in balance with the heat from the support.

【0009】アルゴンガスについては、50000±1
0000Paで丁度バランスする。乾燥空気、または窒
素ガスについては、アルゴンガスより熱伝導率が大きい
ので、圧力がもっと下がって、35000±7500P
aで丁度バランスする。ガスの選定は、特性上のこと以
外に通常入手しやすいこと比較的価格が安価で有ること
も考慮した。特性上からだけならば、クリプトンガスは
最適である。クリプトンガスは熱伝導率が0.94×1
-4W/cm・degであるから、圧力は94150±
15000Paで丁度バランスする。圧力については特
に減圧も加圧も必要とせず101080Paで使用でき
る。
For argon gas, 50000 ± 1
Just balance at 0000Pa. The thermal conductivity of dry air or nitrogen gas is higher than that of argon gas, so the pressure is much lower and 35000 ± 7500P.
Just balance with a. In addition to the characteristics, the gas was selected considering that it is usually available and that the price is relatively low. Krypton gas is the best choice because of its characteristics. The thermal conductivity of krypton gas is 0.94 × 1
Since it is 0 −4 W / cm · deg, the pressure is 94150 ±
Just balance at 15000Pa. Regarding pressure, neither depressurization nor pressurization is required, and the pressure can be used at 101080 Pa.

【0010】[0010]

【発明の効果】水晶振動子の気密容器の雰囲気を調整す
ることにより、恒温槽を使用した発振器において、発振
周波数の立ち上がり特性を著しく改善出来たので、この
水晶振動子を用いることにより恒温槽を使用した発振器
の生産性が著しく向上し、コストダウンが実現されただ
けでなく、発振器の特性が向上安定化したので、信頼性
も向上し安価な製品が提供出来るようになった。
EFFECTS OF THE INVENTION By adjusting the atmosphere of the airtight container of the crystal oscillator, the rising characteristic of the oscillation frequency can be remarkably improved in the oscillator using the constant temperature oven. Not only was the productivity of the oscillator used greatly improved and the cost was reduced, but the oscillator characteristics were improved and stabilized, so reliability was improved and inexpensive products could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガスの種類と気密容器内の圧力による発振器の
立ち上がりの周波数のオーバーシュートの関係をし示す
グラフである。
FIG. 1 is a graph showing a relationship between an overshoot of a rising frequency of an oscillator depending on a type of gas and a pressure in an airtight container.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密封された容器に水晶振片を収容して成
る水晶振動子において、容器から水晶振動片への熱の伝
達速度を調節するため気密容器内部の雰囲気を変化させ
たことを特徴とする水晶振動子。
1. A crystal unit comprising a quartz oscillating piece housed in a hermetically sealed container, wherein an atmosphere inside the airtight container is changed to adjust a heat transfer rate from the container to the crystal oscillating piece. And a crystal unit.
【請求項2】 容器内部の雰囲気を圧力50000±1
0000Paのアルゴンガスにしたことを特徴とする特
許請求の範囲第1項の水晶振動子。
2. The atmosphere inside the container is set to a pressure of 50,000 ± 1.
The quartz oscillator according to claim 1, wherein the argon gas is 0000 Pa.
【請求項3】 容器内部の雰囲気を圧力35000±7
500Paの窒素ガスまたは乾燥空気にしたことを特徴
とする特許請求の範囲第1項の水晶振動子。
3. The atmosphere inside the container is set to a pressure of 35000 ± 7.
The crystal oscillator according to claim 1, wherein nitrogen gas or dry air of 500 Pa is used.
JP15300293A 1993-05-31 1993-05-31 Crystal resonator Pending JPH06338751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15300293A JPH06338751A (en) 1993-05-31 1993-05-31 Crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15300293A JPH06338751A (en) 1993-05-31 1993-05-31 Crystal resonator

Publications (1)

Publication Number Publication Date
JPH06338751A true JPH06338751A (en) 1994-12-06

Family

ID=15552805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15300293A Pending JPH06338751A (en) 1993-05-31 1993-05-31 Crystal resonator

Country Status (1)

Country Link
JP (1) JPH06338751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643632A1 (en) 2004-10-01 2006-04-05 Fujitsu Limited Oscillator and semiconductor device
WO2011030572A1 (en) * 2009-09-14 2011-03-17 株式会社村田製作所 Crystal oscillating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643632A1 (en) 2004-10-01 2006-04-05 Fujitsu Limited Oscillator and semiconductor device
US7429900B2 (en) 2004-10-01 2008-09-30 Fujitsu Limited Oscillator and semiconductor device
WO2011030572A1 (en) * 2009-09-14 2011-03-17 株式会社村田製作所 Crystal oscillating device
CN102484465A (en) * 2009-09-14 2012-05-30 株式会社村田制作所 Crystal oscillating device
JP5093355B2 (en) * 2009-09-14 2012-12-12 株式会社村田製作所 Crystal oscillator
TWI449331B (en) * 2009-09-14 2014-08-11 Murata Manufacturing Co Crystal Oscillator

Similar Documents

Publication Publication Date Title
WO1997003236A3 (en) System and method for thermal processing of a semiconductor substrate
EP1476796A4 (en) Oscillator with frequency stabilizing circuit and method of constructing same
JP4354347B2 (en) Crystal oscillator
JP2000036490A (en) Plasma processor and method therefor
JPH04196528A (en) Magnetron etching system
JP2007006270A (en) Piezoelectric oscillator
US6701790B2 (en) Temperature regulator for use with a pressure sensing device
US20080314320A1 (en) Chamber Mount for High Temperature Application of AIN Heaters
JPH06338751A (en) Crystal resonator
US3919968A (en) Reaction device for pyrolytic deposition of semiconductor material
JPH07106904A (en) Crystal vibrator
US5386432A (en) Ring laser angular rate sensor getter mounting clip
JPS63196033A (en) Vapor growth device
JPH0750523A (en) Constant temperature control crystal oscillator
US20050006374A1 (en) Systems for supporting ceramic susceptors
JPS6355614U (en)
JPH066120A (en) Frequency adjustment device for dielectric resonator
JPS622811Y2 (en)
JP2565156Y2 (en) Semiconductor manufacturing apparatus and wafer mounting table thereof
US4845337A (en) Ovenized oscillator assembly
JP2022122459A (en) crystal oscillator
JPH09232772A (en) Hermetic seal of case
WO2024050842A1 (en) Package structure and electronic device
JPH04122045A (en) Clamp device of wafer and lamp method
RU1637622C (en) Two-frequency stabilized gaz laser