JPH097960A - Method and apparatus for plasma cvd processing - Google Patents

Method and apparatus for plasma cvd processing

Info

Publication number
JPH097960A
JPH097960A JP18112395A JP18112395A JPH097960A JP H097960 A JPH097960 A JP H097960A JP 18112395 A JP18112395 A JP 18112395A JP 18112395 A JP18112395 A JP 18112395A JP H097960 A JPH097960 A JP H097960A
Authority
JP
Japan
Prior art keywords
plasma
frequency power
coil
high frequency
generating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18112395A
Other languages
Japanese (ja)
Inventor
Kazuyuki Toyoda
一行 豊田
Tsutomu Tanaka
田中  勉
Sadayuki Suzuki
貞之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP18112395A priority Critical patent/JPH097960A/en
Publication of JPH097960A publication Critical patent/JPH097960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To make it possible to perform a CVD process in a wide pressure range from low to high pressures by altering the state of the change of the peak value of high-frequency power at the first period of the high-frequency power applied to a plasma generating coil, and electronically controlling the temperature of the plasma. CONSTITUTION: A plasma generating coil 11 is wound on the periphery of a cylinder 2, and a high-frequency power source 20 for the coil is connected to the one end of the coil 11 via a matching unit 19. The high-frequency power for generating a plasma is periodically modulated. The frequency of the fundamental wave of the high-frequency power periodically modulated applied to the coil 11 is suitably selected according to the type of the substrate to be treated and the specification of the treatment. The method of the modulation is set as one of plasma CVD process conditions similar to the pressure and the flow rate of the reactive gas. Thus, the plasma CVD can be executed based on the pressure of a wide range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造装置の1つで
あり、反応性ガスをプラズマ状態とし、このプラズマを
利用してウェーハ、ガラス基板等被処理基板上に薄膜を
生成するプラズマCVD方法及び装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is one of semiconductor manufacturing apparatuses, and a plasma CVD method in which a reactive gas is brought into a plasma state and a thin film is formed on a substrate to be processed such as a wafer or a glass substrate by using the plasma. And the device.

【0002】[0002]

【従来の技術】プラズマCVD(Chemical V
apor Deposition)に於ける薄膜生成の
反応機構は複雑である為、現在でもその機構は明確に把
握されていない。その主な原因は、プラズマCVDで使
用する反応性ガスが多原子分子であり、その反応系につ
いて気相反応と被処理基板の表面反応の両者を考慮しな
ければならない為である。
2. Description of the Related Art Plasma CVD (Chemical V
Since the reaction mechanism of thin film formation in apor Deposition) is complicated, the mechanism is not clearly understood even now. The main reason for this is that the reactive gas used in plasma CVD is a polyatomic molecule, and it is necessary to consider both the gas phase reaction and the surface reaction of the substrate to be processed in the reaction system.

【0003】プラズマCVDの装置としては、平行平板
型やECRが一般的に利用されている。
As a plasma CVD apparatus, a parallel plate type or ECR is generally used.

【0004】平行平板型は最も広く利用されているもの
で、反応室内部に設置された2枚の平板電極間に高周波
電力を印加してプラズマを生成して、基板載置台上の被
処理基板表面に薄膜を生成するものである。
The parallel plate type is the most widely used type. High frequency power is applied between two plate electrodes installed in the reaction chamber to generate plasma, and the substrate to be processed on the substrate mounting table is processed. It produces a thin film on the surface.

【0005】平行平板電極装置に於けるCVDプロセス
の反応室の圧力は、通常0.1〜10 Torr であり、比
較的高い領域で使用される。
The pressure in the reaction chamber of the CVD process in the parallel plate electrode device is usually 0.1 to 10 Torr, which is used in a relatively high region.

【0006】又CVDによる膜質の改善やパウダー発生
の抑制等の為に、パルス放電が利用される場合もある。
Further, pulse discharge may be used to improve the film quality by CVD or to suppress the generation of powder.

【0007】ECRは低圧で高密度のプラズマが生成で
きる為、特に低圧化が必要なCVDプロセスに利用され
る。装置の構造としては、平板電極型と比較した場合、
反応室内部に電極が不要な為、反応室内部は単純な構造
となるが、反応室外にマイクロ波を導入する為の導波管
や磁界生成用のコイルが必要な為、全体として複雑にな
る。又均一で大面積のプラズマ生成には向いていない。
Since ECR can generate a high density plasma at a low pressure, it is used for a CVD process which requires a particularly low pressure. As for the structure of the device, when compared with the plate electrode type,
Since no electrode is required inside the reaction chamber, the inside of the reaction chamber has a simple structure, but it is complicated as a whole because a waveguide for introducing microwaves and a coil for magnetic field generation are required outside the reaction chamber. . Further, it is not suitable for uniform and large-area plasma generation.

【0008】[0008]

【発明が解決しようとする課題】上記した平行平板電極
型のプラズマCVD装置では、低圧力でのCVDプロセ
スが不利であると共に、反応室の内部に電極を設置する
為、電極による薄膜への不純物の影響が懸念される。
In the plasma CVD apparatus of parallel plate electrode type described above, the CVD process at low pressure is disadvantageous, and since the electrode is installed inside the reaction chamber, impurities on the thin film by the electrode are formed. Is concerned about the impact of.

【0009】又、ECR装置では、被処理基板の大口径
化への対応が困難であり、CVDのプロセス圧力も低圧
側のみで、許容圧力範囲が狭い等の問題点がある。更に
装置の構成が大掛かりになると共に、パルス放電を利用
する為にはクライストロン発振器を利用しなければなら
ず、低コスト化も困難である。
Further, in the ECR apparatus, it is difficult to cope with an increase in the diameter of the substrate to be processed, and the process pressure of the CVD is only on the low pressure side, and the allowable pressure range is narrow. In addition, the structure of the device becomes large, and the klystron oscillator must be used in order to use the pulse discharge, and it is difficult to reduce the cost.

【0010】本発明は斯かる実情に鑑み、プラズマ発生
源としてコイルを用いて、低圧から高圧迄の広い圧力範
囲でCVDプロセスを可能とし、又プラズマ発生用の高
周波電力を変調する為に必要な手段を具備し、低コスト
化とプロセスマージンを広げることができるプラズマC
VD方法及びその装置を提供するものである。
In view of such circumstances, the present invention enables a CVD process in a wide pressure range from low pressure to high pressure by using a coil as a plasma generation source, and is necessary for modulating high frequency power for plasma generation. Plasma C that is equipped with means and can reduce the cost and widen the process margin
A VD method and an apparatus thereof are provided.

【0011】[0011]

【課題を解決するための手段】本発明は、プラズマ発生
用コイルに高周波電力を印加してプラズマを発生させ、
プラズマを利用してCVDを行う方法に於いて、前記プ
ラズマ発生用コイルに印加する高周波電力の1周期に於
ける高周波電力の波高値の変化の態様を変更して、プラ
ズマの電子温度制御を行うプラズマCVD方法、又真空
室と、真空室に設けられた被処理基板の温度制御が可能
な被処理基板載置台と、プラズマ発生用コイルと、該プ
ラズマ発生用コイルに接続されたコイル用高周波電源を
具備し、前記真空室を排気可能とすると共に、真空室に
反応性ガスを導入可能としたプラズマCVD装置に於い
て、前記コイル用高周波電源が高周波電力を周期的に変
調する発振部を具備したプラズマCVD装置、更にプラ
ズマ発生用コイルの高さ方向の位置を任意に変更できる
手段を具備したプラズマCVD装置に係るものである。
According to the present invention, high frequency power is applied to a plasma generating coil to generate plasma,
In the method of performing CVD using plasma, the electron temperature control of plasma is performed by changing the mode of change of the peak value of the high frequency power in one cycle of the high frequency power applied to the plasma generating coil. Plasma CVD method, vacuum chamber, target substrate mounting table provided in vacuum chamber for controlling temperature of target substrate, plasma generating coil, and high frequency power source for coil connected to the plasma generating coil In a plasma CVD apparatus capable of evacuating the vacuum chamber and introducing a reactive gas into the vacuum chamber, an oscillating unit for periodically modulating high frequency power by the high frequency power supply for coils is provided. The present invention also relates to a plasma CVD apparatus provided with a means capable of arbitrarily changing the position of the plasma generating coil in the height direction.

【0012】[0012]

【作用】高周波電力が周期的に変調されていることか
ら、放電電流が時間的に変化し、電子温度が時間的に変
化するので、プラズマの励起種の割合が変化し、エッチ
ング特性が変わる。
Since the high frequency power is periodically modulated, the discharge current changes with time and the electron temperature changes with time, so that the ratio of the excited species of plasma changes and the etching characteristics change.

【0013】[0013]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1、図2に於いて、導電材料で且気密構
造の真空容器1の上部に、該真空容器1と同心に石英、
セラミックス等の絶縁材料から成る円筒2が気密に連設
され、該円筒2の上端は導電材料又は絶縁材料の蓋3で
気密に閉塞され、前記真空容器1、円筒2、蓋3で囲繞
される空間は気密な真空室14を形成している。
In FIGS. 1 and 2, quartz is concentrically formed on the vacuum container 1 which is made of a conductive material and has an airtight structure.
A cylinder 2 made of an insulating material such as ceramics is connected in an airtight manner, and an upper end of the cylinder 2 is airtightly closed by a lid 3 made of a conductive material or an insulating material and surrounded by the vacuum container 1, the cylinder 2 and the lid 3. The space forms an airtight vacuum chamber 14.

【0015】前記蓋3には前記真空室14に反応ガスを
導入するガス導入管4が連通され、前記真空容器1の底
面には排気管5が連通し、該排気管5には真空ポンプ6
が接続され、又、前記真空容器1の内部底部には絶縁材
7を介して温度調節が可能な平板電極8が設けられてい
る。該平板電極8はウェーハ、ガラス基板等の被処理基
板16が載置されるものであり、該被処理基板16を所
要の温度に加熱することができ、又前記平板電極8には
整合器9を介して電極用高周波電源10が接続されてい
る。
A gas introducing pipe 4 for introducing a reaction gas into the vacuum chamber 14 is connected to the lid 3, an exhaust pipe 5 is connected to the bottom surface of the vacuum container 1, and a vacuum pump 6 is connected to the exhaust pipe 5.
, And a plate electrode 8 whose temperature can be adjusted via an insulating material 7 is provided on the inner bottom of the vacuum container 1. A substrate 16 to be processed such as a wafer or a glass substrate is placed on the plate electrode 8, and the substrate 16 to be processed can be heated to a required temperature. The electrode high frequency power source 10 is connected via the.

【0016】前記円筒2の周囲に、プラズマ発生用コイ
ル11が巻設され、該プラズマ発生用コイル11の一端
に整合器19を介してコイル用高周波電源20が接続さ
れている。前記プラズマ発生用コイル11は円筒2に対
して昇降可能に設けられていると共に図示しない昇降手
段によりその位置を変更できる様になっている。又、前
記コイル用高周波電源20は後述する様に変調された高
周波電力を出力できる様な発振部を具備している。
A plasma generating coil 11 is wound around the cylinder 2, and a coil high frequency power source 20 is connected to one end of the plasma generating coil 11 via a matching unit 19. The plasma generating coil 11 is provided so as to be able to move up and down with respect to the cylinder 2, and its position can be changed by an elevating means (not shown). The coil high-frequency power source 20 has an oscillating unit capable of outputting modulated high-frequency power as described later.

【0017】図3はプラズマ発生用コイル11に印加す
る高周波電力を出力するコイル用高周波電源20の発振
部の一例を示しており、該コイル用高周波電源20の発
振部は、主に基本波発生器21、該基本波発生器21に
接続された信号合成器22、該信号合成器22に接続さ
れた増幅器23、前記信号合成器22に接続された変調
波発生器24から構成されている。
FIG. 3 shows an example of the oscillating section of the coil high-frequency power source 20 which outputs the high-frequency power applied to the plasma generating coil 11, and the oscillating section of the coil high-frequency power source 20 mainly generates a fundamental wave. And a signal synthesizer 22 connected to the fundamental wave generator 21, an amplifier 23 connected to the signal synthesizer 22, and a modulated wave generator 24 connected to the signal synthesizer 22.

【0018】前記基本波発生器21から出力される定常
サインカーブ波形(図4参照)の高周波電力が前記信号
合成器22に入力されると共に前記変調波発生器24か
らも変調信号が入力され、前記信号合成器22からは基
本波が周期Ts 毎に変調された形で出力される。更に該
信号合成器22からの高周波出力は前記増幅器23によ
り所定の電力値(波高値)に増幅されて出力される。
The high frequency power of the steady sine curve waveform (see FIG. 4) output from the fundamental wave generator 21 is input to the signal synthesizer 22 and the modulation signal is also input from the modulation wave generator 24. The signal synthesizer 22 outputs the fundamental wave in a form modulated in each cycle Ts. Further, the high frequency output from the signal synthesizer 22 is amplified by the amplifier 23 to a predetermined power value (peak value) and output.

【0019】前記信号合成器22からの変調波形の一例
として、図5(a)(b)(c)(d)を示す。又、前
記増幅器23からの出力波形は図5(a)(b)(c)
(d)を増幅した波形となる。尚、図5は出力波形の包
絡線が台形状(図5(a))、3角波状(図5
(b))、矩形波状(図5(c))、断続波(図5
(d))を示したが、前記変調波発生器24からの信号
を操作することで、サインカーブ状、階段状の変化を繰
返すもの等、種々変更されることは言う迄もない。
As an example of the modulation waveform from the signal synthesizer 22, FIGS. 5 (a) (b) (c) (d) are shown. The output waveform from the amplifier 23 is shown in FIGS. 5 (a) (b) (c).
A waveform obtained by amplifying (d) is obtained. Note that in FIG. 5, the envelope of the output waveform is trapezoidal (FIG. 5A) and triangular (FIG. 5A).
(B)), rectangular wave (Fig. 5 (c)), intermittent wave (Fig. 5)
Although (d) is shown, it is needless to say that it can be variously changed by manipulating the signal from the modulated wave generator 24, such as repeating a sine curve or step change.

【0020】以下、作動を説明する。The operation will be described below.

【0021】前記被処理基板16を前記平板電極8に載
置し、前記真空室14を前記真空ポンプ6で排気し、図
示しない圧力制御装置で所定の圧力に維持しつつ、前記
真空室14に前記ガス導入管4から反応性ガスを導入す
る。
The substrate 16 to be processed is placed on the flat plate electrode 8, the vacuum chamber 14 is evacuated by the vacuum pump 6, and a predetermined pressure is maintained by a pressure control device (not shown) while the vacuum chamber 14 is kept in the vacuum chamber 14. A reactive gas is introduced from the gas introduction pipe 4.

【0022】前記プラズマ発生用コイル11にコイル用
高周波電源20が出力する高周波電力を前記整合器19
を介して印加すると、前記プラズマ発生用コイル11が
形成する高周波交番電界、磁界の作用により前記反応性
ガスが電離して前記真空室14にプラズマ15が生成さ
れ、更に前記平板電極8上の被処理基板16表面に薄膜
が生成される。
High frequency power output from the coil high frequency power supply 20 is applied to the plasma generating coil 11 by the matching unit 19 described above.
When applied through the plasma generating coil 11, the reactive gas is ionized by the action of the high frequency alternating electric field and the magnetic field to generate the plasma 15 in the vacuum chamber 14, and further, the plasma on the plate electrode 8 is applied. A thin film is formed on the surface of the processing substrate 16.

【0023】上記した様に、プラズマ生成の為の高周波
電力は周期的に変調されている為、放電電流は時間的に
変化する。放電電流の増加期間では電子温度は上昇し、
放電電流の減少期間では電子温度は低下する。これはプ
ラズマの電子温度の変化の時定数がプラズマ密度の変化
の時定数よりも小さい為である。
As described above, since the high frequency power for plasma generation is periodically modulated, the discharge current changes with time. The electron temperature rises during the period when the discharge current increases,
The electron temperature decreases during the period when the discharge current decreases. This is because the time constant of changes in the electron temperature of plasma is smaller than the time constant of changes in plasma density.

【0024】電子温度の変化期間に電子温度以外のプラ
ズマパラメータが変化するが、この時励起種の割合も変
化する。結果として気相中の化学反応並びにウェーハ表
面に於ける化学反応も変わる為、CVD特性も変わる。
Plasma parameters other than the electron temperature change during the changing period of the electron temperature, but at this time, the ratio of the excited species also changes. As a result, the chemical reaction in the vapor phase and the chemical reaction on the surface of the wafer are changed, so that the CVD characteristics are also changed.

【0025】而して、増幅器23の高周波電力の出力波
形は、変調信号発生器24の出力波形を図5の(a)〜
(d)の例で示す様に変更して自在に変えることがで
き、所要のCVD特性が得られる様に適宜変えて最適化
する。
As the output waveform of the high frequency power of the amplifier 23, the output waveform of the modulation signal generator 24 is shown in FIGS.
It can be freely changed by changing it as shown in the example of (d), and is appropriately changed and optimized so as to obtain a required CVD characteristic.

【0026】前記プラズマ発生用コイル11に印加する
周期的に変調した高周波電力の基本波の周波数は、前記
被処理基板16の種類、処理の仕様により適宜選択さ
れ、通常は1MHz 〜100MHz の範囲に於いて適切
な値が選択される。又、変調方法は対象とする被処理
物、要求されるプロセスの処理仕様に応じて、プラズマ
の電子温度を制御して活性種の割合を適正にする為、適
宜変更して最適化する。
The frequency of the fundamental wave of the periodically modulated high frequency power applied to the plasma generating coil 11 is appropriately selected depending on the type of the substrate 16 to be processed and the processing specifications, and is usually in the range of 1 MHz to 100 MHz. An appropriate value is selected. In addition, the modulation method is appropriately changed and optimized in order to control the electron temperature of plasma to make the ratio of active species appropriate in accordance with the object to be processed and the processing specifications of the required process.

【0027】而して、変調の仕方を、圧力や反応性ガス
の流量と同様にプラズマCVDプロセス条件の1つとし
て設定する。変調信号の周期は10μs〜10msの範
囲於いて任意に設定する。
Thus, the modulation method is set as one of the plasma CVD process conditions in the same manner as the pressure and the flow rate of the reactive gas. The period of the modulation signal is arbitrarily set within the range of 10 μs to 10 ms.

【0028】図6は高周波電源の別の例を示したもの
で、任意信号発生器25が出力する周期的に変調された
信号が高周波電力増幅器26に入力される。該高周波電
力増幅器26は入力された変調信号を所定の増幅率で増
幅して出力する。任意信号発生器25は必要な波形を任
意に設定できるので、1周期内に於いて、高周波の波高
値のみならず、周波数や波形も任意に変更できるので、
変調方法の範囲が広がる。
FIG. 6 shows another example of the high frequency power supply. The periodically modulated signal output from the arbitrary signal generator 25 is input to the high frequency power amplifier 26. The high frequency power amplifier 26 amplifies the input modulation signal with a predetermined amplification factor and outputs it. Since the arbitrary signal generator 25 can arbitrarily set the required waveform, not only the peak value of the high frequency but also the frequency and the waveform can be arbitrarily changed within one cycle.
The range of modulation methods is expanded.

【0029】而して、前記コイル用高周波電源20によ
り周期的に変調した高周波電力が前記プラズマ発生用コ
イル11に印加可能となっている。
Thus, the high frequency power modulated periodically by the coil high frequency power source 20 can be applied to the plasma generating coil 11.

【0030】前記任意信号発生器25により直接変調波
を発生させる場合も、要求されるプロセスの処理仕様に
応じて変調波を最適化する。又、前記プラズマ発生用コ
イル11の上下方向の位置を変化させることでプラズマ
中心を変更できる等機械的な調整も可能となる。
Even when a modulated wave is directly generated by the arbitrary signal generator 25, the modulated wave is optimized according to the required processing specifications of the process. Moreover, mechanical adjustment such as changing the center of plasma by changing the vertical position of the plasma generating coil 11 is also possible.

【0031】尚、前記プラズマ発生用コイル11の巻数
は1巻以上任意の巻数を選択することが可能であるが、
生成されたプラズマの均一性、プラズマ密度等を考慮す
ると1巻で充分である。又、前記プラズマ発生用コイル
11は円筒2に巻付けた状態で設けた例を示したが、本
発明の高周波電力印加方法は、コイルを前記蓋3に平行
に設けた場合、或は反応室1の側面に設けた場合や反応
室1の内部に設けた場合等、あらゆるコイル及びその設
置方法に対して適用可能である。
It should be noted that the number of turns of the plasma generating coil 11 can be selected to be any number of turns of 1 or more.
Considering the uniformity of the generated plasma, the plasma density, etc., one roll is sufficient. Further, the example in which the plasma generating coil 11 is provided in a state of being wound around the cylinder 2 is shown. However, the high frequency power applying method of the present invention is applicable to the case where the coil is provided in parallel with the lid 3 or the reaction chamber. It can be applied to any coil and its installation method, such as when it is provided on the side surface of No. 1 or inside the reaction chamber 1.

【0032】以下、本実施例の作動の具体例を説明す
る。
A specific example of the operation of this embodiment will be described below.

【0033】図7はプラズマ発生用コイル11に印加す
る高周波電力と、ダブルプローブ法で測定したプラズマ
(電子)密度(図中実線)及び電子温度の平均値(図中
破線)の関係を示した図である。
FIG. 7 shows the relationship between the high frequency power applied to the plasma generating coil 11, the plasma (electron) density (solid line in the figure) and the average value of the electron temperature (broken line in the figure) measured by the double probe method. It is a figure.

【0034】測定条件は以下の通りである。 高周波電力の周波数:13.56 MHz 圧 力 : 1.0 Pa ガ ス :C2 6 高周波電力が1.0KWの時、プラズマ(電子)密度は
圧力が1.0Paと低圧であるにも拘らず、4×1011
個/cm3 というECR並の高い値が得られる。
The measurement conditions are as follows. Frequency of high-frequency power: 13.56 MHz Pressure: 1.0 Pa Gas: C 2 F 6 When high-frequency power is 1.0 KW, plasma (electron) density is low even at pressure of 1.0 Pa. None, 4 × 10 11
A value as high as ECR, which is the number of pieces / cm 3 , is obtained.

【0035】図8はプラズマ発生用コイル11に印加す
るパルス状高周波電力のパルス幅(高周波電力のON時
間)とダブルプローブ法で測定したプラズマ(電子)密
度(図中実線)及び電子温度の平均値(図中破線)の関
係を示した図である。パルスのOFF時間は10μsに
固定してある。
FIG. 8 shows the pulse width of the pulsed high frequency power applied to the plasma generating coil 11 (ON time of the high frequency power), the plasma (electron) density (solid line in the figure) measured by the double probe method, and the average of the electron temperature. It is the figure which showed the relationship of a value (broken line in a figure). The OFF time of the pulse is fixed at 10 μs.

【0036】測定条件は以下の通りである。 高周波電力 : 1.0 KW 高周波電力の周波数:13.56 MHz(連続) 圧 力 : 1.0 Pa ガ ス :C2 6 パルス幅(高周波電力ON時間)を短くして行くと、電
子温度の平均値は低くなる。この結果から、パルス幅を
変えることによって、プラズマの電子温度の平均値を制
御できることが解る。
The measurement conditions are as follows. High-frequency power: 1.0 KW High-frequency power frequency: 13.56 MHz (continuous) Pressure: 1.0 Pa gas: C 2 F 6 When the pulse width (high-frequency power ON time) is shortened, The average value of is low. From this result, it is understood that the average value of the electron temperature of plasma can be controlled by changing the pulse width.

【0037】[0037]

【発明の効果】以上述べた如く本発明によれば、プラズ
マ発生用コイルに高周波電力を印加してプラズマを発生
させるので低コスト化が実現し、又高周波電力を容易に
変調でき、更に該高周波電力を変調することによって、
広範囲な圧力の元でプラズマCVDが実行可能となり、
又プラズマの電子温度の平均値を制御することにより、
プラズマCVDのプロセスマージンを広げることが可能
となる等の優れた効果を発揮する。
As described above, according to the present invention, since high frequency power is applied to the plasma generating coil to generate plasma, cost reduction can be realized, and high frequency power can be easily modulated. By modulating the power,
Plasma CVD can be performed under a wide range of pressure,
Moreover, by controlling the average value of the electron temperature of the plasma,
It exhibits an excellent effect such that the process margin of plasma CVD can be widened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】同前実施例の断面図である。FIG. 2 is a sectional view of the embodiment.

【図3】該実施例に於ける発振部の一例を示すブロック
図である。
FIG. 3 is a block diagram showing an example of an oscillating unit in the embodiment.

【図4】該高周波電源での基本波を示す線図である。FIG. 4 is a diagram showing a fundamental wave in the high frequency power supply.

【図5】(a)(b)(c)(d)は該高周波電源での
印加電力波形の例を示す線図である。
5 (a), (b), (c) and (d) are diagrams showing examples of applied power waveforms in the high frequency power supply.

【図6】本実施例に於ける高周波電源の例を示す図であ
る。
FIG. 6 is a diagram showing an example of a high frequency power supply in the present embodiment.

【図7】コイルに印加する高周波電力とプラズマ密度、
電子温度の関係を示す線図である。
FIG. 7: High frequency power applied to coil and plasma density,
It is a diagram which shows the relationship of electron temperature.

【図8】コイルに印加するパルス状高周波電力のパルス
幅とプラズマ密度、電子温度の関係を示す線図である。
FIG. 8 is a diagram showing the relationship between the pulse width of the pulsed high-frequency power applied to the coil, the plasma density, and the electron temperature.

【符号の説明】[Explanation of symbols]

1 真空容器 2 円筒 3 蓋 4 ガス導入管 5 排気管 6 真空ポンプ 11 プラズマ発生用コイル 19 整合器 20 コイル用高周波電源 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Cylinder 3 Lid 4 Gas introduction pipe 5 Exhaust pipe 6 Vacuum pump 11 Plasma generation coil 19 Matching device 20 High frequency power supply for coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ発生用コイルに高周波電力を印
加してプラズマを発生させ、プラズマを利用してCVD
を行う方法に於いて、前記プラズマ発生用コイルに印加
する高周波電力の1周期に於ける高周波電力の波高値の
変化の態様を変更して、プラズマの電子温度制御を行う
ことを特徴とするプラズマCVD方法。
1. A high frequency power is applied to a plasma generating coil to generate plasma, and the plasma is used to perform CVD.
In the method for performing plasma, the electron temperature control of plasma is performed by changing the manner of changing the peak value of the high frequency power in one cycle of the high frequency power applied to the plasma generating coil. CVD method.
【請求項2】 真空室と、真空室に設けられた被処理基
板の温度制御が可能な被処理基板載置台と、プラズマ発
生用コイルと、該プラズマ発生用コイルに接続されたコ
イル用高周波電源を具備し、前記真空室を排気可能とす
ると共に、真空室に反応性ガスを導入可能としたプラズ
マCVD装置に於いて、前記コイル用高周波電源が高周
波電力を周期的に変調する発振部を具備したことを特徴
とするプラズマCVD装置。
2. A vacuum chamber, a target substrate mounting table provided in the vacuum chamber, capable of controlling the temperature of a target substrate, a plasma generating coil, and a coil high-frequency power source connected to the plasma generating coil. In a plasma CVD apparatus capable of evacuating the vacuum chamber and introducing a reactive gas into the vacuum chamber, an oscillating unit for periodically modulating high frequency power by the high frequency power supply for coils is provided. A plasma CVD apparatus characterized by the above.
【請求項3】 プラズマ発生用コイルの高さ方向の位置
を任意に変更できる手段を具備した請求項2のプラズマ
CVD装置。
3. The plasma CVD apparatus according to claim 2, further comprising means capable of arbitrarily changing the position of the plasma generating coil in the height direction.
JP18112395A 1995-06-23 1995-06-23 Method and apparatus for plasma cvd processing Pending JPH097960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18112395A JPH097960A (en) 1995-06-23 1995-06-23 Method and apparatus for plasma cvd processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18112395A JPH097960A (en) 1995-06-23 1995-06-23 Method and apparatus for plasma cvd processing

Publications (1)

Publication Number Publication Date
JPH097960A true JPH097960A (en) 1997-01-10

Family

ID=16095269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18112395A Pending JPH097960A (en) 1995-06-23 1995-06-23 Method and apparatus for plasma cvd processing

Country Status (1)

Country Link
JP (1) JPH097960A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321399A (en) * 1997-05-22 1998-12-04 Matsushita Electric Ind Co Ltd Plasma processing method and device
JP2002069653A (en) * 2000-09-04 2002-03-08 Anelva Corp Thin film forming method, thin film forming apparatus and solar cell
JP2006260857A (en) * 2005-03-16 2006-09-28 Nagano Japan Radio Co Plasma treatment device
JP2011060852A (en) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp Apparatus and method for manufacturing semiconductor film
US9171734B1 (en) 2014-08-25 2015-10-27 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321399A (en) * 1997-05-22 1998-12-04 Matsushita Electric Ind Co Ltd Plasma processing method and device
JP2002069653A (en) * 2000-09-04 2002-03-08 Anelva Corp Thin film forming method, thin film forming apparatus and solar cell
JP2006260857A (en) * 2005-03-16 2006-09-28 Nagano Japan Radio Co Plasma treatment device
JP2011060852A (en) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp Apparatus and method for manufacturing semiconductor film
US9171734B1 (en) 2014-08-25 2015-10-27 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP5840268B1 (en) * 2014-08-25 2016-01-06 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
KR20160024713A (en) * 2014-08-25 2016-03-07 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer readable recording medium

Similar Documents

Publication Publication Date Title
TWI822617B (en) Radio frequency generator and method for generating radio frequency signals
US5997687A (en) Plasma processing apparatus
JP6548748B2 (en) Plasma processing method and plasma processing apparatus
KR100302167B1 (en) Plasma Treatment Equipment and Plasma Treatment Methods
US6110287A (en) Plasma processing method and plasma processing apparatus
KR102346036B1 (en) Plasma processing device and plasma processing method
AU751927B2 (en) Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus
JP3764594B2 (en) Plasma processing method
JP6643212B2 (en) Plasma processing apparatus and plasma processing method
KR980012066A (en) Plasma processing equipment
US7323081B2 (en) High-frequency plasma processing apparatus
JP4537032B2 (en) Plasma processing apparatus and plasma processing method
JPH097960A (en) Method and apparatus for plasma cvd processing
JPH07249614A (en) Plasma etching method and its equipment
JPH0888218A (en) Method and device for plasma etching
JPH07142453A (en) Plasma etching system
JP2023108313A (en) Ignition control method, film formation method, and film formation device
JP3704894B2 (en) Plasma processing method and apparatus
JPS63103088A (en) Plasma treating device
JP2005159049A (en) Plasma deposition method
JPH10298786A (en) Surface treating device
JP3685461B2 (en) Plasma processing equipment
JP2011029069A (en) Plasma processing device, and method of manufacturing semiconductor film
JPH01236629A (en) Plasma processor
JP2000150196A (en) Plasma processing method and its device