JPH07106759A - Thin-film multilayered substrate - Google Patents

Thin-film multilayered substrate

Info

Publication number
JPH07106759A
JPH07106759A JP5268093A JP26809393A JPH07106759A JP H07106759 A JPH07106759 A JP H07106759A JP 5268093 A JP5268093 A JP 5268093A JP 26809393 A JP26809393 A JP 26809393A JP H07106759 A JPH07106759 A JP H07106759A
Authority
JP
Japan
Prior art keywords
signal line
line
impedance
thin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5268093A
Other languages
Japanese (ja)
Inventor
Minoru Ishikawa
実 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5268093A priority Critical patent/JPH07106759A/en
Publication of JPH07106759A publication Critical patent/JPH07106759A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To obtain impedance matching between device lines and between lines without connecting any chip resistance element by partially changing the shape of a signal line so as to change the impedance. CONSTITUTION:A thin film multilayered substrate is constituted by putting a dielectric substrate composed of, for example, a polyimide resin between a signal line 13 and ground layer. Both ends of the line 13 are respectively connected to devices 15 and 16. The line 13 is composed of broad parts 13A and 13C having widths of about 30mum and a narrow part 13B having a width of about 10mum. When the characteristic impedance of the line 13 is set against a prescribed chip by adjusting the length of the narrow part 13B, impedance matching can be obtained between the line 13 and the connected devices 15 and 16 without connecting any chip resistance element. Therefore, impedance setting can be made in a more easily way during the manufacture of the thin film multilayered substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図11) 発明が解決しようとする課題(図11) 課題を解決するための手段(図1〜図10) 作用(図2) 実施例 (1)実施例の原理 (2)第1実施例(図1〜図7) (3)第2実施例(図8〜図10) 発明の効果[Table of Contents] The present invention will be described in the following order. Field of Industrial Application Conventional Technology (FIG. 11) Problem to be Solved by the Invention (FIG. 11) Means for Solving the Problem (FIGS. 1 to 10) Action (FIG. 2) Working Example (1) Working Example Principle (2) First embodiment (FIGS. 1 to 7) (3) Second embodiment (FIGS. 8 to 10)

【0002】[0002]

【産業上の利用分野】本発明は薄膜多層基板に関し、例
えばストリツプ線路構造又はマイクロストリツプ線路構
造の薄膜多層基板に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film multilayer substrate, and is suitable for application to a thin film multilayer substrate having a strip line structure or a micro strip line structure, for example.

【0003】[0003]

【従来の技術】従来、マイクロストリツプ線路又はスト
リツプ線路構造の薄膜多層基板として、例えば図11に
示すように、導体薄膜でなる信号線(ストリツプ導体)
3及び導体薄膜でなり広い接地導体を形成するグランド
層GNDが誘電体基板を挟んで設けられており、当該1
組の導体薄膜(信号線3及びグランド層GND)がスト
リツプ線路(分布定数線路)を形成している。
2. Description of the Related Art Conventionally, as a thin film multilayer substrate having a microstrip line or a strip line structure, for example, as shown in FIG. 11, a signal line (strip conductor) made of a conductor thin film is used.
3 and a ground layer GND, which is made of a conductive thin film and forms a wide ground conductor, is provided with the dielectric substrate interposed therebetween.
The pair of conductor thin films (the signal line 3 and the ground layer GND) form a strip line (distributed constant line).

【0004】信号線3にはデバイス2が搭載され、当該
デバイス2及びストリツプ線路(3、GND)の間の特
性インピーダンスをマツチングさせることにより、デバ
イス2及びストリツプ線路間における反射を防止し得る
と考えられる。
It is considered that the device 2 is mounted on the signal line 3 and the characteristic impedance between the device 2 and the strip line (3, GND) is matched to prevent reflection between the device 2 and the strip line. To be

【0005】この場合、誘電体の厚み、比誘電率又は信
号線3の線幅を変えてストリツプ線路のインピーダンス
を調整する方法が考えられている。
In this case, a method of adjusting the impedance of the strip line by changing the thickness of the dielectric, the relative permittivity or the line width of the signal line 3 has been considered.

【0006】[0006]

【発明が解決しようとする課題】ところでかかる構成に
よつて搭載デバイス2及びストリツプ線路(3、GN
D)間のインピーダンスマツチングを図る方法として、
誘電体の厚み又は比誘電率を変える方法、又は信号線層
3の線幅を全体に亘つて細くする方法が考えられてい
る。
By the way, according to such a configuration, the mounting device 2 and the strip line (3, GN) are provided.
As a method for achieving impedance matching between D),
A method of changing the thickness or relative permittivity of the dielectric or a method of narrowing the line width of the signal line layer 3 is considered.

【0007】ところがこのような方法によつてインピー
ダンスマツチングを図ろうとすると、一般に使用される
デバイスの特性インピーダンス(50〔Ω〕)にインピー
ダンスマツチングさせようとすると信号線3の線幅を全
体に亘つて数μm以下の極めて細い線幅にする必要があ
り、これにより製造工程が複雑化すると共に製造工程に
おける歩留りの低下を招く問題があつた。
However, if impedance matching is attempted by such a method, if the characteristic matching (50 [Ω]) of a commonly used device is attempted, the line width of the signal line 3 is reduced as a whole. It is necessary to have an extremely thin line width of several μm or less, which complicates the manufacturing process and lowers the yield in the manufacturing process.

【0008】また伝送される信号のオーバーシユートを
抑える方法としてチツプ抵抗等の直流抵抗素子Rを接続
する方法が考えられるが、このような比較的大きな直流
抵抗素子Rを接続するとこの分構成が大型化すると共に
実装密度の低下を避け得ない問題があつた。
A method of connecting a DC resistance element R such as a chip resistance can be considered as a method of suppressing the overshoot of the transmitted signal. However, if such a relatively large DC resistance element R is connected, the structure is reduced accordingly. There is a problem that the size is increased and the mounting density is inevitably reduced.

【0009】本発明は以上の点を考慮してなされたもの
で、チツプ抵抗素子を接続することなくデバイス及び線
路間のインピーダンスマツチングをとることができる薄
膜多層基板を提案しようとするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to propose a thin film multi-layer substrate capable of impedance matching between a device and a line without connecting a chip resistance element. .

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、所定の誘電体基板14を挟んで信
号線13及びグランド層GNDを形成した薄膜多層基板
10、30において、信号線13の形状を信号線13の
全体又は一部で変化させ、当該変化に応じてインピーダ
ンスを変えるようにする。
In order to solve such a problem, according to the present invention, in a thin film multilayer substrate 10 or 30 in which a signal line 13 and a ground layer GND are formed with a predetermined dielectric substrate 14 sandwiched therebetween, the signal line 13 is formed. The shape of is changed in the whole or a part of the signal line 13, and the impedance is changed according to the change.

【0011】また本発明においては、信号線13は、信
号線13の全体又は一部において線幅を変化させ、当該
変化に応じてインピーダンスを変えるようにする。
Further, in the present invention, the signal line 13 changes the line width in the whole or a part of the signal line 13 and changes the impedance according to the change.

【0012】また本発明においては、信号線13は、信
号線13の全体又は一部において線厚を変化させ、当該
変化に応じてインピーダンスを変えるようにする。
Further, in the present invention, the signal line 13 changes the line thickness in the whole or a part of the signal line 13 and changes the impedance according to the change.

【0013】また本発明においては、信号線13は、信
号線13の全体又は一部において線材の材質を変化させ
(31)、当該変化に応じてインピーダンスを変えるよ
うにする。
Further, in the present invention, the signal line 13 changes the material of the wire material in the whole or a part of the signal line 13 (31), and changes the impedance according to the change.

【0014】[0014]

【作用】信号線13の形状又は材質を信号線13の全体
又は一部で変化させ、当該変化に応じてインピーダンス
を変えるようにすることにより、製造段階において線路
側のインピーダンスを容易に設定することができる。
By changing the shape or material of the signal line 13 in whole or in part and changing the impedance in accordance with the change, the impedance on the line side can be easily set in the manufacturing stage. You can

【0015】[0015]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0016】(1)実施例の原理 一般に特性インピーダンスZ0 は、Rを直流抵抗、Gを
グランド及び信号線間のコンダクタンス、Lをインダク
タンス、Cをグランド及び信号線間の静電容量として次
(1) Principle of Embodiment In general, the characteristic impedance Z 0 is expressed by the following equation , where R is DC resistance, G is conductance between ground and signal line, L is inductance, and C is capacitance between ground and signal line.

【数1】 によつて表される。[Equation 1] Is represented by

【0017】通常、R=G=0として次式Usually, the following equation is set with R = G = 0.

【数2】 として設計される。[Equation 2] Designed as.

【0018】従つてある特性インピーダンスZ0 の値を
得るためには、L∝(1/線幅)及び(1/C)∝誘電
体厚みをそれぞれコントロールする必要があるが、薄膜
基板においては誘電体厚みを厚くすることは困難であ
り、線幅を細くすることにも限界がある。
Therefore, in order to obtain the value of a certain characteristic impedance Z 0 , it is necessary to control L∝ (1 / line width) and (1 / C) ∝dielectric thickness, respectively. It is difficult to increase the body thickness, and there is a limit to reducing the line width.

【0019】従つてこの実施例においては、Rが有限の
値を持つことを利用して、次式
Therefore, in this embodiment, by utilizing the fact that R has a finite value, the following equation

【数3】 とし、伝送信号の位相を含まない特性インピーダンスと
して|Z0 |=50〔Ω〕を得ることにより、周波数が数
[GHz] の信号をインピーダンスマツチングを取りながら
伝送するものである。
[Equation 3] And obtain | Z 0 | = 50 [Ω] as the characteristic impedance that does not include the phase of the transmission signal,
It transmits the signal of [GHz] with impedance matching.

【0020】(2)第1実施例 図1において10は全体としてストリツプ線路を構成す
る薄膜多層基板を示し、例えばポリイミド樹脂でなり厚
みが約10〔μm〕の誘電体基板14を挟んで信号線13
及びクランド層GNDが形成されている。この誘電体基
板14の比誘電率εr=4である。
(2) First Embodiment In FIG. 1, reference numeral 10 designates a thin film multilayer substrate which constitutes a strip line as a whole. For example, a signal line is sandwiched by a dielectric substrate 14 made of polyimide resin and having a thickness of about 10 [μm]. Thirteen
And a ground layer GND are formed. The relative permittivity εr of this dielectric substrate 14 is 4.

【0021】また図2に示すように信号線13はその両
端にデバイス15及び16が接続されている。この信号
線13の線幅は、約30〔μm〕の線幅でなる部分13A
及び13Cと約10〔μm〕の線幅でなる細線部13Bに
よつて形成されている。
As shown in FIG. 2, the signal line 13 has devices 15 and 16 connected to both ends thereof. The line width of the signal line 13 is a portion 13A having a line width of about 30 [μm].
And 13C and a thin line portion 13B having a line width of about 10 [μm].

【0022】以上の構成において細線部13Bの長さに
よつて信号線13の特性インピーダンスを所定の値に設
定することにより、搭載されたデバイス15及び16と
信号線13とのインピーダンスマツチングを|Z0 |=
50〔Ω〕のレベルでとることができる。
In the above configuration, by setting the characteristic impedance of the signal line 13 to a predetermined value depending on the length of the thin line portion 13B, the impedance matching between the mounted devices 15 and 16 and the signal line 13 can be achieved. Z 0 | =
It can be taken at the level of 50 [Ω].

【0023】この結果信号線13の細線部13Bによつ
て数十〔Ω〕のダンピング抵抗を付加することができ、
CMOS又はTTL等のように出力、入力インピーダン
スが定まらないデバイスを搭載した場合等に発生するオ
ーバシユート又はアンダシユートを実用上十分な範囲で
抑えることができる。
As a result, a damping resistance of several tens [Ω] can be added by the thin line portion 13B of the signal line 13,
It is possible to suppress overshoot or undershoot that occurs when a device such as CMOS or TTL whose output and input impedance is not fixed is mounted in a practically sufficient range.

【0024】従つて以上の構成によれば、周波数が数[G
Hz] の信号をインピーダンスマツチングを取りながら伝
送することができる。
Therefore, according to the above configuration, the frequency is several [G
[Hz] signals can be transmitted while impedance matching is performed.

【0025】なお上述の実施例においては、線幅の大き
な太線部13A及び13Cと線幅の小さな細線部13B
を形成した場合について述べたが、本発明はこれに限ら
ず、例えば図3に示すように序々に線幅が小さくなるよ
うな信号線18を形成するようにしても良い。また信号
線13の一端にデバイス15を接続し、終端をグランン
ド層GNDに接続すようにしても良い。
In the above embodiment, the thick line portions 13A and 13C having a large line width and the thin line portion 13B having a small line width are used.
However, the present invention is not limited to this, and the signal line 18 may be formed so that the line width gradually decreases as shown in FIG. 3, for example. Alternatively, the device 15 may be connected to one end of the signal line 13 and the end thereof may be connected to the ground layer GND.

【0026】また上述の実施例においては、信号線13
の線幅を変えるようにした場合について述べたが、本発
明はこれに限らず、信号線13の厚みを変えるようにし
ても良い。
Further, in the above embodiment, the signal line 13
However, the present invention is not limited to this, and the thickness of the signal line 13 may be changed.

【0027】すなわち図4に示すように銅線でなる信号
線13の一部に酸化膜19を形成し、当該酸化膜19が
形成された部分において、銅線の厚みを小さくすること
ができ、これにより特性インピーダンスを変えることが
できる。
That is, as shown in FIG. 4, an oxide film 19 is formed on a part of the signal line 13 made of a copper wire, and the thickness of the copper wire can be reduced at the portion where the oxide film 19 is formed. This makes it possible to change the characteristic impedance.

【0028】この酸化膜19の形成方法を図5及び図6
に示す。すなわち図5において誘電体基板14(図5
(A))の表面に銅(Cu)層21及びクロム(Cr)
層13をスパツタリング法により形成し(図5
(B))、さらに当該銅層21の表面にレジストを塗布
した後、DPEによつて配線パターン23を形成する。
この配線パターン23にはランド23A及び23Cとこ
れらを結ぶ信号線23Bが形成される。
A method of forming the oxide film 19 will be described with reference to FIGS.
Shown in. That is, in FIG. 5, the dielectric substrate 14 (see FIG.
(A)) surface with copper (Cu) layer 21 and chromium (Cr)
The layer 13 is formed by the sputtering method (see FIG. 5).
(B)) Further, after applying a resist on the surface of the copper layer 21, the wiring pattern 23 is formed by DPE.
On the wiring pattern 23, lands 23A and 23C and a signal line 23B connecting them are formed.

【0029】さらに図6(A)に示すように、配線パタ
ーン23の一部のクロム層21をエツチング処理によつ
て除去し、この部分に銅層13の露出部24を形成す
る。さらにこの状態において図6(B)に示すようにラ
ンド部23A及び23Cと銅層13の露出部24以外の
表面にパツシベーシヨン(保護膜)26を塗布する。従
つて保護膜26の開口26A、26B及び26Cにおい
てランド部23A、露出部24及びランド部23Cが露
出した状態となる。
Further, as shown in FIG. 6A, a part of the chromium layer 21 of the wiring pattern 23 is removed by etching, and an exposed portion 24 of the copper layer 13 is formed in this part. Further, in this state, as shown in FIG. 6B, a passivation (protective film) 26 is applied to the surfaces of the land portions 23A and 23C and the exposed portion 24 of the copper layer 13. Therefore, the land portion 23A, the exposed portion 24, and the land portion 23C are exposed in the openings 26A, 26B, and 26C of the protective film 26.

【0030】従つて銅層13の露出部24において酸化
膜19(図4)が形成される。この場合、図7に示すよ
うに、酸化膜19の形成位置は種々の位置を選定し得る
と共に、信号線13の一端にデバイス15を接続し、終
端をグランド層GNDに接続するようにしても良い。
Accordingly, the oxide film 19 (FIG. 4) is formed on the exposed portion 24 of the copper layer 13. In this case, as shown in FIG. 7, various positions can be selected as the formation position of the oxide film 19, and the device 15 is connected to one end of the signal line 13 and the end thereof is connected to the ground layer GND. good.

【0031】(3)第2実施例 図8は本発明の第2実施例を示し、ストリツプ線路を構
成する薄膜多層基板20は、例えばポリイミド樹脂でな
る誘電体基板14を挟んで信号線13及びクランド層G
NDが形成されている。この誘電体基板14の比誘電率
εr=4である。また信号線13にはデバイス15が接
続されている。
(3) Second Embodiment FIG. 8 shows a second embodiment of the present invention, in which a thin film multilayer substrate 20 forming a strip line has a signal line 13 and a signal line 13 sandwiching a dielectric substrate 14 made of, for example, a polyimide resin. Kland layer G
ND is formed. The relative permittivity εr of this dielectric substrate 14 is 4. A device 15 is connected to the signal line 13.

【0032】さらに誘電体基板14の内部には信号線1
3を形成する材質に対して高電気抵抗の材質でなる高抵
抗層(低電気伝導層)31が形成されている。この場
合、図9及び図10に示すように信号線13を高抵抗層
31にビアホールBHを介して接続するようになされて
いる。
Further, the signal line 1 is provided inside the dielectric substrate 14.
A high resistance layer (low electric conduction layer) 31 made of a material having a high electric resistance is formed with respect to the material forming the material 3. In this case, as shown in FIGS. 9 and 10, the signal line 13 is connected to the high resistance layer 31 via the via hole BH.

【0033】以上の構成において、薄膜多層基板30に
おいては信号線13を高抵抗層31に接続することによ
つて、高抵抗層31が信号線13の一部に接続形成され
る状態となり、当該高抵抗装置31によつて終端抵抗が
形成される。従つて信号線13の線幅又は厚みを変える
等の構成を設けることなく終端抵抗を得ることができ
る。
In the above structure, by connecting the signal line 13 to the high resistance layer 31 in the thin film multilayer substrate 30, the high resistance layer 31 is connected to a part of the signal line 13, and A terminating resistor is formed by the high resistance device 31. Therefore, the terminating resistance can be obtained without providing a configuration such as changing the line width or the thickness of the signal line 13.

【0034】従つて以上の構成によれば、高抵抗層31
を形成し信号線13に接続することにより、信号線13
の形状を変えることなく特性インピーダンスを変えるこ
とができ、デバイス15とのインピーダンスマツチング
を一段と容易に実現し得る。
Therefore, according to the above configuration, the high resistance layer 31
Is formed and connected to the signal line 13,
The characteristic impedance can be changed without changing the shape of, and impedance matching with the device 15 can be more easily realized.

【0035】なお上述の実施例においては、薄膜多層基
板30として上層部から順に信号線13、誘電体層1
4、高抵抗層31、誘電体基板14及びグランド層GN
Dの順に形成した場合について述べたが、本発明はこれ
に限らず、高抵抗層31及びグランド層GNDを入換
え、上層部から順に信号線13、誘電体基板14、グラ
ンド層GND、誘電体基板14及び高抵抗層31の順に
形成するようにしても良い。
In the above-mentioned embodiment, the signal line 13 and the dielectric layer 1 are arranged in this order from the upper layer as the thin film multilayer substrate 30.
4, high resistance layer 31, dielectric substrate 14 and ground layer GN
Although the case where the layers are formed in the order of D has been described, the present invention is not limited to this, and the high resistance layer 31 and the ground layer GND are replaced with each other, and the signal line 13, the dielectric substrate 14, the ground layer GND, and the dielectric layer are sequentially arranged from the upper layer portion. The substrate 14 and the high resistance layer 31 may be formed in this order.

【0036】[0036]

【発明の効果】上述のように本発明によれば、信号線の
形状を変化させるようにして特性インピーダンスを変え
るようにしたことにより、製造段階において一段と容易
にインピーダンスの設定を行うことができる薄膜多層基
板を実現できる。
As described above, according to the present invention, the characteristic impedance is changed by changing the shape of the signal line, so that the impedance can be set more easily in the manufacturing stage. A multilayer board can be realized.

【0037】また信号線でなる第1の層及びグランド層
でなる第2の層に対して第3の高抵抗層を形成し、信号
線及び当該高抵抗層を接続することにより、信号線の形
状を変化させることなく終端抵抗を付加することがで
き、この分製造段階において一段と容易にインピーダン
スの設定を行うことができる。
Further, by forming a third high resistance layer on the first layer formed of the signal line and the second layer formed of the ground layer and connecting the signal line and the high resistance layer, the signal line A terminating resistor can be added without changing the shape, and the impedance can be set more easily in the manufacturing stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による薄膜多層基板の構成
を示す断面図である。
FIG. 1 is a sectional view showing a structure of a thin film multilayer substrate according to a first embodiment of the present invention.

【図2】配線幅の変更によるインピーダンス調整の説明
に供する略線図である。
FIG. 2 is a schematic diagram for explaining impedance adjustment by changing a wiring width.

【図3】配線幅の変更によるインピーダンス調整の説明
に供する略線図である。
FIG. 3 is a schematic diagram for explaining impedance adjustment by changing a wiring width.

【図4】配線厚みの変更によるインピーダンス調整の説
明に供する略線図である。
FIG. 4 is a schematic diagram for explaining impedance adjustment by changing the wiring thickness.

【図5】酸化膜の生成方法を示す斜視図である。FIG. 5 is a perspective view showing a method for forming an oxide film.

【図6】酸化膜の生成方法を示す斜視図である。FIG. 6 is a perspective view showing a method for forming an oxide film.

【図7】配線厚みの変更によるインピーダンス調整の説
明に供する略線図である。
FIG. 7 is a schematic diagram for explaining impedance adjustment by changing the wiring thickness.

【図8】本発明の第2実施例による薄膜多層基板の構成
を示す断面図である。
FIG. 8 is a sectional view showing a structure of a thin film multilayer substrate according to a second embodiment of the present invention.

【図9】第2実施例の構成を示す略線図である。FIG. 9 is a schematic diagram showing a configuration of a second embodiment.

【図10】第2実施例の全体構成を示す斜視図である。FIG. 10 is a perspective view showing the overall configuration of a second embodiment.

【図11】従来の薄膜多層基板の構成を示す略線図であ
る。
FIG. 11 is a schematic diagram showing a configuration of a conventional thin film multilayer substrate.

【符号の説明】[Explanation of symbols]

10、30……薄膜多層基板、13、18……信号線、
14……誘電体基板、15、16……デバイス、19…
…酸化膜、31……高抵抗層、GND……グランド層、
BH……ビアホール。
10, 30 ... Thin film multilayer substrate, 13, 18 ... Signal line,
14 ... Dielectric substrate, 15, 16 ... Device, 19 ...
… Oxide film, 31 …… High resistance layer, GND …… Ground layer,
BH ... Beer hall.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/02 P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area H05K 1/02 P

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】所定の誘電体基板を挟んで信号線及びグラ
ンド層を形成した薄膜多層基板において、 上記信号線の形状を上記信号線の全体又は一部で変化さ
せ、当該変化に応じてインピーダンスを変えるようにし
たことを特徴とする薄膜多層基板。
1. A thin film multilayer substrate having a signal line and a ground layer formed with a predetermined dielectric substrate sandwiched therebetween, wherein the shape of the signal line is changed in whole or in part, and impedance is changed according to the change. A thin-film multi-layer substrate characterized in that
【請求項2】上記信号線は、 上記信号線の全体又は一部において線幅を変化させ、当
該変化に応じてインピーダンスを変えるようにしたこと
を特徴とする請求項1に記載の薄膜多層基板。
2. The thin-film multi-layer substrate according to claim 1, wherein the signal line has a line width that is changed in whole or in part and impedance is changed according to the change. .
【請求項3】上記信号線は、 上記信号線の全体又は一部において線厚を変化させ、当
該変化に応じてインピーダンスを変えるようにしたこと
を特徴とする請求項1に記載の薄膜多層基板。
3. The thin-film multilayer substrate according to claim 1, wherein the signal line has a line thickness that is changed in whole or part of the signal line, and impedance is changed according to the change. .
【請求項4】所定の誘電体基板を挟んで信号線及びグラ
ンド層を形成した薄膜多層基板において、 上記信号線の全体又は一部において線材の材質を変化さ
せ、当該変化に応じてインピーダンスを変えるようにし
たことを特徴とする薄膜多層基板。
4. A thin-film multi-layered substrate in which a signal line and a ground layer are formed with a predetermined dielectric substrate sandwiched therebetween, by changing the material of the wire material in all or part of the signal line and changing the impedance according to the change. A thin-film multi-layer substrate characterized by the above.
JP5268093A 1993-09-30 1993-09-30 Thin-film multilayered substrate Pending JPH07106759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268093A JPH07106759A (en) 1993-09-30 1993-09-30 Thin-film multilayered substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268093A JPH07106759A (en) 1993-09-30 1993-09-30 Thin-film multilayered substrate

Publications (1)

Publication Number Publication Date
JPH07106759A true JPH07106759A (en) 1995-04-21

Family

ID=17453799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268093A Pending JPH07106759A (en) 1993-09-30 1993-09-30 Thin-film multilayered substrate

Country Status (1)

Country Link
JP (1) JPH07106759A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138552A (en) * 1998-10-29 2000-05-16 Kyocera Corp Surface acoustic wave device
KR20030084511A (en) * 2002-04-27 2003-11-01 삼성전자주식회사 The semiconductor memory module comprising the method of compensating the loading effect of tie bar
US6856709B2 (en) 2001-11-01 2005-02-15 Opnext Japan, Inc. Optical modulation device
KR100726458B1 (en) * 2006-01-16 2007-06-11 삼성전자주식회사 Printed circuit board assembly
JP2007242745A (en) * 2006-03-07 2007-09-20 Renesas Technology Corp Printed circuit board, computer aided design (cad) program, electromagnetic field simulator, circuit simulator, car, semiconductor device, and user guide
JP2011114296A (en) * 2009-11-30 2011-06-09 Samsung Electronics Co Ltd Flexible board and manufacturing method of the flexible board
US8089004B2 (en) 2007-09-28 2012-01-03 Renesas Electronics Corporation Semiconductor device including wiring excellent in impedance matching, and method for designing the same
JPWO2015076121A1 (en) * 2013-11-20 2017-03-16 株式会社村田製作所 Multilayer wiring board and probe card having the same
JPWO2022091192A1 (en) * 2020-10-27 2022-05-05

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138552A (en) * 1998-10-29 2000-05-16 Kyocera Corp Surface acoustic wave device
US6856709B2 (en) 2001-11-01 2005-02-15 Opnext Japan, Inc. Optical modulation device
KR20030084511A (en) * 2002-04-27 2003-11-01 삼성전자주식회사 The semiconductor memory module comprising the method of compensating the loading effect of tie bar
KR100726458B1 (en) * 2006-01-16 2007-06-11 삼성전자주식회사 Printed circuit board assembly
US7778040B2 (en) 2006-01-16 2010-08-17 Samsung Electronics Co., Ltd. Printed circuit board assembly
JP2007242745A (en) * 2006-03-07 2007-09-20 Renesas Technology Corp Printed circuit board, computer aided design (cad) program, electromagnetic field simulator, circuit simulator, car, semiconductor device, and user guide
US8089004B2 (en) 2007-09-28 2012-01-03 Renesas Electronics Corporation Semiconductor device including wiring excellent in impedance matching, and method for designing the same
JP2011114296A (en) * 2009-11-30 2011-06-09 Samsung Electronics Co Ltd Flexible board and manufacturing method of the flexible board
JPWO2015076121A1 (en) * 2013-11-20 2017-03-16 株式会社村田製作所 Multilayer wiring board and probe card having the same
JPWO2022091192A1 (en) * 2020-10-27 2022-05-05

Similar Documents

Publication Publication Date Title
US6819202B2 (en) Power splitter having counter rotating circuit lines
JPH1154921A (en) Multilayered wiring board
EP1380193A1 (en) A method for forming a printed circuit board and a printed circuit board formed thereby
JPH07106759A (en) Thin-film multilayered substrate
US20030113669A1 (en) Method of fabricating passive device on printed circuit board
KR20000034924A (en) Passive electronic components in a multi-layered low temperature co-fired ceramic
US20030076197A1 (en) Adding electrical resistance in series with bypass capacitors using annular resistors
US6713399B1 (en) Carbon-conductive ink resistor printed circuit board and its fabrication method
EP1480286A1 (en) Microwave frequency surface mount components and methods of forming same
JP3141350B2 (en) Adjusting the oscillation frequency of the oscillation circuit
JP2846803B2 (en) Multilayer wiring board
JPH0680964B2 (en) Circuit device having stripline
US20030098177A1 (en) Multi-layer circuit board
JP3336212B2 (en) High frequency circuit board and capacitance adjustment method
JP3297447B2 (en) High frequency multilayer circuit board adjustment method
JPH05152768A (en) Substrate having multilayered-structure
JP3130792B2 (en) Thin film circuit board
JPH07176403A (en) Thick film circuit and manufacture therefor
JPH03104293A (en) Printed circuit board
JPH0575229A (en) Printed wiring board and its manufacture
JPH0992952A (en) Printed pattern element
JPH08255969A (en) Printed-circuit board device
JPH06283909A (en) Circuit element for microstrip line
JPH04340796A (en) Printed circuit board
JPH02288290A (en) Hybrid integrated circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040618