JPH0710648A - Thermally insulating material for semicondcutor heat treatment oven - Google Patents
Thermally insulating material for semicondcutor heat treatment ovenInfo
- Publication number
- JPH0710648A JPH0710648A JP17213193A JP17213193A JPH0710648A JP H0710648 A JPH0710648 A JP H0710648A JP 17213193 A JP17213193 A JP 17213193A JP 17213193 A JP17213193 A JP 17213193A JP H0710648 A JPH0710648 A JP H0710648A
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- heat insulating
- silicon carbide
- heat treatment
- core tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に半導体ウエハを加
熱してその表面に酸化シリコン被膜を形成したり、その
内部に不純物原子を拡散したりする半導体熱処理作業に
用いられる半導体熱処理炉用断熱材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating furnace for a semiconductor heat treatment furnace which is particularly used for a semiconductor heat treatment work for heating a semiconductor wafer to form a silicon oxide film on the surface thereof and diffusing impurity atoms therein. Regarding materials
【0002】[0002]
【従来の技術】従来、半導体ウエハを半導体熱処理炉の
炉芯管内で熱処理する作業において、半導体ウエハを石
英ガラス製または炭化珪素製のウエハ支持ボートに載置
した状態で、ヒータによって加熱している。2. Description of the Related Art Conventionally, in the work of heat-treating a semiconductor wafer in a furnace core tube of a semiconductor heat treatment furnace, the semiconductor wafer is heated by a heater while being placed on a wafer support boat made of quartz glass or silicon carbide. .
【0003】この熱処理においては、一般的に、炉芯管
の端部に蓋をしている。In this heat treatment, the end of the furnace core tube is generally covered.
【0004】しかしながら、そのように蓋をしただけで
は、炉芯管の断熱性が不充分である。特に、横型の半導
体ウエハ熱処理炉においては、炉芯管の長さ方向(軸線
方向)の断熱性が著しく不充分であり、熱効率が悪い。
そのため、炉芯管内の均熱部の温度がヒータの加熱によ
って上昇するスピードが遅くなり易いという欠点があ
る。However, the thermal insulation of the furnace core tube is not sufficient with only such a lid. Particularly, in a horizontal type semiconductor wafer heat treatment furnace, the heat insulating property in the length direction (axial direction) of the furnace core tube is remarkably insufficient, and the thermal efficiency is poor.
Therefore, there is a disadvantage that the temperature of the soaking part in the furnace core tube rises easily due to the heating of the heater.
【0005】この欠点を解消する目的で、石英ガラス製
または炭化珪素製の板状の断熱材を、ウエハ支持ボート
の端部付近に載置することが行われている。For the purpose of eliminating this drawback, a plate-shaped heat insulating material made of quartz glass or silicon carbide is placed near the end of the wafer support boat.
【0006】この炭化珪素製の断熱材について説明する
と、炭化珪素焼結体中にシリコンを含浸した緻密な炭化
珪素シリコン複合材もしくは、この表面に炭化珪素をコ
ーティングしたものが用いられている。Explaining this heat insulating material made of silicon carbide, there is used a dense silicon carbide / silicon composite material in which silicon is impregnated in a silicon carbide sintered body, or a surface of which is coated with silicon carbide.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前述の
石英ガラスや炭化珪素の断熱材は、熱伝導率が高く、し
かも輻射熱を遮る効果が小さいので、それらの断熱材の
断熱性は、満足できるものではなく、前述の欠点を充分
には解消できない。However, since the above-mentioned heat insulating materials of quartz glass and silicon carbide have high thermal conductivity and have a small effect of blocking radiant heat, the heat insulating properties of these heat insulating materials are satisfactory. However, the above-mentioned drawbacks cannot be fully eliminated.
【0008】充分な断熱性を有する断熱材としては、そ
の他の種々の素材が考えられる。しかしながら、半導体
熱処理炉用断熱材は、充分な断熱性を有するだけでな
く、高純度な半導体ウエハに悪影響を与えず、しかも安
価であることが要求される。石英ガラスおよび炭化珪素
の他の素材では、そのような要求を充分に満たされてい
ない。Various other materials can be considered as a heat insulating material having a sufficient heat insulating property. However, a heat insulating material for a semiconductor heat treatment furnace is required to have not only sufficient heat insulating properties but also not to adversely affect a high-purity semiconductor wafer and to be inexpensive. Quartz glass and other materials such as silicon carbide do not fully meet such requirements.
【0009】本発明は、断熱性が高く、しかも高純度な
半導体ウエハに悪影響を与えない半導体熱処理炉用断熱
材を提供することを目的とする。It is an object of the present invention to provide a heat insulating material for a semiconductor heat treatment furnace which has a high heat insulating property and does not adversely affect a high purity semiconductor wafer.
【0010】[0010]
【課題を解決するための手段】本発明は、表面がガス不
透過性の緻密な炭化珪素質からなり、気孔率が1%〜2
0%であり、炭化珪素粒子の焼結体を含有することを特
徴とする半導体熱処理炉用断熱材を要旨とする。According to the present invention, the surface is made of dense gas-impermeable silicon carbide and has a porosity of 1% to 2%.
The gist is a heat insulating material for a semiconductor heat treatment furnace, which is 0% and contains a sintered body of silicon carbide particles.
【0011】[0011]
【実施例】本発明の好適な実施例による半導体熱処理炉
用断熱材について説明する。EXAMPLE A heat insulating material for a semiconductor heat treatment furnace according to a preferred embodiment of the present invention will be described.
【0012】この半導体熱処理炉用断熱材の表面は、ガ
ス不透過性の緻密な炭化珪素質からなり、この断熱材の
気孔率は、1%〜20%であり、この断熱材は、炭化珪
素粒子の焼結体を含有する。The surface of this heat insulating material for a semiconductor heat treatment furnace is made of gas-impermeable dense silicon carbide, and the porosity of this heat insulating material is 1% to 20%. It contains a sintered body of particles.
【0013】このような半導体熱処理炉用断熱材の製造
方法について説明すると、炭化珪素粒子に有機バインダ
ーを添加し、それらを混練して成形し、その成形物を焼
成し、その焼成体を高温で高純度化処理し、焼成体の表
面にガス不透過性の緻密な炭化珪素をコーティングし
て、断熱材を得る。A method for manufacturing such a heat insulating material for a semiconductor heat treatment furnace will be described. An organic binder is added to silicon carbide particles, they are kneaded and molded, the molded product is fired, and the fired body is heated at a high temperature. A high-purification treatment is performed and a gas-impermeable dense silicon carbide is coated on the surface of the fired body to obtain a heat insulating material.
【0014】次に説明するように、この製造方法によっ
て半導体熱処理炉用断熱材を製造した。As described below, a heat insulating material for a semiconductor heat treatment furnace was manufactured by this manufacturing method.
【0015】まず、平均粒径44μmの炭化珪素粉とフ
ェノールレジンを混練して乾燥、造粒後さらに粉末状の
フェノールレジンを添加し、フェノールレジンの総計を
20〜50wt%含有する粉体を成形し、その成形物を
非酸化性雰囲気中で焼成して、焼成体を得た。その後、
炉内にて1500℃の温度で塩酸(HCl)ガスを流し
た状態で焼成体に対して純化処理を行った。純化処理後
の焼成体の気孔率は、12%であった。First, silicon carbide powder having an average particle size of 44 μm and phenol resin are kneaded, dried, granulated, and then powdered phenol resin is added to form a powder containing 20 to 50 wt% of the total amount of phenol resin. Then, the molded product was fired in a non-oxidizing atmosphere to obtain a fired body. afterwards,
Purification treatment was performed on the fired body in a furnace while flowing a hydrochloric acid (HCl) gas at a temperature of 1500 ° C. The porosity of the fired body after the purification treatment was 12%.
【0016】その後、反応炉内で焼成体の表面に、水素
ガスをキャリアガスとしたトリクロルメチルシランを毎
分2g〜20g供給して、焼成体を、ガス不透過性の緻
密な炭化珪素からなる0.1mmの厚さの膜でコーティ
ングした。Thereafter, 2 g to 20 g per minute of trichloromethylsilane using hydrogen gas as a carrier gas is supplied to the surface of the fired body in the reaction furnace so that the fired body is made of gas impermeable dense silicon carbide. It was coated with a film having a thickness of 0.1 mm.
【0017】このようにして、半導体熱処理炉用断熱材
を得た。この断熱材は、円板形状でありその外径は、1
80mmであり、その厚さは、2mmであった。この断
熱材は、炭化珪素粒子の焼結体を含有しており、断熱材
の気孔率は、11%であった。In this way, a heat insulating material for a semiconductor heat treatment furnace was obtained. This heat insulating material has a disk shape and an outer diameter of 1
It was 80 mm and its thickness was 2 mm. This heat insulating material contained a sintered body of silicon carbide particles, and the porosity of the heat insulating material was 11%.
【0018】次に、このような断熱材1を、2枚製造
し、図1に示すように、石英ガラス製のウエハ支持ボー
ト2の両端部に1枚ずつに載せた。それらを、内径20
0mmの円筒形状の石英ガラス製の炉芯管3内に配置
し、断熱材1を炉芯管3の均熱部Aの両端部に位置する
ようにセットした。炉芯管3の外側に配置されたヒータ
4によって加熱して、炉芯管3の均熱部Aの温度を10
00℃に保った。Next, two pieces of such heat insulating material 1 were produced and, as shown in FIG. 1, placed one on each end of a wafer support boat 2 made of quartz glass. They have an inner diameter of 20
It was placed in a 0 mm cylindrical quartz glass furnace core tube 3, and the heat insulating material 1 was set so as to be positioned at both ends of the soaking part A of the furnace core tube 3. The temperature of the soaking part A of the furnace core tube 3 is raised to 10 by heating with the heater 4 arranged outside the furnace core tube 3.
It was kept at 00 ° C.
【0019】この時の炉芯管3の内側の温度分布を、図
2のグラフに実線10で示す。このグラフの横軸は、炉
芯管3の軸線方向についての位置に対応している。The temperature distribution inside the furnace core tube 3 at this time is shown by a solid line 10 in the graph of FIG. The horizontal axis of this graph corresponds to the position of the furnace core tube 3 in the axial direction.
【0020】比較例 前述の従来の石英ガラス製の断熱材および炭化珪素製の
断熱材を、それぞれ2枚ずつ用意した。それらの断熱材
の形状は、前述の実施例の断熱材の形状と同一(つま
り、外径180mm、厚さ2mmの円板形状)であっ
た。 Comparative Example Two pieces of the above-mentioned conventional heat insulating material made of quartz glass and two pieces of heat insulating material made of silicon carbide were prepared. The shape of these heat insulating materials was the same as the shape of the heat insulating materials of the above-described examples (that is, a disk shape having an outer diameter of 180 mm and a thickness of 2 mm).
【0021】前述の実施例と同様にして、それらの断熱
材を、炉芯管の均熱部の両端部に配置した。In the same manner as in the above-mentioned embodiment, those heat insulating materials were arranged at both ends of the soaking section of the furnace core tube.
【0022】石英ガラスの断熱材を配置した場合の炉芯
管の内側の温度分布を、図2のグラフに破線12で示
し、炭化珪素製の断熱材を配置した場合の炉芯管の内側
の温度分布を2点鎖線11で示す。The temperature distribution inside the furnace core tube when the heat insulating material of quartz glass is arranged is shown by a broken line 12 in the graph of FIG. 2, and the temperature distribution inside the furnace core tube when the heat insulating material made of silicon carbide is arranged. The temperature distribution is shown by a chain double-dashed line 11.
【0023】また、断熱材を配置しない場合の炉芯管の
内側の温度分布を一点鎖線13で示す。Further, the temperature distribution inside the furnace core tube when the heat insulating material is not arranged is shown by a one-dot chain line 13.
【0024】図2から明らかなように、実施例の断熱材
は、比較例の断熱材と比較して、炉芯管の軸線方向の断
熱性に優れており、均熱部の内側と外側の間を良好に断
熱している。As is clear from FIG. 2, the heat insulating material of the example is superior to the heat insulating material of the comparative example in the heat insulating property in the axial direction of the furnace core tube, and the heat insulating material of the inside and outside of the soaking section is excellent. The space is well insulated.
【0025】なお、本発明は、前述の実施例に限定され
るものではない。例えば断熱材の形状は円板形状に限ら
ない。The present invention is not limited to the above embodiment. For example, the shape of the heat insulating material is not limited to the disk shape.
【0026】また、焼成体は、前述のものに限らず、従
来の炭化珪素の焼成体を採用できる。例えば、フェノー
ルレジンに代えてその他の従来のバインダーを使用して
製造した焼成体も採用できる。Further, the fired body is not limited to the above-mentioned one, and a conventional fired body of silicon carbide can be adopted. For example, a fired body produced by using another conventional binder instead of the phenol resin can also be used.
【0027】また、ガス不透過性の緻密な炭化珪素質
は、前述の方法でなく、その他の従来の方法によって形
成できる。The gas-impermeable dense silicon carbide material can be formed by any other conventional method than the above-mentioned method.
【0028】[0028]
【発明の効果】以上詳述したように、本発明の半導体熱
処理炉用断熱材によれば、ガス不透過性の緻密な炭化珪
素質の表面を有する断熱材の内部に骨材として炭化珪素
粒子が含まれ、しかも気孔が存在するので、断熱性が高
く、しかも機械的強度が強く、熱衝撃にも強い。As described in detail above, according to the heat insulating material for a semiconductor heat treatment furnace of the present invention, silicon carbide particles as an aggregate are provided inside a heat insulating material having a gas-impermeable dense silicon carbide surface. It has high heat insulating properties, high mechanical strength, and strong thermal shock, since it contains spores and has pores.
【0029】また、断熱材の気孔率が1%〜20%なの
で、従来の石英ガラスまたは炭化珪素製の断熱材と比較
して大幅に断熱性を向上させることができる。Further, since the heat insulating material has a porosity of 1% to 20%, the heat insulating property can be significantly improved as compared with the conventional heat insulating material made of quartz glass or silicon carbide.
【0030】また、断熱材の表面が、ガス不透過性の緻
密な炭化珪素からなり、高純度であるので、高純度な半
導体ウエハに悪影響を与えることがない。Since the surface of the heat insulating material is made of gas impermeable dense silicon carbide and has a high purity, it does not adversely affect the high purity semiconductor wafer.
【図1】本発明の好適な実施例による半導体熱処理炉用
断熱材を炉芯管に配置した状態を示す断面図。FIG. 1 is a cross-sectional view showing a state where a heat insulating material for a semiconductor heat treatment furnace according to a preferred embodiment of the present invention is arranged in a furnace core tube.
【図2】図1に示した炉芯管の軸線方向についての温度
分布を示すグラフ。FIG. 2 is a graph showing a temperature distribution in the axial direction of the furnace core tube shown in FIG.
1 半導体熱処理炉用断熱材 2 ウエハ支持ボート 3 炉芯管 4 ヒータ A 均熱部 1 Heat Insulation Material for Semiconductor Heat Treatment Furnaces 2 Wafer Support Boat 3 Furnace Core Tube 4 Heater A Soaking Part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々 一治 山形県西置賜郡小国町大字小国町378番地 東芝セラミックス株式会社小国製造所内 (72)発明者 佐藤 勝憲 山形県西置賜郡小国町大字小国町378番地 東芝セラミックス株式会社小国製造所内 (72)発明者 佐々木 泰実 山形県西置賜郡小国町大字小国町378番地 東芝セラミックス株式会社小国製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuharu Sasa 378 Oguni-machi, Oguni-cho, Nishiokitama-gun, Yamagata Prefecture Inside the Oguni Factory of Toshiba Ceramics Co., Ltd. (72) Katsunori Sato 378 Oguni-cho, Oguni-machi, Nishiokitama-gun, Yamagata Prefecture Address Toshiba Ceramics Co., Ltd. Oguni Factory (72) Inventor Yasumi Sasaki Oguni Town, Oguni Town, Nishikitama District, Yamagata 378 Oguni Town, Toshiba Ceramics Co., Ltd. Oguni Factory
Claims (1)
からなり、気孔率が1%〜20%であり、炭化珪素粒子
の焼結体を含有することを特徴とする半導体熱処理炉用
断熱材。1. A semiconductor heat treatment furnace having a surface made of a gas-impermeable dense silicon carbide material, having a porosity of 1% to 20% and containing a sintered body of silicon carbide particles. Insulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17213193A JPH0710648A (en) | 1993-06-21 | 1993-06-21 | Thermally insulating material for semicondcutor heat treatment oven |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17213193A JPH0710648A (en) | 1993-06-21 | 1993-06-21 | Thermally insulating material for semicondcutor heat treatment oven |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0710648A true JPH0710648A (en) | 1995-01-13 |
Family
ID=15936145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17213193A Pending JPH0710648A (en) | 1993-06-21 | 1993-06-21 | Thermally insulating material for semicondcutor heat treatment oven |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0710648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100752974B1 (en) * | 2000-03-30 | 2007-08-30 | 코그니스 도이치란드 게엠베하 운트 코 카게 | Hydrophilic additive |
KR101106062B1 (en) * | 2009-09-03 | 2012-01-18 | (주)삼진제이엠씨 | Ball valve capable of precisely controlling quantity of fluid flow |
-
1993
- 1993-06-21 JP JP17213193A patent/JPH0710648A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100752974B1 (en) * | 2000-03-30 | 2007-08-30 | 코그니스 도이치란드 게엠베하 운트 코 카게 | Hydrophilic additive |
KR101106062B1 (en) * | 2009-09-03 | 2012-01-18 | (주)삼진제이엠씨 | Ball valve capable of precisely controlling quantity of fluid flow |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11317282A (en) | Molybdenum disilicide composite ceramic heating element and its manufacture | |
JPH0686333U (en) | Diffusion furnace components | |
JPH0710648A (en) | Thermally insulating material for semicondcutor heat treatment oven | |
JP2630180B2 (en) | Silicon carbide members for semiconductor manufacturing | |
JPS6335452A (en) | Manufacture of structural member for semiconductor diffusion furnace | |
JPS6331434B2 (en) | ||
JP4056669B2 (en) | Insulating material and manufacturing method thereof | |
JPH0665629B2 (en) | Ceramic material for semiconductor manufacturing apparatus and manufacturing method thereof | |
EP0885858B1 (en) | Recrystallized silicon carbide sintered material and manufacturing method thereof | |
JPH07215781A (en) | Silicon carbide-based composite material and its production | |
JP4515038B2 (en) | MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element | |
US4526876A (en) | Mullite-beta spodumene composite ceramic | |
JPH0416439B2 (en) | ||
JPH07147277A (en) | Member for semiconductor | |
JPH0737114Y2 (en) | Electric furnace | |
JPH0794347B2 (en) | Insulation | |
JPS589882A (en) | Super hard heat-resistant ceramics and manufacture | |
JPS61261270A (en) | Manufacture of aluminum nitride sintered body | |
JP2002362985A (en) | Member coated with ceramic and method of manufacturing the same | |
JPH0751473B2 (en) | Carbon crucible for single crystal production | |
JPS627669A (en) | Member for semiconductor | |
JPS583996B2 (en) | Chimitunatanka Keiso Shitsu Keitaino Seizouhouhou | |
KR20240045774A (en) | Silicon carbide composite comprising metal silicide and silicon nitride compound and method for manufacturing the same | |
JPH01138174A (en) | Production of sintered aluminum nitride | |
JPH04181725A (en) | Ceramic heater for heating semiconductor wafer |