JPH07106462B2 - Energizing the spot welder - Google Patents

Energizing the spot welder

Info

Publication number
JPH07106462B2
JPH07106462B2 JP63007547A JP754788A JPH07106462B2 JP H07106462 B2 JPH07106462 B2 JP H07106462B2 JP 63007547 A JP63007547 A JP 63007547A JP 754788 A JP754788 A JP 754788A JP H07106462 B2 JPH07106462 B2 JP H07106462B2
Authority
JP
Japan
Prior art keywords
electrode
welding
current
peeling
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63007547A
Other languages
Japanese (ja)
Other versions
JPH01186283A (en
Inventor
徳喜 阿部
Original Assignee
株式会社テクノシステムズ
協伸工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノシステムズ, 協伸工業株式会社 filed Critical 株式会社テクノシステムズ
Priority to JP63007547A priority Critical patent/JPH07106462B2/en
Publication of JPH01186283A publication Critical patent/JPH01186283A/en
Publication of JPH07106462B2 publication Critical patent/JPH07106462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスポット溶接機の通電方法に関し、特に合成樹
脂等の被覆膜により被覆されている線材の当該被覆を溶
融剥離するための第3の電極を備えたスポット溶接機の
通電方法に関する。
TECHNICAL FIELD The present invention relates to a method for energizing a spot welding machine, and particularly to a third method for melting and peeling off the coating of a wire coated with a coating film of synthetic resin or the like. The present invention relates to a method for energizing a spot welding machine equipped with the above electrodes.

(従来の技術) 高温雰囲気に晒される電子機器に使用される電導線は、
例えばポリエステルイミド等の耐熱性を有する合成樹脂
で被覆されており、この種の電導線を端子に接続する場
合、高温雰囲気においても電気的接続が長期間に亘り保
持されるように溶接継手(スポット溶接)により端子に
接続される。電導線を端子に溶接する場合には、溶接前
に合成樹脂の絶縁被覆膜を除去する必要があり、従来、
この被覆膜除去には、例えば強アルカリの溶剤(例え
ば、ソルコート)により溶解させる化学的除去方法又は
機械的除去方法等が用いられてきた。しかしながら、絶
縁被覆膜を除去する作業は手間と時間が掛かり、製造コ
ストを上昇させる要因の一つになっていた。
(Prior Art) Conductive wires used in electronic devices exposed to high temperature atmosphere are
For example, it is coated with heat-resistant synthetic resin such as polyester imide, and when connecting this type of conductive wire to the terminal, a welded joint (spot) is used so that the electrical connection is maintained for a long period of time even in a high temperature atmosphere. It is connected to the terminal by welding. When welding a conductive wire to a terminal, it is necessary to remove the insulating coating film of synthetic resin before welding.
For removing the coating film, for example, a chemical removal method or a mechanical removal method in which a strong alkaline solvent (for example, Solcoat) is used for dissolution has been used. However, the work of removing the insulating coating film takes time and labor, and is one of the factors that increase the manufacturing cost.

そこで、斯かる問題点を解決するために本願の出願人
は、従前に、ポリエステルイミド等の耐熱性を有する合
成樹脂で被覆された電導線を、特別な前処理を施すこと
なく端子等に接続することが可能な「スポット溶接機」
(特願昭62−65802号)を提案している。
Therefore, in order to solve such a problem, the applicant of the present application has previously connected a conductive wire coated with a heat-resistant synthetic resin such as polyesterimide to a terminal or the like without performing a special pretreatment. Possible "spot welder"
(Japanese Patent Application No. 62-65802) is proposed.

このスポット溶接機は、第1の電極と第2の電極間にワ
ークを挟持し、これらの電極間に通電することにより前
記ワークにスポット溶接を施すスポット溶接機におい
て、前記第1の電極のワーク当接部位に第3の電極の一
端を当接密着させ、該第3の電極の他端を前記第2の電
極側に電気的に接続し、前記第1及び第3の電極は前記
第2の電極より高い電気抵抗値を有するように構成した
ものである。
In this spot welding machine, a work is sandwiched between a first electrode and a second electrode, and the work is spot-welded by energizing the work between these electrodes. One end of the third electrode is brought into close contact with the contact portion, and the other end of the third electrode is electrically connected to the second electrode side, and the first and third electrodes are the second electrode. The electrode has a higher electric resistance value than the electrode.

このスポット溶接機によれば、第1及び第3の電極と第
2の電極との間に、例えば、加熱により溶融除去される
べき合成樹脂被覆膜で被覆された電導線とこれを接続す
べき端子からなるワークを重ね合わせてこれを挟持させ
た後、溶接用の交流電流を通電すると、先ず、合成樹脂
被覆膜に阻止されて電流は第1の電極と第3の電極の経
路で流れる。このとき電気抵抗値の高い第1及び第3の
電極は発熱して瞬時に高温となり前記合成樹脂被覆膜を
溶融させ、この被覆膜の溶融により電気的絶縁性が破壊
されて電流は第1の電極と第2の電極の経路で流れ、ワ
ークの溶接が可能となる。このスポット溶接機の従来に
ない特徴は、被覆膜溶融の通電期間と、ワーク溶接の通
電期間とを連続させて、被覆膜の剥離と溶接とを一気に
行うことができるところにある。このスポット溶接機の
電極の構成と、それらの電極と電源回路の接続が従来に
ない構成のものであり、上記被覆膜剥離通電期間におい
ても、ワーク溶接通電期間においても常に全電流が第1
の電極と第3の電極の密着面を通過してこの面で安定し
た発熱を生じさせることができる。
According to this spot welding machine, for example, a conductive wire coated with a synthetic resin coating film to be melted and removed by heating is connected between the first and third electrodes and the second electrode. When a work consisting of power terminals is overlapped and sandwiched, and then an alternating current for welding is applied, first, the current is blocked by the synthetic resin coating film and the current flows in the paths of the first electrode and the third electrode. Flowing. At this time, the first and third electrodes having a high electric resistance value generate heat to instantly reach a high temperature, and the synthetic resin coating film is melted. It flows in the path of the first electrode and the second electrode, and the work can be welded. A unique feature of this spot welding machine is that the coating film can be peeled off and welded at once by continuing the energization period for melting the coating film and the energization period for workpiece welding. The structure of the electrodes of this spot welding machine and the connection of these electrodes and the power supply circuit are unconventional, and the total current is always the first during the coating film peeling energization period and the work welding energization period.
It is possible to generate a stable heat generation on this surface by passing through the contact surface between the electrode and the third electrode.

(発明が解決しようとする課題) ところで、前記スポット溶接機により被覆膜の溶融剥離
と溶接とを連続的に行う場合、溶接電流のうち被覆膜の
剥離のための電流と溶接のための電流とを同一の電流値
に設定、例えば、被覆膜の溶融剥離に必要な電流値に設
定すると、被覆膜の剥離に引き続いて行われる溶接時に
当該溶接電流の一部が第3の電極の経路でバイパスして
しまうと共に溶接時における電極の発熱、電蝕、酸化等
に起因する抵抗値の増加により溶接電流が不足し、この
結果、溶接が十分に行われなくなり溶接不良を起こして
しまう。従って、電流値を溶接に必要な大きな電流値に
設定することが必要となる。ところが被覆膜の溶融剥離
時に大きな溶接電流を通電すると、第3の電極が過熱状
態となり、被覆膜が急激に溶融されるために局部的に剥
離され、先に剥離された箇所から溶接が開始されること
となり、溶接不良となり易いばかりでなく溶接面が汚く
なり、更に、再現性の低下を来たし製品毎の溶接強度の
ばらつきがでる等の問題がある。
(Problem to be Solved by the Invention) By the way, in the case of continuously performing melt peeling and welding of a coating film by the spot welding machine, a current for peeling the coating film and a welding current among welding currents are used. When the electric current and the electric current are set to the same electric current value, for example, the electric current value necessary for melting and peeling of the coating film, a part of the welding current is generated when the welding is performed subsequent to the peeling of the coating film. The welding current is insufficient due to the increase in the resistance value due to heat generation, electrolytic corrosion, oxidation, etc. of the electrode during welding, resulting in insufficient welding and poor welding. . Therefore, it is necessary to set the current value to a large current value required for welding. However, when a large welding current is applied during melting and peeling of the coating film, the third electrode is overheated, and the coating film is rapidly melted, causing local peeling and welding from the previously peeled portion. Since it is started, there is a problem that not only welding defects are likely to occur, but also the welded surface becomes dirty, the reproducibility is deteriorated, and the welding strength varies among products.

本発明は上述の点に鑑みてなされたもので、被覆膜を良
好に溶融剥離すると共に、溶接も良好に行うことの可能
なスポット溶接機の通電方法を提供することを目的とす
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for energizing a spot welding machine capable of melting and peeling a coating film in a favorable manner and also performing welding in a favorable manner.

(課題を解決するための手段) 上記目的を達成するために本発明によれば、第1の電極
と、第2の電極と、第1の電極のワーク当接部位に一端
を密着され他端を第2の電極に電気的に接続された第3
の電極と、第1の電極と第2の電極とに接続され所定の
期間溶接用の交流電流を通電する電源制御回路とを有
し、第1及び第3の電極と第2の電極との間にワークを
挟持し、第1と第3の電極の経路で流れる電流により当
該第3の電極を加熱させてワークの被覆膜を溶融剥離
し、当該剥離に伴い第1と第2の電極の経路で流れる電
流により溶接を行うスポット溶接機の通電方法であっ
て、前記溶接用の交流電流の所定の期間のうち、前半の
期間の電流値よりも後半の期間の電流値を大きくするよ
うにしたものである。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, one end of the first electrode, the second electrode, and the other end of the first electrode are brought into close contact with the workpiece contact portion. A third electrode electrically connected to the second electrode
Of the first electrode and the second electrode and a power supply control circuit connected to the first electrode and the second electrode for supplying an alternating current for welding for a predetermined period, and the first and third electrodes and the second electrode. The work is sandwiched between them, and the third electrode is heated by the current flowing in the paths of the first and third electrodes to melt and peel the coating film of the work, and the first and second electrodes are accompanied by the peeling. A method for energizing a spot welding machine that performs welding with a current flowing in a path, wherein a predetermined value of the AC current for welding is set so that the current value in the latter half of the period is larger than the current value in the first half. It is the one.

(作用) 溶接電流の通電が開始されると先ず、所定の通電期間の
内の前半において第1、第3の電極の経路で、ワークの
被覆膜の溶融剥離に必要な電流を通電させることにより
第3の電極が過熱を防止され、これにより被覆膜が良好
に溶融剥離される。この被覆膜の溶融剥離に引き続いて
第1の電極、ワーク、第2の電極の経路で溶接に必要な
大きな溶接電流を通電して当該ワークを溶接し、前記所
定の期間の間にワークの被覆膜の剥離と溶接とを連続し
て行う。
(Operation) When the welding current starts to be supplied, first, in the first half of the predetermined current supply period, the current necessary for melting and peeling the coating film of the work is supplied through the paths of the first and third electrodes. As a result, the third electrode is prevented from overheating, whereby the coating film is melted and peeled off well. Subsequent to the melting and peeling of the coating film, a large welding current required for welding is applied in the paths of the first electrode, the work, and the second electrode to weld the work, and the work is welded during the predetermined period. The peeling of the coating film and the welding are continuously performed.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る通電方法を適用したスポット溶接
機の正面図、第2図はその側面図である。スポット溶接
機1の基台2上に本体フレーム3が載置固定され、本体
フレーム3の正面上部には上下に移動可能に上部電極支
持アーム4が取り付けられている。この上部電極支持ア
ーム4はエアシリンダ等のアクチュエータ5により上下
方向に駆動される。アクチュエータ5には上部電極支持
アーム4即ち、後述する第1及び第3の電極7、9を支
持する電極ホルダ10、12の上下方向移動量を規制する調
整ネジ5aが設けられており、この調整ネジ5aの調整によ
り電極7、9のワーク圧接力が所要値に調節される。
FIG. 1 is a front view of a spot welding machine to which the energization method according to the present invention is applied, and FIG. 2 is a side view thereof. A main body frame 3 is mounted and fixed on a base 2 of the spot welding machine 1, and an upper electrode support arm 4 is attached to an upper front portion of the main body frame 3 so as to be vertically movable. The upper electrode support arm 4 is vertically driven by an actuator 5 such as an air cylinder. The actuator 5 is provided with an adjusting screw 5a for regulating the vertical movement amount of the upper electrode supporting arm 4, that is, the electrode holders 10 and 12 for supporting the first and third electrodes 7 and 9 which will be described later. The work pressure contact force of the electrodes 7 and 9 is adjusted to a required value by adjusting the screw 5a.

電極ホルダ10は第1の電極7の先端を下方に向けて上部
電極支持アーム4に支持され、当該電極ホルダ10は水冷
ジャケットにより構成されており、冷却水により第1の
電極7を冷却するようになっている。第3の電極9は、
第2図に示すように第1の電極7の後方、且つ斜め上方
からその先端部が当該第1の電極7の先端(ワーク当接
部位)に密着するように、上部電極支持アーム4に電極
ホルダ12を支持されている。この電極ホルダ12も水冷ジ
ャケットにより構成されており、冷却水により電極9を
冷却するようになっている。
The electrode holder 10 is supported by the upper electrode support arm 4 with the tip of the first electrode 7 facing downward, and the electrode holder 10 is composed of a water cooling jacket so that the first electrode 7 is cooled by cooling water. It has become. The third electrode 9 is
As shown in FIG. 2, an electrode is attached to the upper electrode support arm 4 so that the tip of the first electrode 7 comes into close contact with the tip (workpiece contact portion) of the first electrode 7 from behind and obliquely above. The holder 12 is supported. This electrode holder 12 is also composed of a water cooling jacket, and the electrode 9 is cooled by cooling water.

基台2の上面の、前記上部電極支持アーム4の下方対向
位置に下部電極支持アーム6が固設されており、この下
部電極支持アーム6には第2の電極(固定電極)8を支
持する電極ホルダ11が支持されている。この第2の電極
8は先端面を上方に向け且つ、第1の電極7の端面及び
第3の電極9の斜め端面に対向させて固定されている。
この第2の電極8の電極ホルダ11も水冷ジャケットによ
り構成され、冷却水により電極8を冷却するようになっ
ている。尚、各電極ホルダ10〜12には夫々各冷却水供給
ポート10a〜12aと、冷却水排出ポート10b〜12bが設けら
れており、これらの冷却水供給ポート10a〜12a及び冷却
水排出ポート10b〜12bは冷却系(図示せず)に接続され
て冷却水が供給される。
A lower electrode support arm 6 is fixedly provided on the upper surface of the base 2 at a position facing the upper electrode support arm 4 below, and a second electrode (fixed electrode) 8 is supported on the lower electrode support arm 6. The electrode holder 11 is supported. The second electrode 8 is fixed with its tip end face facing upward and facing the end face of the first electrode 7 and the oblique end face of the third electrode 9.
The electrode holder 11 of the second electrode 8 is also constituted by a water cooling jacket, and the electrode 8 is cooled by cooling water. The electrode holders 10 to 12 are provided with respective cooling water supply ports 10a to 12a and cooling water discharge ports 10b to 12b, and these cooling water supply ports 10a to 12a and cooling water discharge port 10b to 12b is connected to a cooling system (not shown) to supply cooling water.

第1の電極7は第3図及び第4図に示すように丸棒によ
り形成され、端面7aには直径上に断面半円状をなし、そ
の深さがテーパ状に変化する溝7bが形成されている。ま
た、第3の電極9は電極7の溝7bに嵌合する丸棒により
形成され、先端9aを斜めにカットされて平面9bを形成さ
れている。この電極9はその先端9aを電極7の溝7b内に
嵌合されて配設され、且つ当該嵌合された状態において
平面9bが水平となる。これらの電極7と電極9とは電極
7の溝7bにおいて密着して電気的に接続される。
The first electrode 7 is formed of a round bar as shown in FIGS. 3 and 4, and the end surface 7a is formed with a groove 7b having a semicircular cross section in diameter and the depth of which changes in a taper shape. Has been done. The third electrode 9 is formed by a round bar that fits into the groove 7b of the electrode 7, and the tip 9a is obliquely cut to form a flat surface 9b. The electrode 9 is arranged with its tip 9a fitted in the groove 7b of the electrode 7, and the flat surface 9b is horizontal in the fitted state. The electrodes 7 and 9 are closely contacted and electrically connected in the groove 7b of the electrode 7.

そして、電極7は先端面を下方に向けて垂直に配設さ
れ、電極9は当該第1の電極7に対して後方、且つ斜め
上方から溝7cに先端9aを嵌合され、平面9bが水平な状態
でワークに当接するように配設される。
The electrode 7 is disposed vertically with its tip face downward, the electrode 9 is fitted to the groove 7c at the tip 9a from the rear and obliquely above the first electrode 7, and the plane 9b is horizontal. It is arranged so as to come into contact with the work in such a state.

第1及び第3の電極7及び9は第2の電極8より高い電
気抵抗値を有し、第1及び第3の電極7及び9の電極材
料としては、例えばモリブデン及びタングステン等が好
適に使用される。また、第2の電極8の電極材として
は、例えばタングステン(W)35wt%含有Cu、銀(Ag)
含有のタングステン(W)、ジルコニウム(Zr)含有の
タングステン(W)等が好適に使用される。尚、第1〜
第3の電極7〜9の材料としては前記部材の他に、電気
的特性が同一のタングステン合金を使用してもよい。
The first and third electrodes 7 and 9 have a higher electric resistance value than the second electrode 8, and as the electrode material of the first and third electrodes 7 and 9, for example, molybdenum and tungsten are preferably used. To be done. The electrode material of the second electrode 8 is, for example, 35 wt% tungsten (W) containing Cu, silver (Ag).
Tungsten (W) containing, tungsten (W) containing zirconium (Zr), etc. are preferably used. In addition, first to
As a material for the third electrodes 7 to 9, a tungsten alloy having the same electric characteristics may be used in addition to the above members.

第1の電極7の基端側は第5図に示すように電導線21を
介して溶接トランス20の2次コイル20aの一端に、第3
の電極9の基端側は電導線22を介して第2の電極8の基
端側と共に2次コイル20aの他端に接続されている。ま
た、溶接トランス20の1次コイル20bは電源制御回路23
に接続されている。
As shown in FIG. 5, the base end side of the first electrode 7 is connected to one end of the secondary coil 20a of the welding transformer 20 via the conductive wire 21,
The base end side of the electrode 9 is connected to the other end of the secondary coil 20a together with the base end side of the second electrode 8 via a conductive wire 22. The primary coil 20b of the welding transformer 20 is connected to the power control circuit 23.
It is connected to the.

電源制御回路23はトランス20の1次コイル20bに例え
ば、50Hzの商用交流電力を供給して2次コイル20aに50H
zの溶接用交流電流を所定の期間Tの間通電し、ワーク
の被覆膜の溶融剥離と溶接とを連続的に行うものであ
る。この電源制御回路23は、第6図に示すようにワーク
の被覆膜の溶融剥離及び溶接に必要な前記通電期間T
を、被覆膜の溶融剥離に必要な期間(以下剥離期間とい
う)Taと、実際の溶接に必要な期間(以下溶接期間とい
う)Tbとの2つの期間に分け、前半を剥離期間Ta、後半
を溶接期間Tbとし、且つ通電電流Iを、被覆膜の溶融剥
離に必要な電流(以下剥離電流という)Iaと、実際の溶
接に必要な電流(以下溶接電流という)Ibとに分け、剥
離期間Taの間剥離電流Iaを、溶接期間Tbの間溶接電流Ib
をトランス20の2次コイル20aに通電させる。
The power supply control circuit 23 supplies, for example, 50 Hz commercial AC power to the primary coil 20b of the transformer 20 to supply 50H to the secondary coil 20a.
The welding AC current of z is supplied for a predetermined period T to continuously perform the melt separation of the coating film of the work and the welding. This power supply control circuit 23, as shown in FIG. 6, has the energization period T necessary for melting and peeling the coating film of the work and welding.
Is divided into two periods, that is, a period required for melt peeling of the coating film (hereinafter referred to as peeling period) Ta and a period required for actual welding (hereinafter referred to as welding period) Tb, and the first half is the peeling period Ta and the second half. Is the welding period Tb, and the energizing current I is divided into a current required for melting and peeling the coating film (hereinafter referred to as peeling current) Ia and a current required for actual welding (hereinafter referred to as welding current) Ib, and peeling is performed. The peeling current Ia during the period Ta and the welding current Ib during the welding period Tb
To the secondary coil 20a of the transformer 20.

例えば、ワークとして、0.34φの銅線にポリエステルイ
ミドを被覆した線材を使用する場合、剥離期間Ta、溶接
期間Tbは夫々約0.3sec程度(約15サイクル)に設定さ
れ、剥離電流Iaは略600A、溶接電流Ibは略800A程度に設
定される。そして、溶接電流Ibは剥離電流Iaよりも大き
い値(Ib>Ia)に設定される。勿論、これらの剥離期間
Ta、溶接期間Tb及び、剥離電流Ia、溶接電流Ib等は、線
材の素線径、被覆膜の厚さ等によって最適の値に設定す
ることはいうまでもない。尚、この場合でも溶接電流Ib
は剥離電流Iaよりも大きい値に設定されることは勿論で
ある。
For example, when a 0.34φ copper wire coated with polyesterimide is used as the work, the peeling period Ta and the welding period Tb are set to about 0.3 sec (about 15 cycles), respectively, and the peeling current Ia is set to about 600 A. The welding current Ib is set to about 800A. Then, the welding current Ib is set to a value (Ib> Ia) larger than the peeling current Ia. Of course, these peeling periods
It goes without saying that Ta, the welding period Tb, the peeling current Ia, the welding current Ib, etc. are set to optimum values depending on the wire diameter of the wire rod, the thickness of the coating film, and the like. Even in this case, the welding current Ib
Of course, is set to a value larger than the peeling current Ia.

このように、溶接電流Ibを剥離電流Iaよりも大きくする
ことにより、後述するように、被覆膜の剥離に引き続い
て行われる溶接時に溶接電流の一部が第3の電極の経路
でバイパスし、更に、電極の発熱、電蝕或いは酸化等に
起因して抵抗値が増加しても溶接に必要な十分な溶接電
流を通電させることが可能となる。
In this way, by making the welding current Ib larger than the peeling current Ia, as will be described later, a part of the welding current is bypassed by the path of the third electrode during welding which is performed subsequent to the peeling of the coating film. Furthermore, even if the resistance value increases due to heat generation, electrolytic corrosion, oxidation, etc. of the electrode, it becomes possible to supply a sufficient welding current necessary for welding.

尚、剥離期間Taと溶接期間Tbとは連続させて剥離電流Ia
と溶接電流Ibとを連続的に通電させても良く、或いは、
剥離期間Taと溶接期間Tbとの間に1サイクル程度のクー
ル期間(休止期間)をおいても良い。
It should be noted that the peeling period Ta and the welding period Tb are made continuous so that the peeling current Ia
And welding current Ib may be continuously applied, or
A cool period (pause period) of about one cycle may be provided between the peeling period Ta and the welding period Tb.

次に、上述のように構成されるスポット溶接機1の作動
手順とその作用を、ワークとして例えば、前述した素線
径0.34φの銅線にポリエステルイミドを被覆した電導線
30を導電性の端子部材31(第7図)に溶接する場合を例
に説明する。
Next, the operation procedure and action of the spot welding machine 1 configured as described above will be described as a work, for example, a conductive wire obtained by coating a copper wire having a wire diameter of 0.34φ with polyesterimide
The case of welding 30 to the conductive terminal member 31 (FIG. 7) will be described as an example.

先ず、各電極ホルダ10〜12の水冷ジャケットに冷却水を
供給しておき、第1図、第2図及び第7図に示すよう
に、端子部材31の上面所要位置に電導線30を載置して重
ね合わせたワークを第2の電極8上に載置し、アクチュ
エータ5を作動させて第1及び第3の電極7及び9を降
下させ、電極9の平面9bをワークに圧接させ、第1及び
第3の電極7及び9と第2の電極8間にワークを挟持さ
せる。
First, cooling water is supplied to the water cooling jackets of the electrode holders 10 to 12, and the conductive wire 30 is placed on the upper surface of the terminal member 31 at a required position as shown in FIGS. 1, 2, and 7. Then, the overlapped work is placed on the second electrode 8, the actuator 5 is operated to lower the first and third electrodes 7 and 9, and the flat surface 9b of the electrode 9 is pressed against the work, The work is held between the first and third electrodes 7 and 9 and the second electrode 8.

次いで、電源制御回路23のスイッチを投入してトランス
20の2次コイル20aに電流を通電する。電源制御回路23
は、通電開始時点から剥離期間Taの間剥離電流Ia(第6
図)を2次コイル20aに通電させる。この剥離電流Iaの
通電を開始した時点においては電導線30は被覆膜30bに
より被覆されているので絶縁性を有し、従って、電流は
第1の電極7と第2の電極8間には直接流れず、電導線
22及び第3の電極9を介し電極7、電導線21、2次コイ
ル20a、電導線22で形成される閉回路を流れる。このと
き、電極7及び9は電極8より高い電気抵抗値を有し、
しかも電極7と電極9とは単にそれらの先端部が互いに
当接して接続されるだけであるから、通電に伴って抵抗
値の高い当接部近傍(第3図)が急激に発熱して高温に
なる。
Then, switch on the power supply control circuit 23 to turn on the transformer.
A current is applied to the 20 secondary coils 20a. Power control circuit 23
Is the peeling current Ia (6th
(Fig.) Is energized to the secondary coil 20a. At the time when the peeling current Ia is started to flow, the conductive wire 30 is covered with the coating film 30b and thus has an insulating property. Therefore, the current flows between the first electrode 7 and the second electrode 8. No direct flow, conductive wire
It flows through a closed circuit formed by the electrode 7, the conductive wire 21, the secondary coil 20 a, and the conductive wire 22 via the 22 and the third electrode 9. At this time, the electrodes 7 and 9 have a higher electric resistance value than the electrode 8,
In addition, since the tips of the electrodes 7 and 9 are simply contacted to each other and connected to each other, the vicinity of the contact portion (FIG. 3) having a high resistance value rapidly heats up due to the energization, and the temperature becomes high. become.

第1及び第3の電極7及び9の加熱により電導線30の被
覆膜30bが溶融して剥離され、剥離期間Taの後半におい
て素線30aが露出して電極7及び端子部材31に対して導
通状態になる。これにより、被覆膜30bが素線30aから良
好に溶融剥離される。この導通により溶接電流はワーク
を介して第1の電極7と第2の電極8間で直接流れるよ
うになる。この剥離期間Taに続く溶接期間Tbに入り、電
源制御回路23は当該溶接期間Tbの間2次コイル20aに剥
離電流Iaよりも大きい溶接電流Ibを通電させる。
The coating film 30b of the conductive wire 30 is melted and peeled by the heating of the first and third electrodes 7 and 9, and the wire 30a is exposed in the latter half of the peeling period Ta to the electrode 7 and the terminal member 31. It becomes conductive. As a result, the coating film 30b is satisfactorily melted and peeled from the wire 30a. This conduction allows the welding current to directly flow between the first electrode 7 and the second electrode 8 through the work. During the welding period Tb following the peeling period Ta, the power supply control circuit 23 causes the welding current Ib larger than the peeling current Ia to flow through the secondary coil 20a during the welding period Tb.

この溶接電流Ibは、前述したように、その一部は第1の
電極7から第3の電極9の経路で流れてバイパスし、ま
た、電極の加熱、電蝕、酸化等に起因する抵抗値の増加
により減少する。しかしながら、溶接電流Ibはこれらに
よる減少分を見込んで前記大きな電流値に設定されてお
り、従って、電源制御回路23は溶接期間Tbの間ワークの
溶接に十分な溶接電流を通電させることができる。そし
て、溶接期間Tb中に素線30aと端子部材31とが溶接され
る。
As described above, a part of the welding current Ib flows in the path from the first electrode 7 to the third electrode 9 to bypass it, and the resistance value caused by heating, electrolytic corrosion, oxidation, etc. of the electrode. It decreases with the increase of. However, the welding current Ib is set to the large current value in consideration of the decrease due to these, and therefore the power supply control circuit 23 can supply a sufficient welding current for welding the workpiece during the welding period Tb. Then, the wire 30a and the terminal member 31 are welded during the welding period Tb.

これにより、電極7、9の加熱、被覆膜30bの溶融剥
離、及び素線30aと端子部材31の溶接は極めて短時間に
終了させることができる。溶接時間は、溶接される電導
線30の素線径、端子部材31の板厚等、ワークによって異
なるが、この溶接時間が短すぎると溶接継手の強度が不
十分となり、長過ぎると素線30aの圧壊が生じたり、素
線30aが焼鈍され脆くなるという不都合が生じるので、
溶接時間はこれらを考慮して適宜値に設定すればよい。
Thereby, the heating of the electrodes 7 and 9, the melting and peeling of the coating film 30b, and the welding of the wire 30a and the terminal member 31 can be completed in an extremely short time. The welding time varies depending on the work such as the wire diameter of the conductive wire 30 to be welded and the plate thickness of the terminal member 31, but if the welding time is too short, the strength of the welded joint will be insufficient, and if it is too long, the wire 30a will be used. Since there is a problem that the crushing of the wire occurs or the wire 30a is annealed and becomes brittle,
The welding time may be set to an appropriate value in consideration of these.

(発明の効果) 以上説明したように本発明によれば、第1の電極と、第
2の電極と、第1の電極のワーク当接部位に一端を密着
され他端を第2の電極に電気的に接続された第3の電極
と、第1の電極と第2の電極とに接続され所定の期間溶
接用の交流電流を通電する電源制御回路とを有し、第1
及び第3の電極と第2の電極との間にワークを挟持し、
第1と第3の電極の経路で流れる電流により当該第3の
電極を加熱させてワークの被覆膜を溶融剥離し、当該剥
離に伴い第1と第2の電極の経路で流れる電流により溶
接を行うスポット溶接機の通電方法であって、前記溶接
用の交流電流の所定の期間のうち、前半の期間の電流値
よりも後半の期間の電流値を大きくするようにしたの
で、前記ワークの被覆膜を良好に溶融剥離することが可
能となると共に当該被覆膜の剥離後当該ワークを良好に
溶接することが可能となる。この結果、溶接不良の発生
を大幅に低減することが可能となると共に溶接面を良好
に仕上げることができ、更に、製品毎の溶接強度のばら
つきを少なくすることができるという優れた効果があ
る。
(Effects of the Invention) As described above, according to the present invention, one end of the first electrode, the second electrode, and the work contact portion of the first electrode are brought into close contact with the other end of the second electrode. A third power supply circuit electrically connected to the first electrode, a power supply control circuit connected to the first electrode and the second electrode for supplying an alternating current for welding for a predetermined period,
And sandwiching the work between the third electrode and the second electrode,
The third electrode is heated by the current flowing through the first and third electrodes to melt and peel off the coating film of the work, and welding is performed by the current flowing through the first and second electrodes along with the peeling. In the spot welding machine energizing method for performing, in a predetermined period of the AC current for welding, the current value in the latter half period is made larger than the current value in the first half period, so that The coating film can be satisfactorily melt-peeled, and the workpiece can be satisfactorily welded after the coating film is peeled. As a result, it is possible to significantly reduce the occurrence of welding defects, to finish the welded surface satisfactorily, and to reduce the variation in welding strength among products.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るスポット溶接機の通電方法を適用
したスポット溶接機の一実施例を示す正面図、第2図は
同側面図、第3図は第2図の第1及び第3の電極の先端
の当接部分の拡大断面図、第4図は第3図の矢線IV−IV
方向断面図、第5図は第1図のスポット溶接機の結線回
路図、第6図は本発明に係るスポット溶接機の通電方法
における通電電流波形の一実施例を示すグラフ、第7図
は第1図の電極にワークを挟持した状態を示す断面図で
ある。 1……スポット溶接機、2……基台、3……本体フレー
ム、4……上部電極支持アーム、5……アクチュエータ
(エアシリンダ)、6……下部電極支持アーム、7……
第1の電極、8……第2の電極、9……第3の電極、10
〜12……電極ホルダ、20……溶接トランス、23……電源
制御回路、30……電導線、30a……素線、30b……被覆
膜、31……端子部材。
FIG. 1 is a front view showing an embodiment of a spot welding machine to which the energization method of the spot welding machine according to the present invention is applied, FIG. 2 is a side view of the same, and FIG. 3 is a first and a third of FIG. FIG. 4 is an enlarged cross-sectional view of the contact portion of the tip of the electrode of FIG.
FIG. 5 is a graph showing an example of the energizing current waveform in the energizing method of the spot welding machine according to the present invention, and FIG. 7 is a sectional view of the spot welding machine of FIG. It is sectional drawing which shows the state which clamped the workpiece | work between the electrode of FIG. 1 ... Spot welder, 2 ... Base, 3 ... Main body frame, 4 ... Upper electrode support arm, 5 ... Actuator (air cylinder), 6 ... Lower electrode support arm, 7 ...
1st electrode, 8 ... 2nd electrode, 9 ... 3rd electrode, 10
〜12 …… Electrode holder, 20 …… Welding transformer, 23 …… Power control circuit, 30 …… Conducting wire, 30a …… Element wire, 30b …… Coating film, 31 …… Terminal member.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1の電極と、第2の電極と、第1の電極
のワーク当接部位に一端を密着され他端を第2の電極に
電気的に接続された第3の電極と、第1の電極と第2の
電極とに接続され所定の期間溶接用の交流電流を通電す
る電源制御回路とを有し、第1及び第3の電極と第2の
電極との間にワークを挟持し、第1と第3の電極の経路
で流れる電流により当該第3の電極を加熱させてワーク
の被覆膜を溶融剥離し、当該剥離に伴い第1と第2の電
極の経路で流れる電流により溶接を行うスポット溶接機
の通電方法であって、前記溶接用の交流電流の所定の期
間のうち、前半の期間の電流値よりも後半の期間の電流
値を大きくすることを特徴とするスポット溶接機の通電
方法。
1. A first electrode, a second electrode, and a third electrode, one end of which is in close contact with a work contact portion of the first electrode and the other end of which is electrically connected to the second electrode. , A power supply control circuit connected to the first electrode and the second electrode for supplying an alternating current for welding for a predetermined period, and a work between the first and third electrodes and the second electrode. Sandwiching, and heating the third electrode by the current flowing in the paths of the first and third electrodes to melt and peel off the coating film of the work, and along with the peeling, in the paths of the first and second electrodes. A method of energizing a spot welding machine for welding by flowing current, characterized in that, in a predetermined period of the alternating current for welding, the current value in the latter half period is larger than the current value in the first half period. How to energize the spot welder.
JP63007547A 1988-01-19 1988-01-19 Energizing the spot welder Expired - Lifetime JPH07106462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007547A JPH07106462B2 (en) 1988-01-19 1988-01-19 Energizing the spot welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007547A JPH07106462B2 (en) 1988-01-19 1988-01-19 Energizing the spot welder

Publications (2)

Publication Number Publication Date
JPH01186283A JPH01186283A (en) 1989-07-25
JPH07106462B2 true JPH07106462B2 (en) 1995-11-15

Family

ID=11668818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007547A Expired - Lifetime JPH07106462B2 (en) 1988-01-19 1988-01-19 Energizing the spot welder

Country Status (1)

Country Link
JP (1) JPH07106462B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371982A (en) * 1989-08-08 1991-03-27 Aisan Ind Co Ltd Resistance welding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104279A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Resistance welding method of composite metallic material having resin film
JPS60240389A (en) * 1984-05-15 1985-11-29 Yashima Denki Kk Spot welding method

Also Published As

Publication number Publication date
JPH01186283A (en) 1989-07-25

Similar Documents

Publication Publication Date Title
US3384958A (en) Method of brazing
CN105452818B (en) Thermal mass flowmeter and mass flow control device
EP0284376B2 (en) Spot welding machine
JP2001259859A (en) Method of joining metallic members and method of reflow soldering
EP0535343B1 (en) Spot welding apparatus and spot welding method
JPH04284980A (en) Method for spot resistance welding and its welding electrode
KR940002675B1 (en) Apparatus for heating workpieces
JPH03198975A (en) Soldering method
JPH07106462B2 (en) Energizing the spot welder
Mo et al. Mechanism of resistance microwelding of insulated copper wire to phosphor bronze sheet
JPS62289379A (en) Method and device for joining covered wire
JP5034137B2 (en) WELDING MANUFACTURING METHOD, pedestal, and battery manufacturing method
JPH04137516A (en) Method and device for connecting magnet wire with lead wire
JPH0371982A (en) Resistance welding method
JP3674082B2 (en) Sewing machine thread trimmer
JPH0249190B2 (en)
US5883352A (en) Welding process
JPH01224172A (en) Spot welding machine
JPS6161534B2 (en)
JPH0573516B2 (en)
JP2003136250A (en) Resistance welder for coated conductor
JPS6171188A (en) Resistance welding method of laminated palte
US3443053A (en) Method of joining metallic objects of different melting points
JPH0399784A (en) Spot welding equipment
JP2002063980A (en) Welding method and equipment of electric wire having insulation cover