JPH01186283A - Method for electrifying spot welding machine - Google Patents

Method for electrifying spot welding machine

Info

Publication number
JPH01186283A
JPH01186283A JP63007547A JP754788A JPH01186283A JP H01186283 A JPH01186283 A JP H01186283A JP 63007547 A JP63007547 A JP 63007547A JP 754788 A JP754788 A JP 754788A JP H01186283 A JPH01186283 A JP H01186283A
Authority
JP
Japan
Prior art keywords
electrode
welding
current
peeling
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63007547A
Other languages
Japanese (ja)
Other versions
JPH07106462B2 (en
Inventor
Tokuyoshi Abe
阿部 徳喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoshin Kogyo KK
Shinwa Kogyo Inc
Shinwa Industry Co Ltd
Original Assignee
Kyoshin Kogyo KK
Shinwa Kogyo Inc
Shinwa Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoshin Kogyo KK, Shinwa Kogyo Inc, Shinwa Industry Co Ltd filed Critical Kyoshin Kogyo KK
Priority to JP63007547A priority Critical patent/JPH07106462B2/en
Publication of JPH01186283A publication Critical patent/JPH01186283A/en
Publication of JPH07106462B2 publication Critical patent/JPH07106462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PURPOSE:To peel off a coating film well by melting and to execute welding well by making the current value in welding larger than that in peeling off the coating film in the specified period of the AC current for welding. CONSTITUTION:In case of using the wire rod coating a polyesterimide on a copper wire as a work, for instance, the peeling period Ta and welding period Tb are respectively set at about 15 cycles, the peeling current Ia is set about 600A, the welding period Tb about 800A and the welding current Ib is set at the larger value than the peeling current Ia. The coating film 30b of an electric wire 30 is peeled off by its melting with the heating of 1st and 2nd electrode 7 and 9, an element wire 30a is exposed, a continuity state is attained for the electrode 7 and terminal member 31 and the direct flow is attained between 1st and 2nd electrode 7 and 8. In continuation to this peeling period Ta the welding period Tb comes in, meanwhile the welding current Ib larger than the peeling current Ia is passed to a secondary coil 20a.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスポット溶接機の通電方法に関し、特に合成樹
脂等の被覆膜により被覆されている線材の当該被覆を溶
融剥離するための第3の電極を備えたスポット溶接機の
通電方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for energizing a spot welder, and in particular to a method for energizing a spot welding machine, particularly for melting and peeling off a wire coated with a coating film such as a synthetic resin. The present invention relates to a method for energizing a spot welding machine equipped with an electrode.

(従来の技術) 高温雰囲気に晒される電子機器に使用される電導線は、
例えばポリエステルイミド等の耐熱性を有する合成樹脂
で被覆されており、この種の電導線を端子に接続する場
合、高温雰囲気においても電気的接続が長期間に亘り保
持されるように溶接継手(スポット溶接)により端子に
接続される。
(Prior art) Conductive wires used in electronic devices exposed to high temperature atmospheres are
For example, it is coated with a heat-resistant synthetic resin such as polyesterimide, and when connecting this type of conductive wire to a terminal, welded joints (spot (welding) to the terminals.

電導線を端子に溶接する場合には、溶接前に合成樹脂の
絶縁被覆膜を除去する必要があり、従来、この被覆膜除
去には、例えば強アルカリの溶剤(例えば、ツルコート
)により溶解させる化学的除去方法又は機械的除去方法
等が用いられてきた。
When welding conductive wires to terminals, it is necessary to remove the synthetic resin insulation coating before welding. Conventionally, this coating has been removed by dissolving it with a strong alkaline solvent (for example, Turucoat). Chemical removal methods or mechanical removal methods have been used.

しかしながら、絶縁被覆膜を除去する作業は手間と時間
が掛かり、製造コストを上昇させる要因の一つになって
いた。
However, the work of removing the insulating coating film is laborious and time consuming, which is one of the factors that increases manufacturing costs.

そこで、斯かる問題点を解決するために本願の出願人は
、従前に、ポリエステルイミド等の耐熱性を有する合成
樹脂で被覆された電導線を、特別な前処理を施すことな
く端子等に接続することが可能な「スポット溶接機J 
(特願昭62−6580 )を開示している。
Therefore, in order to solve this problem, the applicant of the present application has previously developed a method for connecting conductive wires coated with a heat-resistant synthetic resin such as polyesterimide to terminals without any special pretreatment. "Spot welding machine J" that can
(Japanese Patent Application No. 62-6580).

このスポット溶接機は、第1の電極と第2の電極間にワ
ークを挟持し、これらの電極間に通電することにより前
記ワークにスポット溶接を施すスポット溶接機において
、前記第1の電極のワーク当接部位に第3の電極の一端
を当接密着させ、該第3の電極の他端を前記第2の電極
側に電気的に接続し、前記第1及び第3の電極は前記第
2の電極より高い電気抵抗値を有するように構成したも
のである。
This spot welding machine holds a workpiece between a first electrode and a second electrode, and performs spot welding on the workpiece by supplying current between these electrodes. One end of a third electrode is brought into close contact with the contact portion, the other end of the third electrode is electrically connected to the second electrode side, and the first and third electrodes are connected to the second electrode. This electrode is constructed to have a higher electrical resistance value than that of the electrode.

このスポット溶接機によれば、第1及び第3の電極と第
2の電極との間に、例えば、加熱により溶融除去される
べき合成樹脂被覆膜で被覆された電導線とこれを接続す
べき端子からなるワークを重ね合わせてこれを挟持させ
た後、溶接用の交流電流を通電すると、先ず、合成樹脂
被覆膜に阻止されて電流は第1の電極と第3の電極の経
路で流れる。このとき電気抵抗値の高い第1及び第3の
電極は発熱して瞬時に高温となり前記合成樹脂被覆膜を
溶融させ、この被覆膜の溶融により電気的絶縁性が破壊
されて電流は第1の電極と第2の電極の経路で流れ、ワ
ークの溶接が可能となる。
According to this spot welding machine, for example, a conductive wire coated with a synthetic resin coating film to be melted and removed by heating is connected between the first and third electrodes and the second electrode. When welding alternating current is applied after stacking and sandwiching workpieces consisting of terminals, the synthetic resin coating first blocks the current and the current flows through the path between the first and third electrodes. flows. At this time, the first and third electrodes, which have a high electrical resistance value, generate heat and reach a high temperature instantaneously, melting the synthetic resin coating film, and the melting of the coating film breaks down the electrical insulation and the current flows to the second electrode. It flows through the path between the first electrode and the second electrode, making it possible to weld the workpiece.

(発明が解決しようとする課題) ところで、前記スポット溶接機により被覆膜の溶融剥離
と溶接とを連続的に行う場合、溶接電流のうち被覆膜の
剥離のための電流と溶接のための電流とを同一の電流値
に設定、例えば、被覆膜の溶融剥離に必要な電流値に設
定すると、被覆膜の剥離に引き続いて行われる溶接時に
当該溶接電流の一部が第3の電極の経路でバイパスして
しまうと共に溶接時ぐおける電極の発熱、電蝕、酸化等
に起因する抵抗値の増加により溶接電流が不足し、この
結果、溶接が十分に行われなくなり溶接不良を起こして
しまう、従って、電流値を溶接に必要な大きな電流値に
設定することが必要となる。ところが被覆膜の溶融剥離
時に大きな溶接電流を通電すると、第3の電極が過熱状
態となり、被覆膜が急激に溶融されるために局部的に剥
離され、先に剥離された箇所から溶接が開始されること
となり、溶接不良となり易いばかりでなく溶接面が汚く
なり、更に、再現性の低下を来たし製品毎の溶接強度の
ばらつきがでる等の問題がある。
(Problem to be Solved by the Invention) By the way, when melting and peeling the coating film and welding are performed continuously using the spot welding machine, the welding current is divided into a current for peeling the coating film and a current for welding. If the current is set to the same current value, for example, to the current value necessary for melting and peeling off the coating film, a part of the welding current will be transferred to the third electrode during welding that is performed subsequent to peeling off the coating film. The welding current is insufficient due to the increase in resistance due to heat generation, electrolytic corrosion, oxidation, etc. of the electrode during welding, and as a result, welding is not performed sufficiently and welding defects occur. Therefore, it is necessary to set the current value to a large current value necessary for welding. However, when a large welding current is applied when the coating is melted and peeled off, the third electrode becomes overheated and the coating is rapidly melted, causing local peeling and welding from the previously peeled off area. As a result, not only are welding defects likely to occur, but the welding surface becomes dirty, and furthermore, there are problems such as a decrease in reproducibility and variations in welding strength from product to product.

本発明は上述の点に鑑みてなされたもので、被覆膜を良
好に溶融剥離すると共に、溶接も良好に行うことの可能
なスポット溶接機の通電方法を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a method for energizing a spot welder that can melt and peel a coating film well and also perform welding well.

(課題を解決するための手段) 上記目的を達成するために本発明によれば、第1の電極
と、第2の電極と、第1の電極のワーク当接部位に一端
を密着され他端を第2の電極に電気的に接続された第3
の電極と、所定の期間溶接用の交流電流を通電する電源
側?n回路とを有し、第1及び第3の電極と第2の電極
との間にワークを挟持し、第1と第3の電極の経路で流
れる電流により当該第3の電極を加熱させてワークの被
覆膜を溶融剥離し、当該剥離に伴い第1と第2の電極の
経路で流れる電流により溶接を行うスポット溶接機の通
電方法において、前記溶接用の交流電流の所定の期間の
うち、前半の期間の電流値よりも後半の期間の電流値を
大きくするようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a first electrode, a second electrode, one end of which is in close contact with a workpiece contacting portion of the first electrode, and the other end of which is in close contact with a workpiece contacting portion of the first electrode. a third electrode electrically connected to the second electrode.
electrode and the power supply side that supplies alternating current for welding for a predetermined period of time? n circuit, a workpiece is sandwiched between the first and third electrodes and the second electrode, and the third electrode is heated by the current flowing in the path between the first and third electrodes. In a method for energizing a spot welder, which melts and peels off a coating film on a workpiece, and performs welding with a current flowing through the path of the first and second electrodes as the coating film is peeled off, during a predetermined period of the alternating current for welding, , the current value in the second half period is made larger than the current value in the first half period.

(作用) 通電開始時に先ず、ワークの被覆膜の溶融剥離に必要な
電流を通電させることにより第3の電極が過熱を防止さ
れ、これにより被覆膜が良好に溶融剥離される。この被
覆膜の溶融剥離に引き続いてワークの溶接に必要な大き
な溶接電流を通電して当該ワークを溶接する。
(Function) At the start of energization, the third electrode is prevented from overheating by first applying a current necessary for melting and peeling off the coating film of the workpiece, so that the coating film can be melted and peeled off well. Following this melting and peeling of the coating film, a large welding current necessary for welding the workpieces is applied to weld the workpieces.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明に係る通電方法を適用したスポット溶接
機の正面図、第2図はその側面図である。
FIG. 1 is a front view of a spot welding machine to which the current application method according to the present invention is applied, and FIG. 2 is a side view thereof.

スポット溶接機1の基台2上に本体フレーム3が載置固
定され、本体フレーム3の正面上部には上下に移動可能
に上部電極支持アーム4が取り付けられている。この上
部電極支持アーム4はエアシリング等のアクチュエータ
5により上下方向に駆動される。アクチュエータ5には
上部電極支持アーム4即ち、後述する第1及び第3の電
極7.9を支持する電極ホルダ10.12の上下方向移
動量を規制する調整ネジ5aが設けら打ており、この調
整ネジ5aの調整により電極7.9のワーク圧接力が所
要値に調節される。
A main body frame 3 is mounted and fixed on a base 2 of a spot welding machine 1, and an upper electrode support arm 4 is attached to the front upper part of the main body frame 3 so as to be movable up and down. This upper electrode support arm 4 is driven in the vertical direction by an actuator 5 such as an air cylinder. The actuator 5 is provided with an adjustment screw 5a for regulating the amount of vertical movement of the upper electrode support arm 4, that is, the electrode holder 10.12 that supports the first and third electrodes 7.9, which will be described later. By adjusting the adjustment screw 5a, the workpiece pressing force of the electrode 7.9 is adjusted to a required value.

電極ホルダ10は第1の電極7の先端を下方に向けて上
部電極支持アーム4に支持され、当該電極ホルダ10は
水冷ジャケットにより構成されており、冷却水により第
1の電極7を冷却するようになっている。第3の電極9
は、第2図に示すように第1の電極マの後方、且つ斜め
上方からその先端部が当該筒1の電極7の先端(ワーク
当接部位)に当接密着するように、上部電極支持アーム
4に電極ホルダ12を支持されている。この電極ホルダ
12も水冷ジャケットにより構成されており、冷却水に
より電極9を冷却するようになっている。
The electrode holder 10 is supported by the upper electrode support arm 4 with the tip of the first electrode 7 facing downward, and the electrode holder 10 is constituted by a water cooling jacket, so that the first electrode 7 is cooled by cooling water. It has become. Third electrode 9
As shown in FIG. 2, the upper electrode support is placed so that its tip comes into close contact with the tip of the electrode 7 of the tube 1 (work contact area) from the rear and diagonally above the first electrode. An electrode holder 12 is supported by the arm 4. This electrode holder 12 is also constituted by a water cooling jacket, and the electrode 9 is cooled by cooling water.

基台2の上面の、前記上部電極支持アーム4の下方対向
位置に下部電極支持アーム6が固設されており、この下
部電極支持アーム6には第2の電極(固定電極)8を支
持する電極ホルダ11が支持されている。この第2の電
極8は先端面を上方に向は且つ、第1の電極7の端面及
び第3の電極9の斜め端面に対向させて固定されている
。この第2の電極8の電極ホルダ11も水冷ジャケット
により構成され、冷却水により電極8を冷却するように
なっている。尚、各電極ホルダ10〜12には夫々各冷
却水供給ボー)LOa〜12aと、冷却水排出ポー)1
0b〜12bが設けられており、これらの冷却水供給ポ
ー)10a〜12a及び冷却水排出ボート10b〜12
bは冷却系(図示せず)に接続されて冷却水が供給され
る。
A lower electrode support arm 6 is fixedly installed on the upper surface of the base 2 at a position below the upper electrode support arm 4, and a second electrode (fixed electrode) 8 is supported on the lower electrode support arm 6. An electrode holder 11 is supported. The second electrode 8 is fixed with its distal end face facing upward and facing the end face of the first electrode 7 and the oblique end face of the third electrode 9. The electrode holder 11 of this second electrode 8 is also constituted by a water cooling jacket, and the electrode 8 is cooled by cooling water. In addition, each electrode holder 10 to 12 has a respective cooling water supply port) LOa to 12a and a cooling water discharge port) 1.
0b to 12b are provided, and these cooling water supply ports) 10a to 12a and cooling water discharge boats 10b to 12
b is connected to a cooling system (not shown) and supplied with cooling water.

第1の電極7は第3図及び第4図に示すように丸棒によ
り形成され、端面7aには直径上に断面半円状をなし、
その深さがテーパ状に変化する満7bが形成されている
。また、第3の電極9は電極7の溝7bに嵌合する丸棒
により形成され、先端9aを斜めにカシトされて平面9
bを形成されている。この電極9はその先端9aを電極
7の溝7b内に嵌合されて配設され、且つ当該嵌合され
た状態において平面9bが水平となる。これらの電極7
と電極9とは電極7の溝7bgおいて密着して電気的に
接続される。
The first electrode 7 is formed of a round bar as shown in FIGS. 3 and 4, and has a semicircular cross section on the diameter at the end surface 7a.
A hole 7b whose depth changes in a tapered manner is formed. Further, the third electrode 9 is formed of a round rod that fits into the groove 7b of the electrode 7, and the tip 9a is obliquely crimped to form a flat surface 9.
b. This electrode 9 is disposed with its tip 9a fitted into the groove 7b of the electrode 7, and in the fitted state, the plane 9b becomes horizontal. These electrodes 7
and the electrode 9 are in close contact with each other in the groove 7bg of the electrode 7 and are electrically connected.

そして、電極7は先端面を下方に向けて垂直に配設され
、電極9は当該筒1の電極7に対して後方、且つ斜め上
方から溝7cに先端9aを嵌合され、平面9bが水平な
状態でワークに当接するように配設される。
The electrode 7 is arranged vertically with the tip surface facing downward, and the tip 9a of the electrode 9 is fitted into the groove 7c from behind and diagonally above the electrode 7 of the tube 1, so that the plane 9b is horizontal. It is arranged so that it comes into contact with the workpiece in a stable state.

第1及び第3の電極7及び9は第2の電極8より高い電
気抵抗値を有し、第1及び第3の電極7及び9の電極材
料としては、例えばモリブデン及びタングステン等が好
適に使用される。また、第2の電極8の電極材としては
、例えばタングステン(W) 35wt%含有Cu、 
tJ! (Ag)含有のタングステン(W)、ジルコニ
ウム(Zr)含有のタングステン(W)等が好適に使用
される。尚、第1〜第3の電極7〜9の材料としては前
記部材の他に、電気的特性が同一のタングステン合金を
使用してもよい。
The first and third electrodes 7 and 9 have a higher electrical resistance value than the second electrode 8, and as electrode materials for the first and third electrodes 7 and 9, molybdenum, tungsten, etc. are preferably used. be done. Further, as the electrode material of the second electrode 8, for example, Cu containing 35 wt% of tungsten (W),
tJ! Tungsten (W) containing (Ag), tungsten (W) containing zirconium (Zr), etc. are preferably used. In addition to the above-mentioned materials, a tungsten alloy having the same electrical properties may be used as the material for the first to third electrodes 7 to 9.

第1の電極7の基端側は第5図に示すように電導線21
を介して溶接トランス20の2次コイル20aの一端に
、第3の電極9の基端側は電導線22を介して第2の電
極22の基端側と共に2次コイル20aの他端に接続さ
れている。また、溶接トランス20の1次コイル20b
は電源制御回路23に接続されている。
The base end side of the first electrode 7 is connected to a conductive wire 21 as shown in FIG.
The base end of the third electrode 9 is connected to one end of the secondary coil 20a of the welding transformer 20 via a conductive wire 22, and the base end of the second electrode 22 is connected to the other end of the secondary coil 20a. has been done. In addition, the primary coil 20b of the welding transformer 20
is connected to the power supply control circuit 23.

電源制御回路23はトランス20の1次コイル20bに
例えば、50Hzの商用交流電力を供給して2次コイル
20aに50Hzの溶接用交流電流を所定の期間Tの間
通電し、ワークの被覆膜の溶融剥離と溶接とを連続的に
行うものである。この電源制御回路23は、第6図に示
すようにワークの被覆膜の溶融剥離及び溶接に必要な前
記通電期間Tを、被覆膜の溶融剥離に必要な期間(以下
剥離期間という)Taと、実際の溶接に必要な期間(以
下溶接期間という)Tbとの2つの期間に分け、前半を
剥離期間Ta、後半を溶接期間Tbとし、且つ通電電流
Iを、被覆膜の溶融剥離に必要な電流(以下剥離電流と
いう)Iaと、実際の溶接に必要な電流(以下溶接電流
という)Ibとに分け、剥離期間Taの間剥離電流1a
を、溶接期間Tb0間溶接電流1bをトランス20の2
次コイル20aに通電させる。
The power supply control circuit 23 supplies, for example, 50 Hz commercial AC power to the primary coil 20b of the transformer 20, and applies a 50 Hz welding AC current to the secondary coil 20a for a predetermined period T, thereby removing the coating film of the workpiece. The melting and peeling and welding are performed continuously. As shown in FIG. 6, this power supply control circuit 23 converts the energization period T necessary for melting and peeling off the coating film of the workpiece and welding to a period Ta necessary for melting and peeling off the coating film (hereinafter referred to as the peeling period). and a period Tb necessary for actual welding (hereinafter referred to as the welding period), the first half is the peeling period Ta, and the second half is the welding period Tb, and the current I is applied to melt and peel the coating film. The peeling current 1a is divided into a necessary current (hereinafter referred to as peeling current) Ia and a current necessary for actual welding (hereinafter referred to as welding current) Ib, and the peeling current 1a is maintained during the peeling period Ta.
, welding current 1b during welding period Tb0 is 2 of transformer 20.
Next, the coil 20a is energized.

例えば、ワークとして、0.34φの銅線にポリエステ
ルイミドを被覆した線材を使用する場合、剥離期間Ta
、溶接期間Tbは夫々約0.3 sec程度(約15サ
イクル)に設定され、剥離電流1aは略600 A 、
溶接電流1bは略800 A程度に設定される。そして
、溶接電流[bは剥離電流1aよりも大きい値(Ib>
Ia)に設定される。勿論、これらの剥離期間Ta、溶
接期間Tb及び、剥離電流Ia、溶接電流1b等は、線
材の素線径、被覆膜の厚さ等によって最適の値に設定す
ることはいうまでもない、尚、この場合でも溶接電流1
bは剥離電流1aよりも大きい値に設定されることは勿
論である。
For example, when using a 0.34φ copper wire coated with polyesterimide as the workpiece, the peeling period Ta
, the welding period Tb is set to approximately 0.3 sec (approximately 15 cycles), and the peeling current 1a is approximately 600 A.
Welding current 1b is set to approximately 800A. The welding current [b is a value larger than the peeling current 1a (Ib>
Ia). Of course, it goes without saying that these peeling period Ta, welding period Tb, peeling current Ia, welding current 1b, etc. are set to optimal values depending on the diameter of the wire material, the thickness of the coating film, etc. In addition, even in this case, the welding current 1
Of course, b is set to a value larger than the peeling current 1a.

このように、溶接電流1bを剥離電流1aよりも大きく
することにより、後述するように、被覆膜の剥離に引き
続いて行われる溶接時に溶接電流の一部が第3の電極の
経路でバイパスし、更に、電極の発熱、電蝕或いは酸化
等に起因して抵抗値が増加しても溶接に必要な十分な溶
接電流を通電させることが可能となる。
In this way, by making the welding current 1b larger than the peeling current 1a, a part of the welding current is bypassed through the third electrode path during welding that is performed subsequent to peeling off the coating, as will be described later. Further, even if the resistance value increases due to heat generation, electrolytic corrosion, oxidation, etc. of the electrode, it is possible to supply a sufficient welding current necessary for welding.

尚、剥離期間Taと溶接期間Tbとは連続させて剥離電
流1aと溶接電流1bとを連続的に通電させても良く−
、或いは、剥離期間Taと溶接期間Tbとの間に1サイ
クル程度のクール期間(休止期間)をおいても良い。
Note that the peeling period Ta and the welding period Tb may be continuous, and the peeling current 1a and the welding current 1b may be applied continuously.
Alternatively, a cool period (rest period) of about one cycle may be provided between the peeling period Ta and the welding period Tb.

次に、上述のように構成されるスポット溶接機1の作動
手順とその作用を、ワークとして例えば、前述した素線
径0.34φの銅線にポリエステルイミドを被覆した電
導線30を導電性の端子部材31(第7図)に溶接する
場合を例に説明する。
Next, we will explain the operating procedure and function of the spot welding machine 1 configured as described above. The case of welding to the terminal member 31 (FIG. 7) will be explained as an example.

先ず、各電極ホルダ10〜12の水冷ジャケットに冷却
水を供給しておき、第1図、第2図及び第7図に示すよ
うに、端子部材31の上面所要位置に電導線30を載置
して重ね合わせたワークを第2の電極8上に載置し、ア
クチュエータ5を作動させて第1及び第3の電極7及び
9を降下させ、電極9の平面9cをワークに圧接させ、
第1及び第3の電極7及び9と第2の電極8間にワーク
を挟持させる。
First, cooling water is supplied to the water cooling jacket of each electrode holder 10 to 12, and as shown in FIGS. The superimposed work is placed on the second electrode 8, the actuator 5 is operated to lower the first and third electrodes 7 and 9, and the flat surface 9c of the electrode 9 is pressed against the work.
A workpiece is held between the first and third electrodes 7 and 9 and the second electrode 8.

次いで、電源制御回路23のスイッチを投入してトラン
ス20の2次コイル20aに電流を通電する。電源制御
回路23は、通電開始時点から剥離期間Ta0間剥離電
流Xa(第6図)を2次コイル20aに通電させる。こ
の剥離電流1aの通電を開始した時点においては電導線
30は被覆膜30bにより被覆されているので絶縁性を
有し、従って、電流は第1の電極7と第2の電極8間に
は直接流れず、電導線22及び第3の電極9を介し電極
7、電導線21.2次コイル20a、電導線22で形成
される閉回路を流れる。このとき、電極7及び9は電極
8より高い電気抵抗値を有し、しかも電極7と電極9と
は単にそれらの先端部が互いに当接して接続されるだけ
であるから、通電に伴って抵抗値の高い当接部近傍(第
3図)が急激に発熱して高温になる。
Next, the switch of the power supply control circuit 23 is turned on to supply current to the secondary coil 20a of the transformer 20. The power supply control circuit 23 energizes the secondary coil 20a with a peeling current Xa (FIG. 6) for a peeling period Ta0 from the time when energization is started. At the time when the application of the peeling current 1a is started, the conductive wire 30 is covered with the coating film 30b and therefore has insulating properties. Therefore, the current flows between the first electrode 7 and the second electrode 8. It does not flow directly, but flows through a closed circuit formed by the electrode 7, the conductive wire 21, the secondary coil 20a, and the conductive wire 22 via the conductive wire 22 and the third electrode 9. At this time, electrodes 7 and 9 have a higher electrical resistance value than electrode 8, and since electrodes 7 and 9 are simply connected with their tips touching each other, resistance increases as electricity is applied. The area near the abutting part where the value is high (Fig. 3) rapidly generates heat and becomes high temperature.

第1及び第3の電極7及び9の加熱により電導線30の
被覆#30bが溶融して剥離され、剥離期間Taの後半
において素線30aが露出して電極7及び端子部材31
に対して導通状態になる。
The coating #30b of the conductive wire 30 is melted and peeled off by heating the first and third electrodes 7 and 9, and in the latter half of the peeling period Ta, the strand 30a is exposed and the electrode 7 and the terminal member 31
It becomes conductive with respect to.

これにより、被覆膜30bが素線30aから良好に溶融
剥離される。この導通により溶接電流はワークを介して
第1の電極7と第2の電FIi8間で直接流れるように
なる。この剥離期間Taに続く溶接期間Tbに入り、電
源制御回路23は当該溶接期間Tbの間2次コイル20
aに剥離電流1aよりも大きい溶接電流[bを通電させ
る。
Thereby, the coating film 30b is melted and peeled off from the wire 30a in a good manner. Due to this conduction, the welding current flows directly between the first electrode 7 and the second electric FIi8 through the workpiece. The welding period Tb that follows this peeling period Ta begins, and the power supply control circuit 23 operates the secondary coil 20 during the welding period Tb.
A welding current [b larger than the peeling current 1a] is applied to a.

この溶接電流1bは、前述したように、その−部は第1
の電極7から第3の電極9の経路で流れてバイパスし、
また、電極の加熱、電蝕、酸化等に起因する抵抗値の増
加により減少する。しかしながら、溶接電流1bはこれ
らによる減少分を見込んで前記大きな電流値に設定され
ており、従って、電源制御回路23は溶接期間Tb0間
ワークの溶接に十分な溶接電流を通電させることができ
る。そして、溶接期間Tb中に素線30aと端子部材3
1とが溶接される。
As mentioned above, this welding current 1b has a negative part in the first
flows from the electrode 7 to the third electrode 9 and bypasses it,
It also decreases due to an increase in resistance value caused by heating, electrolytic corrosion, oxidation, etc. of the electrode. However, the welding current 1b is set to the above-mentioned large current value in consideration of the decrease due to these factors, and therefore, the power supply control circuit 23 can supply a sufficient welding current to weld the workpiece during the welding period Tb0. Then, during the welding period Tb, the wire 30a and the terminal member 3
1 are welded.

これにより、電極7.9の加熱、被覆膜30bの溶融剥
離、及び素線30aと端子部材31の溶接は極めて短時
間に終了させることができる。溶接時間は、溶接される
電導線30の素線径、端子部材31の板厚等、ワークに
よって異なるが、この溶接時間が短すぎると溶接継手の
強度が不十分となり、長過ぎると素線30aの圧壊が生
じたり、素線30aが焼鈍され脆くなるという不都合が
生じるので、溶接時間はこれらを考慮して適宜値に設定
すればよい。
Thereby, the heating of the electrode 7.9, the melting and peeling of the coating film 30b, and the welding of the wire 30a and the terminal member 31 can be completed in an extremely short time. The welding time varies depending on the workpiece, such as the wire diameter of the conductive wire 30 to be welded and the plate thickness of the terminal member 31, but if the welding time is too short, the strength of the welded joint will be insufficient, and if it is too long, the wire 30a The welding time may be set to an appropriate value in consideration of these problems.

(発明の効果) 以上説明したように本発明によれば、第1の電極と、第
2の電極と、第1の電極のワーク当接部位に一端を密着
され他端を第2の電極に電気的に接続された第3の電極
と、所定の期間溶接用の交流電流を通電する電源制御回
路とを有し、第1及び第3の電極と第2の電極との間に
ワークを挟持し、第1と第3の電極の経路で流れる電流
により当該第3の電極を加熱させてワークの被覆膜を溶
融剥離し、当該剥離に伴い第1と第2の電極の経路で流
れる電流により溶接を行うスポット溶接機の通電方法に
おいて、前記溶接用の交流電流の所定の期間のうち、前
半の期間の電流値よりも後半の期間の電流値を大きくす
るようにしたので、前記ワークの被覆膜を良好に溶融剥
離することが可能となると共に当該被覆膜の剥離後当該
ワークを良好に溶接することが可能となる。この結果、
溶接不良の発生を大幅に低減することが可能となと共に
溶接面を良好に仕上げることができ、更に、製品毎の溶
接強度のばらつきを少なくすることができるという優れ
た効果がある。
(Effects of the Invention) As explained above, according to the present invention, there is a first electrode, a second electrode, and one end of the first electrode is in close contact with the work contacting part, and the other end is in contact with the second electrode. It has a third electrode electrically connected to it and a power supply control circuit that supplies an alternating current for welding for a predetermined period, and a workpiece is held between the first and third electrodes and the second electrode. Then, the third electrode is heated by the current flowing in the path between the first and third electrodes, melting and peeling off the coating film of the workpiece, and the current flowing in the path between the first and second electrodes as a result of the peeling. In the energization method of a spot welding machine that performs welding, the current value in the second half of the predetermined period of the welding alternating current is made larger than the current value in the first half, so that It becomes possible to melt and peel off the coating film in a good manner, and it also becomes possible to weld the workpiece in a good manner after peeling off the coating film. As a result,
This method has excellent effects in that it is possible to significantly reduce the occurrence of welding defects, the welded surface can be finished satisfactorily, and the variation in welding strength from product to product can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るスポット溶接機の通電方法を適用
したスポット溶接機の一実施例を示す正面図、第2図は
同側面図、第3図は第2図の第1及び第3の電極の先端
の当接部分の拡大断面図、第4図は第3図の矢線IV−
IV方向断面図、第5図は第1図のスポット溶接機の結
線回路図、第6図は本発明に係るスポット溶接機の通電
方法における通電電流波形の一実施例を示すグラフ、第
7図は第1図の電極にワークを挟持した状態を示す断面
図である。 1・・・スポット溶接機、2・・・基台、3・・・本体
フレーム、4・・・上部電極支持アーム、5・・・アク
チエエータ(エアシリンダ)、6・・・下部電極支持ア
ーム、7・・・第1の電極、8・・・第2の電極、9・
・・第3の電極、10〜12・・・電極ホルダ、20・
・・溶接トランス、23・・・電源制御回路、30・・
・電導線、30a・・・素線、30b・・・被覆膜、3
1・・・端子部材。
FIG. 1 is a front view showing an embodiment of a spot welding machine to which the current supply method for a spot welding machine according to the present invention is applied, FIG. 2 is a side view of the same, and FIG. FIG. 4 is an enlarged cross-sectional view of the abutting part of the tip of the electrode.
5 is a wiring circuit diagram of the spot welding machine shown in FIG. 1, FIG. 6 is a graph showing an example of the current waveform in the energization method of the spot welding machine according to the present invention, and FIG. 7 is a sectional view in the IV direction. 2 is a sectional view showing a state in which a workpiece is held between the electrodes of FIG. 1; FIG. DESCRIPTION OF SYMBOLS 1... Spot welding machine, 2... Base, 3... Main body frame, 4... Upper electrode support arm, 5... Actuator (air cylinder), 6... Lower electrode support arm, 7... First electrode, 8... Second electrode, 9...
...Third electrode, 10-12... Electrode holder, 20.
... Welding transformer, 23... Power supply control circuit, 30...
・Conducting wire, 30a... Element wire, 30b... Coating film, 3
1...Terminal member.

Claims (1)

【特許請求の範囲】[Claims] 第1の電極と、第2の電極と、第1の電極のワーク当接
部位に一端を密着され他端を第2の電極に電気的に接続
された第3の電極と、所定の期間溶接用の交流電流を通
電する電源制御回路とを有し、第1及び第3の電極と第
2の電極との間にワークを挟持し、第1と第3の電極の
経路で流れる電流により当該第3の電極を加熱させてワ
ークの被覆膜を溶融剥離し、当該剥離に伴い第1と第2
の電極の経路で流れる電流により溶接を行うスポット溶
接機の通電方法において、前記溶接用の交流電流の所定
の期間のうち、前半の期間の電流値よりも後半の期間の
電流値を大きくすることを特徴とするスポット溶接機の
通電方法。
Welding a first electrode, a second electrode, and a third electrode whose one end is in close contact with the workpiece contacting part of the first electrode and whose other end is electrically connected to the second electrode for a predetermined period of time. The workpiece is sandwiched between the first and third electrodes and the second electrode, and the current flowing in the path between the first and third electrodes causes the workpiece to be The third electrode is heated to melt and peel off the coating film on the workpiece, and along with the peeling off, the first and second
In a method of energizing a spot welding machine that performs welding with a current flowing through an electrode path, the current value in the second half of the predetermined period of the welding alternating current is made larger than the current value in the first half. A method for energizing a spot welding machine characterized by:
JP63007547A 1988-01-19 1988-01-19 Energizing the spot welder Expired - Lifetime JPH07106462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007547A JPH07106462B2 (en) 1988-01-19 1988-01-19 Energizing the spot welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007547A JPH07106462B2 (en) 1988-01-19 1988-01-19 Energizing the spot welder

Publications (2)

Publication Number Publication Date
JPH01186283A true JPH01186283A (en) 1989-07-25
JPH07106462B2 JPH07106462B2 (en) 1995-11-15

Family

ID=11668818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007547A Expired - Lifetime JPH07106462B2 (en) 1988-01-19 1988-01-19 Energizing the spot welder

Country Status (1)

Country Link
JP (1) JPH07106462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371982A (en) * 1989-08-08 1991-03-27 Aisan Ind Co Ltd Resistance welding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104279A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Resistance welding method of composite metallic material having resin film
JPS60240389A (en) * 1984-05-15 1985-11-29 Yashima Denki Kk Spot welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104279A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Resistance welding method of composite metallic material having resin film
JPS60240389A (en) * 1984-05-15 1985-11-29 Yashima Denki Kk Spot welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371982A (en) * 1989-08-08 1991-03-27 Aisan Ind Co Ltd Resistance welding method

Also Published As

Publication number Publication date
JPH07106462B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPS5824941B2 (en) welding equipment
US6326580B1 (en) Joining apparatus
JP2002321068A (en) Resistance welding device for covered wire
JPS63235081A (en) Spot welding machine
JPH04284980A (en) Method for spot resistance welding and its welding electrode
KR940002675B1 (en) Apparatus for heating workpieces
EP0535343A2 (en) Spot welding apparatus and spot welding method
Mo et al. Mechanism of resistance microwelding of insulated copper wire to phosphor bronze sheet
JPH01186283A (en) Method for electrifying spot welding machine
JPS62289379A (en) Method and device for joining covered wire
JPH0371982A (en) Resistance welding method
JP2003080372A (en) Joining device for covered wire
JPH04137516A (en) Method and device for connecting magnet wire with lead wire
JP3211580B2 (en) Soldering equipment
JPH0249190B2 (en)
JP2001239368A (en) Arc welding equipment and method and welding torch used therefor
JPH01224172A (en) Spot welding machine
JP2003136250A (en) Resistance welder for coated conductor
JPH0399784A (en) Spot welding equipment
JP3948767B2 (en) High frequency AC TIG welding machine
JPH01186286A (en) Electrode for spot welding machine
JP4847079B2 (en) Arc welding start method
JP2006315043A (en) Reflow welding equipment
JP2002063980A (en) Welding method and equipment of electric wire having insulation cover
JPH10508432A (en) Method and apparatus for coil winding contacts