JPH07105865A - Image pickup device and method for operating it - Google Patents

Image pickup device and method for operating it

Info

Publication number
JPH07105865A
JPH07105865A JP24778093A JP24778093A JPH07105865A JP H07105865 A JPH07105865 A JP H07105865A JP 24778093 A JP24778093 A JP 24778093A JP 24778093 A JP24778093 A JP 24778093A JP H07105865 A JPH07105865 A JP H07105865A
Authority
JP
Japan
Prior art keywords
image pickup
photoconductive film
substrate
film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24778093A
Other languages
Japanese (ja)
Inventor
Tetsuya Oshima
徹也 大島
Tatsuo Makishima
達男 牧島
Yasushi Nakano
泰 中野
Kazutaka Tsuji
和隆 辻
Setsu Kubota
節 久保田
Shiro Suzuki
四郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Broadcasting Corp
Original Assignee
Hitachi Ltd
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Hitachi Ltd
Priority to JP24778093A priority Critical patent/JPH07105865A/en
Publication of JPH07105865A publication Critical patent/JPH07105865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To provide an image pickup device using a photoconductive film of an amorphous semiconductor which keeps an initial image plane of good quality and suppressing the image deterioration after a long-time use. CONSTITUTION:An ion-etched area 2 containing a scanning area and an non-ion etched area 3 are formed on a base 1, a conductive film 4, a positive hole injection arresting layer, a photoconductive layer 6 of amorphous semiconductor, and an electron beam landing layer are accumulated thereon, and the photoconductive film 6 is set in such a manner that it never reach the non-ion etched area 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導電膜に非晶質半導
体を用いた撮像装置およびその動作方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup device using an amorphous semiconductor for a photoconductive film and its operating method.

【0002】[0002]

【従来の技術】光導電膜に非晶質半導体を用いた従来の
撮像装置としては、例えば基板上に、導電膜や正孔注入
阻止層やSeを主体にする非晶質半導体からなる光導電
膜やビームランディング層を順次堆積した撮像管ターゲ
ット部と、電子ビームを発射するための電子銃と電子ビ
ームを集束偏向するための電極を備えた走査電子ビーム
発生部とからなる阻止型撮像管がある。このような撮像
管は可視光や紫外線ないしX線に感度を有し、また、低
残像で高い解像度を有することから、種々の分野で利用
されている。上記撮像管については、例えば特公昭54
‐30382号およびテレビジョン学会全国大会予稿集
(昭和57年)第81〜82頁等に示されている。ま
た、Seを主体にする非晶質半導体からなる光導電膜に
0.8〜2メガボルト/センチメートル程度の電界を印
加して動作させることによりアバランシェ増倍をおこさ
せ、高い感度を実現した阻止型撮像管がある。上記撮像
管については、例えばテレビジョン学会技術報告第10
巻、N0.45、第1〜6頁、ED‐'87(昭和62
年)に示されている。これらの撮像装置で発生する初期
的な画面欠陥を改善する手段としては、例えば基板表面
をイオンエッチング処理する方法が提案されている(特
開平1‐192177号)。
2. Description of the Related Art As a conventional image pickup device using an amorphous semiconductor as a photoconductive film, for example, a photoconductive film made of an amorphous semiconductor mainly composed of a conductive film, a hole injection blocking layer and Se is formed on a substrate. A blocking-type image pickup tube including an image pickup tube target portion in which a film and a beam landing layer are sequentially deposited, an electron gun for emitting an electron beam, and a scanning electron beam generation portion having an electrode for focusing and deflecting the electron beam is provided. is there. Since such an image pickup tube has sensitivity to visible light, ultraviolet rays or X-rays, and has low afterimage and high resolution, it is used in various fields. Regarding the above-mentioned image pickup tube, for example, Japanese Patent Publication No.
No. -30382 and the National Conference of Television Society Proceedings (1982), pages 81-82. In addition, avalanche multiplication is performed by applying an electric field of about 0.8 to 2 megavolts / centimeter to a photoconductive film made of an amorphous semiconductor mainly composed of Se to operate, and a high sensitivity is achieved. Type imaging tube. Regarding the above-mentioned image pickup tube, for example, Technical Report 10 of the Television Society
Volume, N0.45, pp. 1-6, ED-'87 (Showa 62)
Year). As a means for improving the initial screen defect that occurs in these image pickup devices, for example, a method of subjecting the surface of the substrate to an ion etching treatment has been proposed (JP-A-1-192177).

【0003】[0003]

【発明が解決しようとする課題】上記撮像装置は光導電
膜が非晶質であるために、長時間使用すると体積収縮や
結晶化などの経時変化を起こし、画像劣化を生じやすい
という欠点があった。上記光導電膜の体積収縮は、光導
電膜や光導電膜上にキャリアの注入を阻止する等の目的
で堆積した薄膜層に、クラックを発生させて画面欠陥の
原因になる。また、非晶質が結晶化すると電気特性や光
学特性が変化するので、やはり画面欠陥を生じる。これ
らの要因によって、従来の光導電膜に非晶質半導体を用
いた撮像装置では、長時間使用した場合に、必ずしも十
分な寿命特性が得られないという課題があった。
Since the photoconductive film of the image pickup device is amorphous, the image pickup device has a drawback in that when it is used for a long period of time, image deterioration is likely to occur due to changes with time such as volume shrinkage and crystallization. It was The volume contraction of the photoconductive film causes cracks in the photoconductive film or a thin film layer deposited on the photoconductive film for the purpose of blocking carrier injection or the like, which causes a screen defect. Further, if the amorphous material is crystallized, the electrical characteristics and the optical characteristics are changed, so that a screen defect also occurs. Due to these factors, the conventional image pickup device using the amorphous semiconductor for the photoconductive film has a problem that sufficient life characteristics cannot always be obtained when used for a long time.

【0004】本発明は、非晶質半導体からなる光導電膜
を用いた撮像装置が、初期に得る従来同様の良質な画面
状態を維持し、長時間使用後の画面劣化を抑制すること
を目的とする。
It is an object of the present invention to maintain an image quality of an image pickup device using a photoconductive film made of an amorphous semiconductor, which is the same as that of a conventional one, which is obtained in the initial stage, and suppress the deterioration of the screen after long-term use. And

【0005】[0005]

【課題を解決するための手段】上記目的は、基板と、該
基板上に設けた導電膜と、該導電膜と整流性接合させた
少なくとも一部が非晶質からなる光導電膜を備えた光電
変換部と、上記光導電膜で発生した信号電荷を時系列的
に読み出すための走査部とを具備した撮像装置にあっ
て、上記基板上に、走査領域全面を含むイオンエッチン
グ処理領域とイオンエッチング無処理領域とを有し、上
記光導電膜の少なくとも一部が、上記基板の無処理領域
上に達する構造にすることにより達成される。
The above-mentioned object is provided with a substrate, a conductive film provided on the substrate, and a photoconductive film at least a part of which is rectifying bonded to the conductive film and which is amorphous. An image pickup device comprising a photoelectric conversion unit and a scanning unit for reading out signal charges generated in the photoconductive film in time series, wherein an ion etching treatment region including the entire scanning region and ions are provided on the substrate. And a non-etched region, wherein at least a part of the photoconductive film reaches the untreated region of the substrate.

【0006】[0006]

【作用】撮像管ターゲット部の光導電膜にSeを主体と
する非晶質半導体を用いた撮像管において、長時間使用
した場合に発生する画面欠陥、すなわち画面欠陥の寿命
特性を本発明者らが調査した結果、光導電膜の基板側
界面で発生した結晶化と、光導電膜のクラックとが主
な原因であることを明らかにした。さらに、これらの画
面欠陥と、初期的な画面欠陥を改善する手段である基板
表面のイオンエッチング処理との関係を詳細に調べた結
果、イオンエッチング処理を施すと、光導電膜の局所的
な結晶化やクラックに伴う寿命特性は劣化することが明
らかになった。そこで、撮像管ターゲット部の基板表面
にイオンエッチング処理した処理領域とイオンエッチン
グ処理しない無処理領域とを設け、上記処理領域が走査
領域全面を含み、光導電膜の周辺部が上記無処理領域に
達する構造にした結果、初期的にも長時間使用した場合
にも画面欠陥は発生しにくくなった。
In the image pickup tube using the amorphous semiconductor mainly composed of Se as the photoconductive film of the target portion of the image pickup tube, the inventors of the present invention have determined the life characteristics of the screen defect, that is, the screen defect, which occurs when used for a long time. As a result of the investigation, it was clarified that the crystallization that occurred at the substrate side interface of the photoconductive film and the crack of the photoconductive film were the main causes. Furthermore, as a result of detailed investigation of the relationship between these screen defects and the ion etching treatment of the substrate surface, which is a means for improving the initial screen defects, when the ion etching treatment is carried out, the local crystal of the photoconductive film is crystallized. It was clarified that the life characteristics deteriorate due to aging and cracking. Therefore, the substrate surface of the image pickup tube target portion is provided with an ion-etched treated region and a non-treated region that is not ion-etched, the treated region includes the entire scanning region, and the peripheral portion of the photoconductive film is the untreated region. As a result of the structure to reach, screen defects were less likely to occur both initially and when used for a long time.

【0007】つぎに本発明の具体的な実施形態の一例に
ついて、図1により説明する。図1は本発明の撮像装置
における撮像管ターゲット部を示す構造概略図である。
図1の(a)はターゲット部の平面図、(b)は断面図
である。図において、1は基板であり、その表面にはイ
オンエッチング処理した領域2とイオンエッチング処理
していない領域3とを有する。4は導電膜、5は正孔注
入阻止層、6は少なくとも一部が非晶質半導体層からな
る光導電膜、7は電子ビームランディング層、破線8は
走査領域を示す線で、破線8の内部が使用時に電子ビー
ムで走査される。ここでは、導電膜4と光導電層6との
間には一方向だけに電流が流れる整流性を補助する目的
で正孔注入阻止層5を形成した構造を示したが、十分な
整流性があれば上記導電膜4と上記光導電層6とを直接
接触させてもよい。上記構造の撮像管ターゲット部を、
電子ビームを発射する電子銃と電子ビームを集束偏向す
る電極とを備えた走査電子ビーム発生部と組み合わせる
ことにより、本発明の撮像装置が得られる。
Next, an example of a concrete embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic structural view showing an image pickup tube target portion in an image pickup apparatus of the present invention.
1A is a plan view of the target portion, and FIG. 1B is a sectional view. In the figure, reference numeral 1 denotes a substrate, which has a region 2 subjected to ion etching treatment and a region 3 not subjected to ion etching treatment on its surface. Reference numeral 4 is a conductive film, 5 is a hole injection blocking layer, 6 is a photoconductive film at least a part of which is composed of an amorphous semiconductor layer, 7 is an electron beam landing layer, broken line 8 is a line showing a scanning region, and broken line 8 The inside is scanned with an electron beam during use. Here, the structure in which the hole injection blocking layer 5 is formed between the conductive film 4 and the photoconductive layer 6 for the purpose of assisting the rectification property in which the current flows in only one direction is shown, but the sufficient rectification property is obtained. If so, the conductive film 4 and the photoconductive layer 6 may be brought into direct contact with each other. The image pickup tube target portion having the above structure,
The image pickup apparatus of the present invention can be obtained by combining with a scanning electron beam generating unit provided with an electron gun for emitting an electron beam and an electrode for focusing and deflecting the electron beam.

【0008】図1では基板1表面のイオンエッチング処
理した領域2が円形状をしているが、必ずしも円形であ
る必要はなく、破線8で囲む走査領域の全面を覆ってい
れば四角形や楕円形等の形状であってもよい。重要なこ
とは、上記走査領域8の全面がイオンエッチング処理し
た領域2に含まれていることと、光導電膜6の少なくと
も一部がイオンエッチング処理していない領域3上に達
していることである。図1では光導電膜6の周辺部全て
が上記イオンエッチング処理していない領域3上に達し
た、好ましい構造を示しているが、光導電膜6の少なく
とも一部が上記無処理領域3と重なっていれば効果はあ
る。ここで、光導電膜6とイオンエッチング処理してい
ない領域3との重なる面積が大きいほど好ましい。さら
に、図1では光導電膜6の周辺部と基板1のイオンエッ
チング処理していない領域3の間に、導電膜4が介在す
る構造を示したが、上記光導電膜6中の非晶質層が直接
上記基板1に接してもよいし、導電膜4や正孔注入阻止
層5等の、上記光導電層6中の非晶質層と基板1との間
に存在するいずれか一つ、または複数の薄膜層が介在し
ていてもよい。また図1では、イオンエッチング処理を
基板1上に直接施した場合について示したが、導電膜4
や正孔注入阻止層5等の光導電膜6中の非晶質層と基板
1との間に存在するいずれかの薄膜層を堆積した後に、
イオンエッチング処理を行ってもよい。
In FIG. 1, the ion-etched region 2 on the surface of the substrate 1 has a circular shape, but it does not have to be circular, and if the entire scanning region surrounded by the broken line 8 is covered, it has a quadrangle or an ellipse. The shape may be the same. What is important is that the entire scanning region 8 is included in the ion-etched region 2 and that at least a part of the photoconductive film 6 reaches the non-ion-etched region 3. is there. Although FIG. 1 shows a preferable structure in which the entire peripheral portion of the photoconductive film 6 reaches the region 3 which is not subjected to the ion etching treatment, at least a part of the photoconductive film 6 overlaps with the untreated region 3. Is effective. Here, the larger the overlapping area of the photoconductive film 6 and the region 3 not subjected to the ion etching treatment, the more preferable. Further, FIG. 1 shows a structure in which the conductive film 4 is interposed between the peripheral portion of the photoconductive film 6 and the region 3 of the substrate 1 which is not subjected to the ion etching treatment. The layer may be in direct contact with the substrate 1, or any one of the conductive film 4, the hole injection blocking layer 5 and the like, which exists between the amorphous layer in the photoconductive layer 6 and the substrate 1. Alternatively, a plurality of thin film layers may be interposed. Although FIG. 1 shows the case where the ion etching treatment is directly performed on the substrate 1, the conductive film 4
Or any of the thin film layers existing between the amorphous layer in the photoconductive film 6 such as the hole injection blocking layer 5 and the substrate 1 is deposited,
Ion etching treatment may be performed.

【0009】本発明に用いる光導電膜としてはSeを主
体にする非晶質半導体がある。上記非晶質Seを主体に
する非晶質半導体は、0.8〜2メガボルト/センチメ
ートル程度の電界を印加すると、電荷増倍現象が観測さ
れる。いわゆるアバランシェ増倍機能を有する材料であ
る。この材料を光導電膜として用い、さらに上記アバラ
ンシェ増倍が生じる程の電界を印加して動作させると、
感度を高めることができる。上記のように高い電界条件
で使用する場合に、本発明は特に有効であった。また、
上記光導電膜の材料としては、Seの他にTeやSi等の
元素を主体にする非晶質であってもよいし、As,Li,
F,H等の元素を添加して用いることもできる。例えば
SeにTe等の元素を添加して赤色増感効果を得ること
は、特開昭49‐24619号などに開示されている
が、これらの光導電膜をすべて用いることができる。ま
た、上記光導電膜が複数材質の異なる非晶質層からなっ
ていてもよい。さらに、上記光導電膜の全てが非晶質層
からなる必要はなく、光導電膜の少なくとも一部が、赤
色増感効果を得るなどの目的で設けられたCdSe,Cd
Te等の材料からなる多結晶半導体層であってもよい。
As the photoconductive film used in the present invention, there is an amorphous semiconductor mainly composed of Se. In the amorphous semiconductor mainly composed of amorphous Se, a charge multiplication phenomenon is observed when an electric field of about 0.8 to 2 megavolt / cm is applied. It is a material having a so-called avalanche multiplication function. When this material is used as a photoconductive film and further operated by applying an electric field such that the avalanche multiplication occurs,
The sensitivity can be increased. The present invention was particularly effective when used under high electric field conditions as described above. Also,
The material of the photoconductive film may be amorphous, which mainly contains elements such as Te and Si in addition to Se, and As, Li,
Elements such as F and H may be added and used. For example, the addition of an element such as Te to Se to obtain a red sensitizing effect is disclosed in JP-A-49-24619, but all of these photoconductive films can be used. Further, the photoconductive film may be composed of amorphous layers made of different materials. Further, it is not necessary that all of the photoconductive film is made of an amorphous layer, and at least a part of the photoconductive film is provided for the purpose of obtaining a red sensitizing effect.
It may be a polycrystalline semiconductor layer made of a material such as Te.

【0010】上記基板上にイオンエッチング処理した領
域と処理しない領域とを形成する方法としては、例えば
図6に示す高周波スパッタリング装置を用い、装置内の
陰電極601上に基板603を設置し、マスク604を
用いて上記基板603の周辺部を覆ったのち、Ar,H
e,N2等の不活性ガス雰囲気中で高周波放電を行って実
現する。高周波放電させる雰囲気としては、Ar,He,
2等の不活性ガスやその他H2O,O2等のいずれか1
種または複数種のガスを混合して用いてもよい。この場
合重要なことは、上記マスク604を調節して、放電イ
オンにさらされる処理領域とさらされない無処理領域と
を、上記基板603上に形成し、かつ、少なくとも走査
領域全面が上記処理領域内に含まれていることと、光導
電膜を堆積する領域の少なくとも一部が上記無処理領域
に達していることである。また、上記方法を用いる場合
は、上記基板603の表面と上記マスク604とを接触
させると、上記基板603の表面にごみが付着し画面欠
陥の原因になり好ましくない。また両者の間隔が大きす
ぎるとマスクの効果がなくなってしまう。したがって、
両者の間隔は0.1mm以上10mm以下が好ましい。
さらに、両者の間隔を0.2mm以上10mm以下にす
ると、上記処理領域と無処理領域の境界がなだらかにな
り、この部分での結晶化が発生するおそれがなくなるの
でより好ましい。また、上記イオンエッチング処理を行
うと、マスク604に含まれる材料の一部が基板603
に混入する恐れがあるため、上記マスク604の材質
は、放電雰囲気中でイオンエッチングされにくい材料
か、イオンエッチングする面に含まれている材料が好ま
しく、また、イオンエッチングする面と同じ材質であれ
ばより好ましい。ここでは高周波スパッタリング装置を
用いた場合について説明したが、マグネトロンスパッタ
リング装置やプラズマアッシャー装置等を使用しても、
同様のイオンエッチング処理を行い得る。
As a method of forming a region subjected to ion etching treatment and a region not subjected to treatment on the substrate, for example, a high frequency sputtering apparatus shown in FIG. 6 is used, a substrate 603 is set on a negative electrode 601 in the apparatus, and a mask is used. After covering the peripheral portion of the substrate 603 with 604, Ar, H
It is realized by performing high frequency discharge in an atmosphere of an inert gas such as e or N 2 . The atmosphere for high frequency discharge is Ar, He,
Inert gas such as N 2 or other H 2 O, O 2 etc. 1
One or more kinds of gases may be mixed and used. In this case, it is important to adjust the mask 604 to form a treated region exposed to discharge ions and a non-treated region on the substrate 603, and at least the entire scanning region is within the treated region. And that at least a part of the region where the photoconductive film is deposited reaches the untreated region. Further, when the above method is used, if the surface of the substrate 603 and the mask 604 are brought into contact with each other, dust adheres to the surface of the substrate 603 and causes a screen defect, which is not preferable. If the distance between the two is too large, the effect of the mask will be lost. Therefore,
The distance between them is preferably 0.1 mm or more and 10 mm or less.
Furthermore, it is more preferable that the distance between the two is 0.2 mm or more and 10 mm or less, because the boundary between the treated region and the untreated region becomes gentle and there is no possibility of crystallization at this portion. Further, when the above ion etching treatment is performed, part of the material included in the mask 604 is partially removed from the substrate 603.
Therefore, the material of the mask 604 is preferably a material that is not easily ion-etched in a discharge atmosphere or a material included in the surface to be ion-etched, and the same material as the surface to be ion-etched is preferable. More preferable. Although the case where the high frequency sputtering device is used is described here, even if a magnetron sputtering device or a plasma asher device is used,
A similar ion etching process can be performed.

【0011】その他の方法としては、例えば図7に示す
イオンビーム照射装置を用い、装置内の基板ホルダー7
01上に基板704を設置し、Ar,He,N2等の不活
性ガスやその他H2O,O2等のいずれか1種または複数
種を混合したガスを、イオンビーム源702よりイオン
ビーム703として照射することにより実現する。この
場合に重要なことは、上記イオンビーム源702を制御
して、基板704上の光導電膜を堆積する領域の少なく
とも一部にイオンビーム703が照射されない領域が存
在し、かつ、少なくとも走査領域全面を覆うように上記
イオンビーム703が照射されていることである。上記
のようなイオンビーム照射法を用いると、イオンエッチ
ング処理時に基板をマスクで覆わないため、上記高周波
スパッタリング法を用いる場合と比較して、基板表面に
ゴミが付着するおそれが少ないという長所がある。
As another method, for example, an ion beam irradiation apparatus shown in FIG. 7 is used, and a substrate holder 7 in the apparatus is used.
01, a substrate 704 is placed on the substrate 101, and an inert gas such as Ar, He, N 2 or the like, or a mixed gas of any one or more kinds of H 2 O, O 2 or the like is ion beam source 702. It is realized by irradiating as 703. In this case, it is important to control the ion beam source 702 so that at least a part of the region on the substrate 704 where the photoconductive film is deposited is not irradiated with the ion beam 703, and at least the scanning region. That is, the ion beam 703 is applied so as to cover the entire surface. When the ion beam irradiation method as described above is used, the substrate is not covered with a mask during the ion etching process, so that there is an advantage that dust is less likely to adhere to the substrate surface as compared with the case where the high frequency sputtering method is used. .

【0012】本発明を実施した撮像管における画面欠陥
低減効果の一例をつぎの表1に示す。
Table 1 below shows an example of the screen defect reducing effect in the image pickup tube in which the present invention is implemented.

【0013】[0013]

【表1】 [Table 1]

【0014】表中、aはイオンエッチング処理していな
いガラス基板を用いた場合、bは全面にイオンエッチン
グ処理したガラス基板を用いた場合、cは本発明を実施
した場合をそれぞれ示し、基板表面にイオンエッチング
処理した処理領域と処理しない非処理領域とを形成し、
走査領域全面が処理領域に含まれ、光導電膜の全周辺部
が非処理領域に達する構造にした場合において、撮像管
に発生する初期的な画面欠陥および1000時間連続動
作させたときの結晶化とクラックによる画面欠陥の、発
生状況を示したものである。本発明を実施することによ
り、初期的にも画面欠陥が発生せず、また、長時間使用
した場合にも画面欠陥を発生しにくくなることが明らか
になった。
In the table, a indicates a case where a glass substrate not subjected to ion etching treatment is used, b indicates a case where a glass substrate subjected to ion etching treatment on the entire surface is used, and c indicates a case where the present invention is carried out. Forming a treated region that has been subjected to ion etching and a non-treated region that is not treated,
In the case where the entire scanning area is included in the processing area and the entire peripheral portion of the photoconductive film reaches the non-processing area, an initial screen defect occurs in the image pickup tube and crystallization after continuous operation for 1000 hours. And shows the occurrence of screen defects due to cracks. By implementing the present invention, it has been clarified that the screen defect does not occur even in the initial stage, and the screen defect does not easily occur even when used for a long time.

【0015】本発明の実施形態の一例として上記に撮像
管につき説明したが、本発明は走査部が複数の電子ビー
ム放出源を有し、上記電子ビーム放出源の中で電子ビー
ムを放出する電子ビーム源を時間的に変えるための手段
を有する撮像装置であってもよいし、光導電膜と整流性
接合させた複数の画素電極と、該画素電極に対し時間的
に変化する電気的接触が可能な走査電子回路からなる固
体撮像装置、またはラインセンサー等の受光装置であっ
てもよい。また、基板が走査機能を有するIC基板を用
いた固体撮像装置にも本発明は有効である。
The image pickup tube has been described above as an example of the embodiment of the present invention. However, in the present invention, the scanning unit has a plurality of electron beam emission sources, and the electron beam emission electron is emitted in the electron beam emission sources. The image pickup device may have a means for changing the beam source with time, and a plurality of pixel electrodes rectifying and joined to the photoconductive film and a time-changing electrical contact with the pixel electrodes may be provided. It may be a solid-state imaging device consisting of possible scanning electronics or a light-receiving device such as a line sensor. The present invention is also effective for a solid-state imaging device using an IC substrate whose substrate has a scanning function.

【0016】[0016]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図2は本発明の撮像装置における撮像管ターゲット
部の第1実施例を示す概略図、図3は上記撮像管ターゲ
ット部の第2実施例を示す概略図、図4は本発明による
撮像装置の第3実施例として示すライセンサーの構造
図、図5は本発明による固体撮像装置を示す第4実施例
図である。
Embodiments of the present invention will now be described with reference to the drawings. 2 is a schematic view showing a first embodiment of an image pickup tube target section in an image pickup apparatus of the present invention, FIG. 3 is a schematic view showing a second embodiment of the image pickup tube target section, and FIG. 4 is a diagram showing an image pickup apparatus according to the present invention. FIG. 5 is a structural diagram of a licensor shown as a third embodiment, and FIG. 5 is a fourth embodiment showing a solid-state image pickup device according to the present invention.

【0017】第1実施例 本発明の撮像装置における撮像管ターゲット部を示す図
2において、(a)は平面図、(b)は断面図である。
電極ピン209が溶着されている直径26mmφの透光
性ガラス基板201上に、図6に示したような高周波ス
パッタリング装置を用いて、イオンエッチング処理した
領域202とイオンエッチング処理していない領域20
3とを形成する。上記基板201上に図2に示すように
走査領域208と上記電極ピン209を囲む領域に、膜
厚20nmのIn23からなる透光性導電膜204および
膜厚10nmのCeO2からなる正孔注入阻止層205
を、蒸着マスクを用いた真空蒸着法により順次堆積す
る。ここで、上記イオンエッチング処理した領域202
は、イオンエッチング処理時に用いるマスクを制御し
て、上記導電膜204および正孔注入阻止層205の堆
積領域より僅かに大きい範囲にしておく。さらに上記正
孔注入層205の上に、直径20mmφで膜厚2μmの
非晶質Seからなる光導電膜206を蒸着マスクを用い
た真空蒸着法により堆積する。その上にSb23を圧力
0.2TorrのN2ガス雰囲気中で蒸着マスクを用いて蒸
着し、直径20mmφで膜厚100nmの多孔性Sb23
からなる電子ビームランディング層207を形成し、撮
像管ターゲットを得る。得られた撮像管ターゲットを、
電子ビームを発射する電子銃と電子ビームを集束偏向す
るための電極とを備えた走査電子ビーム発生部に、In
を介して圧着したのち管内を真空封止して撮像管を得
る。
First Embodiment In FIG. 2 showing an image pickup tube target portion in an image pickup apparatus of the present invention, (a) is a plan view and (b) is a sectional view.
A region 202 subjected to ion etching treatment and a region 20 not subjected to ion etching treatment were performed on the translucent glass substrate 201 having a diameter of 26 mmφ to which the electrode pins 209 are welded by using the high frequency sputtering device as shown in FIG.
3 and 3 are formed. As shown in FIG. 2, on the substrate 201, a transparent conductive film 204 made of In 2 O 3 having a film thickness of 20 nm and a positive electrode made of CeO 2 having a film thickness of 10 nm are formed in a region surrounding the scanning region 208 and the electrode pins 209. Hole injection blocking layer 205
Are sequentially deposited by a vacuum vapor deposition method using a vapor deposition mask. Here, the region 202 subjected to the ion etching treatment
Is controlled to a range slightly larger than the deposition region of the conductive film 204 and the hole injection blocking layer 205 by controlling the mask used during the ion etching process. Further, a photoconductive film 206 made of amorphous Se and having a diameter of 20 mmφ and a film thickness of 2 μm is deposited on the hole injection layer 205 by a vacuum deposition method using a deposition mask. Sb 2 S 3 was vapor-deposited thereon in a N 2 gas atmosphere with a pressure of 0.2 Torr using a vapor deposition mask, and porous Sb 2 S 3 having a diameter of 20 mmφ and a film thickness of 100 nm was formed.
An electron beam landing layer 207 is formed to obtain an image pickup tube target. The obtained tube target,
The scanning electron beam generator including an electron gun for emitting an electron beam and an electrode for focusing and deflecting the electron beam is provided with an In
After crimping through, the inside of the tube is vacuum-sealed to obtain an image pickup tube.

【0018】本実施例は導電層面積を極力小さくしてあ
るため、寄生容量が小さくなり高いSN比が得られると
いう長所を有している。また、本実施例はイオンエッチ
ング処理していない領域と光導電膜とが重なる面積が、
このサイズの撮像管ターゲットにおいては最大値に近
く、良好な寿命特性が得られる極めて好ましい構造であ
る。
Since the conductive layer area is made as small as possible, this embodiment has an advantage that the parasitic capacitance is reduced and a high SN ratio can be obtained. Further, in this embodiment, the area where the region not subjected to the ion etching treatment and the photoconductive film overlap is
This is an extremely preferable structure for an image pickup tube target of this size, which is close to the maximum value and has good life characteristics.

【0019】第2実施例 上記撮像管のターゲット部の第2実施例を示す図3にお
いて、(a)は平面図、(b)は断面図である。透光性
ガラス基板301上に、直径24mmφで膜厚500n
mのSn23からなる透光性導電膜304をCVD法に
よって堆積する。上記導電膜304を堆積した基板上
に、図7に示すようなイオンビーム照射装置を用いて、
直径17mmφのイオンエッチング処理した領域302
とイオンエッチングしない領域303とを形成する。上
記処理を行った基板上に、直径20mmφで膜厚15n
mのCeO2からなる正孔注入阻止層305、および直径
20mmφで膜厚1μmの赤色増感のために設けたCd
Se多結晶層306と、直径20mmφで膜厚2μmの
アバランシェ増倍を起こさせるためのSe非晶質層30
7とからなる光導電膜308を、蒸着マスクを用いた真
空蒸着法により順次堆積する。その上にSb23を圧力
0.2TorrのN2ガス雰囲気中で蒸着マスクを用いて蒸
着し、直径20mmφで膜厚100nmφの多孔性Sb2
3からなる電子ビームランディング層309を形成
し、撮像管ターゲットを得る。得られた撮像管ターゲッ
トを走査電子ビーム発生部にInを介して圧着したの
ち、管内を真空封止して撮像管を得る。
Second Embodiment In FIG. 3 showing a second embodiment of the target portion of the above-mentioned image pickup tube, (a) is a plan view and (b) is a sectional view. On transparent glass substrate 301, diameter 24mmφ and film thickness 500n
A transparent conductive film 304 made of Sn 2 O 3 of m is deposited by the CVD method. On the substrate on which the conductive film 304 is deposited, using an ion beam irradiation device as shown in FIG.
Ion-etched area 302 with a diameter of 17 mm
And a region 303 not to be ion-etched are formed. A film with a diameter of 20 mm and a film thickness of 15
hole injection blocking layer 305 made of CeO 2 of m, and Cd provided for red sensitization with a diameter of 20 mmφ and a film thickness of 1 μm.
Se polycrystalline layer 306 and Se amorphous layer 30 for causing avalanche multiplication with a diameter of 20 mm and a film thickness of 2 μm.
A photoconductive film 308 composed of 7 is sequentially deposited by a vacuum deposition method using a deposition mask. Sb 2 S 3 was vapor-deposited thereon in a N 2 gas atmosphere with a pressure of 0.2 Torr using a vapor deposition mask, and porous Sb 2 having a diameter of 20 mmφ and a film thickness of 100 nmφ.
An electron beam landing layer 309 made of S 3 is formed to obtain an image pickup tube target. The obtained image pickup tube target is pressure-bonded to the scanning electron beam generator via In, and the inside of the tube is vacuum-sealed to obtain an image pickup tube.

【0020】第3実施例 本発明の撮像装置における第3実施例としてラインセン
サ−を示す図4において、(a)は部分平面図、(b)
は上記(a)のA‐A′に沿った断面図である。まず、
第1実施例と同様の高周波スパッタリング法により、透
光性ガラス基板401上に短冊状のイオンエッチング処
理した領域402とイオンエッチングしていない領域4
03とを形成する。そして、ガラス基板401上のイオ
ンエッチング処理領域402内に、膜厚10nmのAlか
らなる透光性導電膜404と膜厚20nmのCeO2から
なる正孔注入阻止層405とを、真空蒸着法により短冊
状に順次堆積する。その上で、イオンエッチングした領
域402より大きい範囲に、膜厚2μmのTe5%を含
有したSe‐Te系非晶質層からなる光導電膜406を、
真空蒸着により短冊状に堆積する。その上に、膜厚50
nmのAuを真空蒸着法により短冊状に堆積したのちに、
ホトエッチング法によりストライプ状の画素電極407
を形成する。この場合、AuはSe‐Te系非晶質光導電
膜と整流性接合を形成するので、両者の間に整流性を強
化するための電子注入阻止層を挿入する必要はない。さ
らに画素電極407を光導電膜内で発生した信号電荷を
時系列的に読み出すための走査電子回路に、ボンディン
グ等の手段により接続することで本発明によるライセン
サーを得る。
Third Embodiment In FIG. 4 showing a line sensor as a third embodiment of the image pickup apparatus of the present invention, (a) is a partial plan view, (b) is a partial plan view.
FIG. 4 is a sectional view taken along the line AA ′ in (a) above. First,
A strip-shaped ion-etched region 402 and a non-ion-etched region 4 were formed on the transparent glass substrate 401 by the same high-frequency sputtering method as in the first embodiment.
And 03. Then, in the ion-etched region 402 on the glass substrate 401, a light-transmitting conductive film 404 made of Al and having a film thickness of 10 nm and a hole injection blocking layer 405 made of CeO 2 having a film thickness of 20 nm are formed by a vacuum deposition method. The strips are deposited in sequence. Then, a photoconductive film 406 made of a Se—Te based amorphous layer containing Te 5% with a film thickness of 2 μm is formed in a region larger than the ion-etched region 402.
Deposited in strips by vacuum evaporation. On top of that, a film thickness of 50
After depositing nm of Au in strip shape by vacuum evaporation method,
Stripe-shaped pixel electrodes 407 formed by photoetching
To form. In this case, since Au forms a rectifying junction with the Se—Te-based amorphous photoconductive film, it is not necessary to insert an electron injection blocking layer for enhancing the rectifying property between the two. Further, the pixel electrode 407 is connected to a scanning electronic circuit for time-sequentially reading out the signal charges generated in the photoconductive film by a means such as bonding to obtain a licensor according to the present invention.

【0021】本実施例は、第1実施例および第2実施例
と比較して真空部分がなく、小型・軽量で扱い易いとい
う長所を有している。また、非晶質Se光導電膜にTeが
添加されているので、上記第1実施例に比して赤色感度
が高くなっている。また、第2実施例では赤色増感のた
めに光導電膜が二層構造になっており、両者のヘテロ界
面において整流性接合を生じる等の理由により電気特性
が劣化するおそれがあるが、本実施例では単層構造であ
るためそのおそれはない。
Compared with the first and second embodiments, this embodiment has the advantages that it has no vacuum portion, is small and lightweight, and is easy to handle. Further, since Te is added to the amorphous Se photoconductive film, the red sensitivity is higher than that in the first embodiment. Further, in the second embodiment, the photoconductive film has a two-layer structure for red sensitization, and there is a possibility that the electrical characteristics may deteriorate due to a rectifying junction or the like at the hetero interface between the two. In the embodiment, there is no such fear because it has a single layer structure.

【0022】第4実施例 本発明による固体撮像装置の第4実施例を示す図5にお
いて、(a)は平面図を示し(b)は走査領域内に設け
た走査部一画素当たりの断面図を示す。単結晶Siから
なる基板501上の走査領域514内に、ソース電極5
04、ドレイン電極505、ゲート電極506、画素電
極507、絶縁層508を2次元的に集積したMOS−
IC走査部513を形成する。この上に膜厚60nmの
Sb23からなる電子注入阻止層509を真空蒸着法に
よって堆積したのち、図6に示すような高周波スパッタ
リング法により領域502をイオンエッチングする。そ
の上に、膜厚2μmのAsを2%含有したSe‐As系非
晶質半導体からなる光導電膜510と、膜厚10nmの
CeO2からなる正孔注入阻止層511と、膜厚10nm
の導電層512とを領域515に堆積し、本発明による
固体撮像装置を得る。
Fourth Embodiment In FIG. 5 showing a fourth embodiment of the solid-state image pickup device according to the present invention, (a) is a plan view and (b) is a sectional view per pixel of a scanning unit provided in a scanning region. Indicates. The source electrode 5 is formed in the scanning region 514 on the substrate 501 made of single crystal Si.
04, drain electrode 505, gate electrode 506, pixel electrode 507, and insulating layer 508 are two-dimensionally integrated MOS-
The IC scanning unit 513 is formed. An electron injection blocking layer 509 made of Sb 2 S 3 having a film thickness of 60 nm is deposited thereon by a vacuum evaporation method, and then the region 502 is ion-etched by a high frequency sputtering method as shown in FIG. On top of that, a photoconductive film 510 of Se—As based amorphous semiconductor containing 2% As of 2 μm thickness, a hole injection blocking layer 511 of CeO 2 of 10 nm thickness, and a 10 nm thickness of
And the conductive layer 512 are deposited on the region 515 to obtain the solid-state imaging device according to the present invention.

【0023】本実施例は、上記第1および第2実施例の
撮像装置と比較して、真空部分を有さず小型・軽量で扱
い易いという長所を有している。また、Asを2%含有
することで、Seを主体にする非晶質半導体からなる光
導電膜の耐熱性を高めている。
The present embodiment has the advantage that it is small in size, light in weight, and easy to handle without having a vacuum portion, as compared with the image pickup apparatus of the first and second embodiments. Further, by containing 2% of As, the heat resistance of the photoconductive film made of an amorphous semiconductor mainly composed of Se is improved.

【0024】上記各実施例は、光導電膜中のSeを主体
にする非晶質層に0.8〜2メガボルト/センチメート
ル程度の電界を印加して動作させると、上記光導電膜内
でアバランシェ増倍現象が発生し感度を高めることがで
きる。このような過酷な電界条件下で動作させる場合
に、本発明は特に有効である。
In each of the above-described embodiments, when an amorphous layer mainly composed of Se in the photoconductive film is operated by applying an electric field of about 0.8 to 2 megavolts / centimeter, the amorphous film in the photoconductive film is operated. The avalanche multiplication phenomenon occurs and the sensitivity can be increased. The present invention is particularly effective when operated under such a severe electric field condition.

【0025】[0025]

【発明の効果】上記のように本発明による撮像装置およ
びその動作方法は、基板と、該基板上に設けた導電膜
と、該導電膜と整流性接合させた少なくとも一部が非晶
質からなる光導電膜を備えた光電変換部と、上記光導電
膜で発生した信号電荷を時系列的に読み出すための走査
部とを具備した撮像装置にあって、上記基板上に、走査
領域全面を含むイオンエッチング処理領域と、イオンエ
ッチング無処理領域とを有し、上記光導電膜の少なくと
も一部が、上記基板の無処理領域上に達していることに
より、初期的には従来と同様の良質な画面状態を維持
し、かつ、長時間使用した場合の画面の劣化を抑制する
効果がある。この効果は光導電膜としてSeを主体材料
にする非晶質半導体を用い、光導電膜に高電圧を印加し
アバランシェ増倍を起こさせて動作させる場合に特に有
効である。
As described above, in the image pickup device and the method of operating the same according to the present invention, at least a part of the substrate, the conductive film provided on the substrate, and the rectifying junction with the conductive film is amorphous. In an imaging device including a photoelectric conversion unit including a photoconductive film formed by: and a scanning unit configured to read out signal charges generated in the photoconductive film in time series, the entire scanning region is formed on the substrate. Since the photoconductive film has an ion-etching treated area and an ion-etching untreated area, and at least a part of the photoconductive film reaches the untreated area of the substrate, the initial quality is the same as the conventional one. It has the effects of maintaining a stable screen state and suppressing deterioration of the screen when used for a long time. This effect is particularly effective when an amorphous semiconductor containing Se as a main material is used as the photoconductive film and a high voltage is applied to the photoconductive film to cause avalanche multiplication to operate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の撮像装置における撮像管ターゲット部
の基本構造図で、(a)は平面図、(b)は断面図であ
る。
FIG. 1 is a basic structural view of an image pickup tube target portion in an image pickup apparatus of the present invention, in which (a) is a plan view and (b) is a sectional view.

【図2】本発明の撮像装置における撮像管ターゲット部
の第1実施例を示す構造図で、(a)は平面図、(b)
は断面図である。
2A and 2B are structural views showing a first embodiment of an image pickup tube target portion in an image pickup apparatus of the present invention, in which FIG. 2A is a plan view and FIG.
Is a sectional view.

【図3】上記撮像管ターゲット部の第2実施例を示す構
造図で、(a)は平面図、(b)は断面図である。
3A and 3B are structural views showing a second embodiment of the image pickup tube target portion, wherein FIG. 3A is a plan view and FIG. 3B is a sectional view.

【図4】本発明による撮像装置の第3実施例として示す
ライセンサーの構造図で、(a)は部分平面図、(b)
はA‐A′の断面図である。
4A and 4B are structural views of a licensor shown as a third embodiment of the image pickup device according to the present invention, in which FIG. 4A is a partial plan view and FIG.
FIG. 6 is a sectional view taken along line AA ′.

【図5】本発明による固体撮像装置を示す第4実施例図
で、(a)は平面図、(b)は走査領域内の一画素当た
りの断面図である。
5A and 5B are a fourth embodiment showing a solid-state image pickup device according to the present invention, FIG. 5A is a plan view, and FIG. 5B is a sectional view per pixel in a scanning region.

【図6】本発明に用いるイオンエッチングのための高周
波スパッタリング装置を示す概略図である。
FIG. 6 is a schematic view showing a high frequency sputtering apparatus for ion etching used in the present invention.

【図7】本発明に用いるイオンエッチングのためのイオ
ンビーム照射装置を示す概略図である。
FIG. 7 is a schematic view showing an ion beam irradiation apparatus for ion etching used in the present invention.

【符号の説明】[Explanation of symbols]

1,201,301,401,501…基板 2,202,302,402,502…イオンエッチン
グ処理領域 3,203,303,403,503…イオンエッチン
グ無処理領域 4,204,304,404,512…導電膜 6,206,308,406,510…光導電膜 8,208,310,514…走査領域 407,507…画素電極
1, 201, 301, 401, 501 ... Substrate 2, 202, 302, 402, 502 ... Ion etching treated region 3, 203, 303, 403, 503 ... Ion etching non-treated region 4, 204, 304, 404, 512 ... Conductive film 6,206, 308, 406, 510 ... Photoconductive film 8, 208, 310, 514 ... Scan area 407, 507 ... Pixel electrode

フロントページの続き (72)発明者 中野 泰 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 辻 和隆 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 久保田 節 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内 (72)発明者 鈴木 四郎 東京都世田谷区砧一丁目10番11号 日本放 送協会 放送技術研究所内Front page continuation (72) Inventor Yasushi Nakano 1-280 Higashi Koigokubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Kazutaka Tsuji 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. (72) Inventor Setsu Kubota 1-10-11 Kinuta, Setagaya-ku, Tokyo Broadcasting Technology Research Institute, Japan Broadcasting Corporation (72) Inventor Shiro Suzuki 1-10-11 Kinuta, Setagaya-ku, Tokyo Broadcasting Association of Japan Inside the technical laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板と、該基板上に設けた導電膜と、該導
電膜と整流性接合させた少なくとも一部が非晶質からな
る光導電膜を備えた光電変換部と、上記光導電膜で発生
した信号電荷を時系列的に読み出すための走査部とを具
備した撮像装置にあって、上記基板上に、走査領域全面
を含むイオンエッチング処理領域と、イオンエッチング
無処理領域とを有し、上記光導電膜の少なくとも一部
が、上記基板の無処理領域上に達している撮像装置。
1. A photoelectric conversion part comprising a substrate, a conductive film provided on the substrate, a photoconductive film which is rectifyingly joined to the conductive film and at least a part of which is amorphous, and the photoconductive film. An imaging device comprising a scanning unit for reading out signal charges generated in a film in time series, wherein an ion etching treatment region including the entire scanning region and an ion etching non-treatment region are provided on the substrate. An imaging device in which at least a part of the photoconductive film reaches the unprocessed region of the substrate.
【請求項2】上記走査部は、電子ビームを発射する電子
銃と、上記電子ビームを集束偏向する電極とを備えた、
走査電子ビーム発生部であることを特徴とする請求項1
記載の撮像装置。
2. The scanning unit includes an electron gun for emitting an electron beam, and an electrode for focusing and deflecting the electron beam.
The scanning electron beam generator is a scanning electron beam generator.
The imaging device described.
【請求項3】上記走査部は、上記光導電膜と整流性接合
させた複数の画素電極と、該画素電極に対して時間的に
変化する電気的接触が可能な走査電子回路とを、少なく
とも有することを特徴とする請求項1記載の撮像装置。
3. The scanning section comprises at least a plurality of pixel electrodes rectifyingly joined to the photoconductive film and a scanning electronic circuit capable of making a time-varying electrical contact with the pixel electrodes. The imaging device according to claim 1, further comprising:
【請求項4】上記走査部は、上記基板の内部に存在する
ことを特徴とする請求項1または請求項3記載の撮像装
置。
4. The image pickup apparatus according to claim 1, wherein the scanning unit is present inside the substrate.
【請求項5】上記光導電膜は、少なくとも一部がアバラ
ンシェ増倍機能を有する層からなることを特徴とする請
求項1または請求項3記載の撮像装置。
5. The image pickup device according to claim 1, wherein at least a part of the photoconductive film is made of a layer having an avalanche multiplication function.
【請求項6】上記光導電膜は、少なくとも一部がSeを
主体にした非晶質層からなることを特徴とする請求項1
または請求項3または請求項5記載の撮像装置。
6. The photoconductive film according to claim 1, wherein at least a part of the photoconductive film is composed of an amorphous layer containing Se as a main component.
Alternatively, the imaging device according to claim 3 or claim 5.
【請求項7】上記請求項1から請求項6のいずれかに記
載した撮像装置を用いて、上記光導電膜内の少なくとも
一部を、電荷のアバランシェ増倍が生じる程の電界で動
作させる撮像装置の動作方法。
7. An image pickup device using the image pickup device according to any one of claims 1 to 6, wherein at least part of the photoconductive film is operated in an electric field such that avalanche multiplication of charges occurs. How the device works.
JP24778093A 1993-10-04 1993-10-04 Image pickup device and method for operating it Pending JPH07105865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24778093A JPH07105865A (en) 1993-10-04 1993-10-04 Image pickup device and method for operating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24778093A JPH07105865A (en) 1993-10-04 1993-10-04 Image pickup device and method for operating it

Publications (1)

Publication Number Publication Date
JPH07105865A true JPH07105865A (en) 1995-04-21

Family

ID=17168545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24778093A Pending JPH07105865A (en) 1993-10-04 1993-10-04 Image pickup device and method for operating it

Country Status (1)

Country Link
JP (1) JPH07105865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104563A (en) * 1990-08-23 1992-04-07 Canon Inc Color picture reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104563A (en) * 1990-08-23 1992-04-07 Canon Inc Color picture reader

Similar Documents

Publication Publication Date Title
JPS61133540A (en) Image detector and round-the-clock camera therewith
FR2530851A1 (en) PLAN VIEWING APPARATUS FOR TELEVISIONS AND TERMINALS
US3391022A (en) Photoconductive layer and method of making the same
JPH08191142A (en) Thin film electronic type image forming device and method ofrepairing flaw of thin film electronic type image forming device
CN1093830A (en) The X ray camera tube
JPH07105865A (en) Image pickup device and method for operating it
JP2003263952A (en) Transmission secondary electron surface and electron tube
JP3774492B2 (en) IMAGING ELEMENT, ITS OPERATION METHOD, IMAGING DEVICE USING THE ELEMENT, AND IMAGE ANALYSIS SYSTEM
JP3384840B2 (en) Image pickup tube and operation method thereof
Thomas et al. Transmissive‐mode silicon field emission array photoemitter
US5639356A (en) Field emission device high voltage pulse system and method
JP2793618B2 (en) Imaging tube
JP2002260524A (en) Cold cathode electron source, and image pickup device and display device configured using the same
JP4172881B2 (en) Imaging device and operation method thereof
JP5111276B2 (en) Imaging device
JP3158503B2 (en) Imaging device
JPH08106869A (en) Image element and operating method thereof
JPH0763097B2 (en) Photosensor fabrication method
JP2009123423A (en) Imaging device
JPH01298630A (en) Image pickup tube
JPS60246545A (en) Pickup tube
JP2945732B2 (en) Image pickup tube and operation method thereof
JPH04112434A (en) Image pickup tube and its operating method
JPS58225548A (en) Approach type image tube and its manufacturing method
JPH05343016A (en) Image tube and operation thereof