JP2009123423A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2009123423A
JP2009123423A JP2007294284A JP2007294284A JP2009123423A JP 2009123423 A JP2009123423 A JP 2009123423A JP 2007294284 A JP2007294284 A JP 2007294284A JP 2007294284 A JP2007294284 A JP 2007294284A JP 2009123423 A JP2009123423 A JP 2009123423A
Authority
JP
Japan
Prior art keywords
imaging device
electron beam
photoconductive
ring
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007294284A
Other languages
Japanese (ja)
Inventor
Tomoki Matsubara
智樹 松原
Yuji Okawa
裕司 大川
Kazunori Miyagawa
和典 宮川
Shiro Suzuki
四郎 鈴木
Setsu Kubota
節 久保田
Norifumi Egami
典文 江上
Kenkichi Tanioka
健吉 谷岡
Tadaaki Hirai
忠明 平井
Norio Okamura
憲伯 岡村
Koichi Ogusu
功一 小楠
Akira Kobayashi
昭 小林
Shigeo Ito
茂生 伊藤
Masateru Taniguchi
昌照 谷口
Kazuhito Nakamura
和仁 中村
Kenta Miya
健太 宮
Atsushi Watanabe
温 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Futaba Corp
Pioneer Corp
Japan Broadcasting Corp
Original Assignee
Hamamatsu Photonics KK
Futaba Corp
Nippon Hoso Kyokai NHK
Pioneer Electronic Corp
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Futaba Corp, Nippon Hoso Kyokai NHK, Pioneer Electronic Corp, Japan Broadcasting Corp filed Critical Hamamatsu Photonics KK
Priority to JP2007294284A priority Critical patent/JP2009123423A/en
Publication of JP2009123423A publication Critical patent/JP2009123423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly sensitive imaging device in which a superior imaging signal can be obtained by suppressing occurrence of image failure phenomenon such as a false signal, a ripple phenomenon, and an inversion phenomenon or the like. <P>SOLUTION: On a conductive face 1a of a light-transmissive substrate 1, a light-conductive part 2 is formed. The light-transmissive substrate 1 and a glass tube 4 are sealed by an indium ring 3 in a state that a conductive film 1A and the indium ring 3 are electrically connected so that an internal space of the glass tube 4 is held in vacuum. A shielding ring 10 is pinched by the photo-conductive part 2 and a meshed electrode 9, and a non-forming region in which the light-conductive part 2 is not formed among the conductive film 1A of the light-transmitting substrate 1, and the indium ring 3 are covered by this shielding ring 10. Due to this, the entry of a floating electrons into the conductive film 1A and the indium ring 3 can be suppressed so that the image signal of high quality image can be obtained without accompanying the image failure phenomena such as the false signal, the ripple phenomenon, and the inversion phenomenon or the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ターゲット電極に高電圧を印加して使用するのに好適な撮像デバイスに関する。   The present invention relates to an imaging device suitable for use by applying a high voltage to a target electrode.

撮像管は、導電面のターゲット電極と光導電膜を含む光導電部で構成されるターゲット部と、信号を読み出すための電子ビームを発生する走査電子ビーム発生部とを具え、ターゲット電極に外部電源から正電圧を印加することで、光導電膜に入射する光(紫外線、赤外線、可視光線、及びX線を含み、これらを総じて光と称す)を吸収して電荷に変換し、変換された電荷を光導電部に蓄積し、蓄積された電荷を電子ビームにより直接電気信号として取り出すデバイスである。このターゲット部と走査電子ビーム発生部は、筐体によって真空を介して対向するように保持される。   The image pickup tube includes a target unit composed of a target electrode on a conductive surface and a photoconductive unit including a photoconductive film, and a scanning electron beam generating unit that generates an electron beam for reading a signal. By applying a positive voltage from, the light (including ultraviolet rays, infrared rays, visible rays, and X-rays, which are collectively referred to as light) incident on the photoconductive film is absorbed and converted into charges, and the converted charges Is a device that takes out the accumulated charges as an electric signal directly by an electron beam. The target unit and the scanning electron beam generating unit are held by the housing so as to face each other through a vacuum.

従来のビジコン又はサチコン等の撮像管では、ターゲット部の導電面に電気的に接続されたインジウムリングを介して、光導電膜で生成される電荷を外部へ読み出している。しかし、この場合、インジウムリングは、導電面の電位と同電位になるため、撮像管内で発生する二次電子、走査時の余剰電子である戻り電子ビーム、又は、電極壁で反射されて散乱する電子等の管内を漂遊する電子(以下、漂遊電子と称す)がインジウムリングに引き寄せられる。   In a conventional imaging tube such as a vidicon or sachicon, the charge generated by the photoconductive film is read out through an indium ring electrically connected to the conductive surface of the target portion. However, in this case, since the indium ring has the same potential as that of the conductive surface, secondary electrons generated in the imaging tube, a return electron beam that is surplus electrons at the time of scanning, or reflected by the electrode wall and scattered. Electrons straying in the tube such as electrons (hereinafter referred to as stray electrons) are attracted to the indium ring.

特に、光導電膜内での電荷のアバランシェ増倍現象を利用して高感度化を実現する撮像管(例えば、非特許文献1参照)や、入射X線の吸収量を高めるために光導電膜の厚さを増大させた撮像管では、ターゲット電圧(ターゲット電極に印加する電圧)を高電圧化して動作させる必要がある。このため、漂遊電子のインジウムリングへの付着や、インジウムリングへの突入による二次電子放出が活発になり、再生画像に電極反射像(戻り電子ビームが管内の電極で反射されて再びターゲット部に入射することにより発生する偽信号による像)、さざ波現象(特に再生画像の周辺部分にさざ波状に変化する異常パターンが発生する現象)、反転現象(再生画像の一部、特に周辺部に対応する映像信号のレベルの異常な低下、又は信号の極性の反転が生じる現象)等の画像不良現象が生じやすくなる。   In particular, an image pickup tube (for example, see Non-Patent Document 1) that realizes high sensitivity by utilizing the avalanche multiplication phenomenon of charges in the photoconductive film, and a photoconductive film for increasing the amount of incident X-ray absorption. In an imaging tube with an increased thickness, it is necessary to operate with a higher target voltage (voltage applied to the target electrode). As a result, stray electrons attach to the indium ring and secondary electrons are emitted more rapidly by entering the indium ring, and the reflected image is reflected on the reconstructed image (the return electron beam is reflected by the electrode in the tube and re-enters the target portion). Corresponds to a ripple signal (particularly a phenomenon in which an abnormal pattern changing in a ripple pattern occurs in the peripheral part of the reproduced image), a reverse phenomenon (particularly the peripheral part of the reproduced image) An image defect phenomenon such as an abnormal decrease in the level of the video signal or a phenomenon in which the polarity of the signal is reversed is likely to occur.

このような画像不良現象に対する対策として、漂遊電子がインジウムリングに引き寄せられることを防止するために、ターゲット部の非走査領域に、ターゲット部とは絶縁された電極を設ける手法が提案されている(例えば、特許文献1参照)。しかしながら、この手法では、ターゲット部とは絶縁された電極に外部から電圧を印加するための機構を新設する必要があり、撮像デバイスや撮像装置の構成が複雑になるという問題がある。   In order to prevent stray electrons from being attracted to the indium ring as a countermeasure against such an image defect phenomenon, a method of providing an electrode insulated from the target portion in a non-scanning region of the target portion has been proposed ( For example, see Patent Document 1). However, in this method, it is necessary to newly install a mechanism for applying a voltage from the outside to an electrode insulated from the target unit, and there is a problem that the configuration of the imaging device and the imaging apparatus becomes complicated.

そこで、このような電圧印加機構を新設することなく、画像不良現象を防止しつつ、ターゲット部に高電圧を印加して動作させるために、基板に金属性のピンを貫通して植設させ、この金属性のピンを介して光導電膜で生成された電荷を外部へ読み出し、インジウムリングはターゲット電極と電気的に絶縁し、接地電位(電子ビーム源と同電位)に保持する手法が提案されている(例えば、特許文献2参照)。
テレビジョン学会全国大会講演予稿集、15〜16頁、1989年 特開平4−230941号公報 特開平5−343016号公報
Therefore, in order to operate by applying a high voltage to the target portion while preventing the image defect phenomenon without newly installing such a voltage application mechanism, a metallic pin is made to penetrate through the substrate, A method has been proposed in which the charge generated by the photoconductive film is read to the outside through this metallic pin, and the indium ring is electrically insulated from the target electrode and held at the ground potential (the same potential as the electron beam source). (For example, refer to Patent Document 2).
Proceedings of the annual conference of the Institute of Television Engineers of Japan, 15-16 pages, 1989 JP-A-4-230941 Japanese Patent Laid-Open No. 5-343016

ところで、特許文献2記載の撮像管では、ターゲット電極に高電圧を印加して動作させても、画像不良現象を発生させることなく、光導電膜で生成された電荷を外部へ読み出すことができる。   By the way, in the imaging tube described in Patent Document 2, charges generated by the photoconductive film can be read out to the outside without causing an image defect phenomenon even when operated by applying a high voltage to the target electrode.

しかしながら、基板を貫通させる金属ピンの植設には、撮像管の真空気密の十分な確保、及び、金属ピンとターゲット電極との確実な接触等が求められるため、製造には高度な技術と複雑な工程が必要になるという課題があった。   However, the installation of metal pins that penetrate the substrate requires a sufficient vacuum-tightness of the imaging tube and a reliable contact between the metal pins and the target electrode. There was a problem that a process was necessary.

特に、X線用撮像デバイスには、X線やγ線を透過し易いベリリウム(Be)薄板、結晶シリコン(Si)薄板、窒化ホウ素(BN)薄板等の導電面を有する基板が用いられるが、中でも導電性のある基板に信号ピンを植設する場合には、基板と信号ピンを電気的に絶縁する必要があるため、製造工程がさらに複雑になるという課題があった。   In particular, a substrate having a conductive surface such as a beryllium (Be) thin plate, a crystalline silicon (Si) thin plate, or a boron nitride (BN) thin plate that easily transmits X-rays or γ-rays is used for an X-ray imaging device. In particular, when a signal pin is implanted on a conductive substrate, it is necessary to electrically insulate the substrate from the signal pin, which causes a problem that the manufacturing process is further complicated.

そこで、本発明は、基板上の導電面と電気的に接続されるインジウムリングを介して信号電荷を読み出す手段を具え、ターゲット部に高電圧を印加して使用しても、偽信号、さざ波現象、及び反転現象等の画像不良現象の発生を抑制することにより、高感度化を実現して良好な画質が得られる撮像デバイスを提供することを目的とする。   Therefore, the present invention comprises means for reading out signal charges through an indium ring electrically connected to a conductive surface on a substrate, and even if a high voltage is applied to the target portion, it is possible to generate a false signal or ripple phenomenon. In addition, an object of the present invention is to provide an imaging device that realizes high sensitivity and obtains good image quality by suppressing the occurrence of an image defect phenomenon such as a reversal phenomenon.

本発明の一局面の撮像デバイスは、導電面を有する透光性基板と、前記導電面上に形成される光導電部と、前記光導電部表面を走査するための電子ビームを発射する電子ビーム源と、前記導電面に電気的に接続され、前記電子ビームの走査又は前記電子ビーム源の選択によって得られる撮像信号を読み出すための信号読み出し電極と、前記光導電部と前記電子ビーム源との間に電子が走行する真空空間を形成する筐体とを具える撮像デバイスにおいて、前記導電面のうち前記光導電部が形成されない非形成面、又は、前記信号読み出し電極のうちの少なくとも一部を前記真空空間内の漂遊電子から遮蔽する遮蔽手段を含む。   An imaging device according to one aspect of the present invention includes a light-transmitting substrate having a conductive surface, a photoconductive portion formed on the conductive surface, and an electron beam that emits an electron beam for scanning the surface of the photoconductive portion. A source, a signal readout electrode that is electrically connected to the conductive surface and reads an imaging signal obtained by scanning the electron beam or selecting the electron beam source, the photoconductive portion, and the electron beam source In an imaging device comprising a housing that forms a vacuum space in which electrons travel, at least a part of the conductive surface on which the photoconductive portion is not formed or at least a part of the signal readout electrode Shielding means for shielding from stray electrons in the vacuum space is included.

前記遮蔽手段は、前記電子ビーム源から見て、前記電子ビームによって前記光導電部が走査される有効走査領域と重複しないように配置される。   The shielding means is disposed so as not to overlap with an effective scanning region where the photoconductive portion is scanned by the electron beam when viewed from the electron beam source.

また、前記遮蔽手段は、セラミック、ガラス、サファイア、又は樹脂のうちのいずれかで構成される絶縁体であってもよい。   The shielding means may be an insulator made of any one of ceramic, glass, sapphire, or resin.

また、前記遮蔽手段は、表面の二次電子放出比が1以下であることが望ましい。   The shielding means preferably has a surface secondary electron emission ratio of 1 or less.

前記遮蔽手段の表面に、三硫化アンチモン製、三セレン化ヒ素製、又はテルル化カドミウム製の多孔質状の薄膜を形成して二次電子放出比を1以下にしてもよい。   A porous thin film made of antimony trisulfide, arsenic triselenide, or cadmium telluride may be formed on the surface of the shielding means to make the secondary electron emission ratio 1 or less.

また、前記光導電部は、セレンを主原料とする非晶質半導体層で構成される光導電膜を含んでもよい。   The photoconductive portion may include a photoconductive film composed of an amorphous semiconductor layer containing selenium as a main material.

本発明によれば、偽信号、さざ波現象、及び反転現象等の画像不良現象の発生を抑制しつつ、製造が容易で、高解像度・高感度特性を有する撮像デバイスを提供できるという特有の効果が得られる。   According to the present invention, it is possible to provide an imaging device that is easy to manufacture and has high resolution and high sensitivity characteristics while suppressing the occurrence of image defect phenomena such as false signals, ripples, and inversions. can get.

以下、本発明の撮像デバイスを適用した実施の形態について説明する。   Embodiments to which the imaging device of the present invention is applied will be described below.

[実施の形態1]
図1は、実施の形態1の撮像デバイスの構成を概念的に示す図であり、(a)は側断面図、(b)は撮像デバイスを(a)のA−A矢視断面で示す図である。
[Embodiment 1]
1A and 1B are diagrams conceptually illustrating the configuration of an imaging device according to Embodiment 1, in which FIG. 1A is a side cross-sectional view, and FIG. 1B is a diagram illustrating the imaging device in a cross-section taken along line AA in FIG. It is.

図1(a)に示す透光性基板1の一方の面には導電膜1Aが形成され、この導電膜1Aの導電面1aにはさらに光導電部2が形成される。なお、必ずしも導電膜1Aを一方の面の全面に形成する必要はなく、その場合、光導電部2は導電膜1Aを覆うように、導電膜1Aの周辺部の透光性基板1上にかかるように形成しても良い。この透光性基板1は、インジウムリング3によってシールされ、導電膜1Aとインジウムリング3が電気的に接続される状態でガラス管4に取り付けられる。ガラス管4は、インジウムリング3が取り付けられる開口部を有する管状の部材であり、インジウムリング3によって透光性基板1とシール(密封)されることにより、内部空間が真空に保持される。   A conductive film 1A is formed on one surface of the translucent substrate 1 shown in FIG. 1A, and a photoconductive portion 2 is further formed on the conductive surface 1a of the conductive film 1A. Note that the conductive film 1A does not necessarily have to be formed on the entire surface of one side, and in that case, the photoconductive portion 2 covers the translucent substrate 1 in the peripheral portion of the conductive film 1A so as to cover the conductive film 1A. You may form as follows. The translucent substrate 1 is sealed by an indium ring 3 and attached to the glass tube 4 in a state where the conductive film 1A and the indium ring 3 are electrically connected. The glass tube 4 is a tubular member having an opening to which the indium ring 3 is attached. The glass tube 4 is sealed (sealed) with the translucent substrate 1 by the indium ring 3, whereby the internal space is maintained in a vacuum.

図2は、実施の形態1の撮像デバイスの透光性基板1及び光導電部2の構成を詳細に示す図であり、(a)は図1(b)の構成を詳細に示す平面図、(b)は撮像デバイスを(a)のB−B矢視断面で示す図である。透光性基板1は、直径が25mmの透光性ガラスからなる円板状の基板である。基板1の片方の面に、両側にリード部1Bを有する長方形状で膜厚30nmの透光性導電膜(ITO)からなる導電膜1Aがスパッタ蒸着法により形成されている。長方形状部分は走査領域2Cを含む大きさとする。導電膜1Aを、例えば直径25mmの円形状にしても良いが、長方形状の方がターゲット電極の静電容量を小さくすることが出来るので、より好ましい。   FIG. 2 is a diagram showing in detail the configuration of the light-transmitting substrate 1 and the photoconductive portion 2 of the imaging device of Embodiment 1, (a) is a plan view showing in detail the configuration of FIG. 1 (b), (B) is a figure which shows an imaging device by the BB arrow cross section of (a). The translucent substrate 1 is a disk-shaped substrate made of translucent glass having a diameter of 25 mm. A conductive film 1A made of a light-transmitting conductive film (ITO) having a rectangular shape having lead portions 1B on both sides and a film thickness of 30 nm is formed on one surface of the substrate 1 by a sputter deposition method. The rectangular portion has a size including the scanning region 2C. The conductive film 1A may have a circular shape with a diameter of 25 mm, for example, but a rectangular shape is more preferable because the capacitance of the target electrode can be reduced.

また、光導電部2は、正孔注入阻止強化層2a、光導電膜2b、及び電子ビームランディング層2cで構成される。   The photoconductive portion 2 includes a hole injection blocking enhancement layer 2a, a photoconductive film 2b, and an electron beam landing layer 2c.

正孔注入阻止強化層2aは、直径20mm、膜厚10〜30nmの酸化セリウム(CeO)で構成され、真空蒸着法により形成される。光導電膜2bは、正孔注入阻止強化層2a上に直径20mm、膜厚2〜50μmのセレン(Se)を主原料とする非晶質半導体層として真空蒸着法により形成される。また、電子ビームランディング層2cは、直径20mm、膜厚0.1μmの三硫化アンチモン(Sb)層として、例えば、圧力0.1〜0.4Torrのアルゴン(Ar)ガス雰囲気中で蒸着される。この場合、電子ビームランディング層2cは電子注入阻止層としても作用し、光導電部2を低暗電流型にする役割を担う。 The hole injection blocking enhancement layer 2a is made of cerium oxide (CeO 2 ) having a diameter of 20 mm and a film thickness of 10 to 30 nm, and is formed by a vacuum deposition method. The photoconductive film 2b is formed on the hole injection blocking enhancement layer 2a as an amorphous semiconductor layer made of selenium (Se) having a diameter of 20 mm and a thickness of 2 to 50 μm as a main material by a vacuum deposition method. The electron beam landing layer 2c is deposited as an antimony trisulfide (Sb 2 S 3 ) layer having a diameter of 20 mm and a film thickness of 0.1 μm, for example, in an argon (Ar) gas atmosphere at a pressure of 0.1 to 0.4 Torr. Is done. In this case, the electron beam landing layer 2c also functions as an electron injection blocking layer and plays a role of making the photoconductive portion 2 a low dark current type.

ガラス管4の内部には、奥部から開口部に向けて、電子ビーム源5、第1グリッド電極6、第2グリッド電極7、第3グリッド電極8、及びメッシュ電極9が配設される。また、メッシュ電極9と光導電部2との間には、漂遊電子の突入を遮断する遮断手段として遮蔽リング10が配設される。この遮蔽リング10は、ガラス管4の内周面に嵌合する環状の絶縁性部材であり、光導電部2とメッシュ電極9とによって狭持される。遮蔽リング10の機能については後述する。また、ガラス管4は光導電部2と電子ビーム源5との間に電子が走行する真空空間を形成する筐体となっている。   Inside the glass tube 4, an electron beam source 5, a first grid electrode 6, a second grid electrode 7, a third grid electrode 8, and a mesh electrode 9 are disposed from the back to the opening. Further, a shielding ring 10 is disposed between the mesh electrode 9 and the photoconductive portion 2 as a blocking means for blocking stray electron entry. The shielding ring 10 is an annular insulating member that is fitted to the inner peripheral surface of the glass tube 4, and is held between the photoconductive portion 2 and the mesh electrode 9. The function of the shielding ring 10 will be described later. The glass tube 4 is a housing that forms a vacuum space in which electrons travel between the photoconductive portion 2 and the electron beam source 5.

なお、インジウムリング3には、導電膜1Aで構成されるターゲット電極に正電圧を印加するために電源11の正極性端子が接続され、また撮像信号を読み出すための読み出し部12が接続される。その際、電源11のもう一方の負極性端子は電子ビーム源5に接続され、走査電子ビームを介して閉回路を形成する様に設置される。ターゲット電極に印加される電圧をターゲット電圧と称す。   The indium ring 3 is connected to a positive terminal of a power source 11 for applying a positive voltage to a target electrode composed of the conductive film 1A, and a reading unit 12 for reading an imaging signal. At that time, the other negative terminal of the power source 11 is connected to the electron beam source 5 and installed so as to form a closed circuit via the scanning electron beam. A voltage applied to the target electrode is referred to as a target voltage.

また、ガラス管4の外側には、図示しない偏向コイル及び集束コイルが配設され、第3グリッド電極8内で加速される電子(電子ビーム5A)を偏向・集束させる。   A deflection coil and a focusing coil (not shown) are disposed outside the glass tube 4 to deflect and focus electrons (electron beam 5A) accelerated in the third grid electrode 8.

電子ビーム源5には陰極材料が内蔵されており、これをヒータで加熱することにより電子雲が励起発生される。また、第1グリッド電極6、第2グリッド電極7、第3グリッド電極8、及びメッシュ電極9は、電子を光導電部2の方向に引き出して加速させるための電極である。これらの加速電子は前記集束コイル及び偏向コイルで偏向・集束され、メッシュ電極9を通過させることで面内方向に均等な走査電子ビームに成形される。   The electron beam source 5 contains a cathode material, and an electron cloud is excited and generated by heating the cathode material with a heater. The first grid electrode 6, the second grid electrode 7, the third grid electrode 8, and the mesh electrode 9 are electrodes for extracting and accelerating electrons in the direction of the photoconductive portion 2. These accelerating electrons are deflected and focused by the focusing coil and the deflection coil, and are passed through the mesh electrode 9 to form a scanning electron beam that is uniform in the in-plane direction.

ここで、各電極に印加される電圧は、電子ビーム源のヒータ:約6V、第1グリッド電極6:約20V、第2グリッド電極7:約300V、第3グリッド電極8:約600V、メッシュ電極9:約800Vである。   Here, the voltage applied to each electrode is as follows: heater of electron beam source: about 6V, first grid electrode 6: about 20V, second grid electrode 7: about 300V, third grid electrode 8: about 600V, mesh electrode 9: About 800V.

光導電部2の走査面2Aの電子ビームで走査される領域の表面には、走査期間中電子ビーム源5とほぼ同電位になるまで電子ビームが付着し、余剰の電子は戻りビーム電子となって管内に反射されることになる。その結果、光導電部2の走査面2Aと導電面1aの間にターゲット電圧が印加されることになり、また走査終了直後は走査面2Aとメッシュ電極9との間隙に強い減速電界が生じる。非走査期間中に光が入射すると、吸収された光で光導電膜2b内に電子―正孔対が生成され、正孔が光導電部2内の電界に沿って走査面2Aまで走行し、付着している電子と再結合するので、走査面2Aの表面電位は正方向に変化する。次の電子ビーム走査では、正方向に上昇した走査面2Aの表面電位を元に戻すまで走査電子ビームが付着することになり、その際に閉回路に流れる電流変化が信号読み出し部12から撮像信号として取り出される。   An electron beam adheres to the surface of the region scanned with the electron beam on the scanning surface 2A of the photoconductive portion 2 until it becomes substantially the same potential as the electron beam source 5 during the scanning period, and surplus electrons become return beam electrons. Will be reflected in the tube. As a result, a target voltage is applied between the scanning surface 2A and the conductive surface 1a of the photoconductive portion 2, and a strong deceleration electric field is generated in the gap between the scanning surface 2A and the mesh electrode 9 immediately after the end of scanning. When light is incident during the non-scanning period, electron-hole pairs are generated in the photoconductive film 2b by the absorbed light, and the holes travel along the electric field in the photoconductive portion 2 to the scanning surface 2A. Since it recombines with the adhering electrons, the surface potential of the scanning surface 2A changes in the positive direction. In the next electron beam scanning, the scanning electron beam adheres until the surface potential of the scanning surface 2A that has risen in the positive direction is restored, and a change in current flowing in the closed circuit at that time is detected from the signal reading unit 12 as an imaging signal. As taken out.

図1(b)に示すように、光導電部2は、電子ビーム源5と対向する走査面2Aの中央部に走査領域2Cを有する。この走査領域2Cは、偏向コイル及び集束コイルによって偏向・集束される電子ビームにより、撮像信号を取り出すための走査が行われる領域である。   As shown in FIG. 1B, the photoconductive portion 2 has a scanning region 2C at the center of the scanning surface 2A facing the electron beam source 5. The scanning region 2C is a region where scanning for taking out an imaging signal is performed by an electron beam deflected and focused by the deflection coil and the focusing coil.

遮蔽リング10は、走査領域2Cよりも大きい開口部10Aを有し、かつ、電子ビーム源5から見て、開口部10Aが走査領域2Cに重複しないように配設される。例えば、外径20mm、内径17mm、厚さ2.5mmのガラス製の部材であり、光導電部2とメッシュ電極9との間に挟み込まれる。   The shield ring 10 has an opening 10A larger than the scanning region 2C, and is disposed so that the opening 10A does not overlap the scanning region 2C when viewed from the electron beam source 5. For example, a glass member having an outer diameter of 20 mm, an inner diameter of 17 mm, and a thickness of 2.5 mm is sandwiched between the photoconductive portion 2 and the mesh electrode 9.

なお、インジウムリング3の開口部3Aは、遮蔽リング10の開口部10Aよりも大きく、径方向外側に位置する。すなわち、インジウムリング3は、光導電部2の走査領域2Cとは重複しないように配設される。   Note that the opening 3A of the indium ring 3 is larger than the opening 10A of the shielding ring 10 and is located on the radially outer side. That is, the indium ring 3 is disposed so as not to overlap with the scanning region 2 </ b> C of the photoconductive portion 2.

図1(a)及び(b)に示すように、透光性基板1の導電膜1Aのうち光導電部2が形成されない非形成領域、及び、インジウムリング3が絶縁性の遮蔽リング10によって覆われる。   As shown in FIGS. 1A and 1B, a non-formation region where the photoconductive portion 2 is not formed in the conductive film 1 </ b> A of the translucent substrate 1 and the indium ring 3 are covered with an insulating shielding ring 10. Is called.

本実施の形態の撮像デバイスによれば、遮蔽リング10を有することにより、導電膜1A及びインジウムリング3がガラス管4内の真空空間に存在する漂遊電子から遮蔽されるので、導電膜1A及びインジウムリング3への漂遊電子の突入を抑制することができ、この結果、例えばターゲット電圧として1000V〜5000Vの高電圧を導電膜1Aに印加しても、偽信号、さざ波現象、反転現象といった画像不良現象を伴うことなく高画質な撮像信号を得ることができる。   According to the imaging device of the present embodiment, since the conductive film 1A and the indium ring 3 are shielded from stray electrons existing in the vacuum space in the glass tube 4 by having the shielding ring 10, the conductive film 1A and indium Intrusion of stray electrons into the ring 3 can be suppressed. As a result, even if a high voltage of 1000 V to 5000 V is applied to the conductive film 1A as a target voltage, for example, an image defect phenomenon such as a false signal, a ripple phenomenon, or an inversion phenomenon Therefore, it is possible to obtain a high-quality image pickup signal without accompanying.

また、従来技術のように、透光性基板1に金属ピンを植設する等の複雑な製造工程を要することなく、容易に製造することができる。   Moreover, it can manufacture easily, without requiring complicated manufacturing processes, such as planting a metal pin in the translucent board | substrate 1 like a prior art.

なお、遮蔽リング10は、電子が滞留しないよう電気的な絶縁体であり、当然透光性基板1及びインジウムリング3と電気的に絶縁されている。また、その材質はガラスに限定されず、例えば、セラミック、サファイア、又は樹脂のいずれかであってもよい。   The shielding ring 10 is an electrical insulator so that electrons do not stay, and is naturally electrically insulated from the translucent substrate 1 and the indium ring 3. Moreover, the material is not limited to glass, For example, any of ceramic, sapphire, or resin may be sufficient.

また、遮蔽リング10の開口部10Aは、電子ビーム5Aの軌道を妨害しない形状であればよく、円形に限られず楕円形や矩形であってもよい。   Further, the opening 10A of the shielding ring 10 may be any shape that does not interfere with the trajectory of the electron beam 5A, and is not limited to a circle but may be an ellipse or a rectangle.

また、以上では、漂遊電子から導電膜1A及びインジウムリング3を遮蔽するための部材として遮蔽リング10を用いる場合について説明したが、この遮蔽部材は環状(リング状)のものに限定されるものではなく、ガラス管4の内周方向において分割されていても、C字型のように切り欠きを有していてもよく、導電膜1Aの導電面1aのうち光導電部2が形成されない非形成面、又は、インジウムリング3の内周面のうちの少なくとも一部、あるいは、その両方を真空空間内の漂遊電子から遮蔽する任意の形状で構成することができる。   Moreover, although the case where the shielding ring 10 is used as a member for shielding the conductive film 1A and the indium ring 3 from stray electrons has been described above, the shielding member is not limited to a ring (ring shape). Alternatively, it may be divided in the inner peripheral direction of the glass tube 4 or may have a cutout like a C shape, and the photoconductive portion 2 is not formed on the conductive surface 1a of the conductive film 1A. The surface and / or at least a part of the inner peripheral surface of the indium ring 3 or both of them can be formed in any shape that shields stray electrons in the vacuum space.

また、遮蔽リング10の表面には、二次電子放出比が1以下となるような加工等が施されることが望ましい。例えば、表面を粗面とする加工、又は、表面に三硫化アンチモン(Sb)、三セレン化ヒ素(AsSe)、若しくはテルル化カドミウム(CdTe)で構成される多孔質状の薄膜を形成する加工等を施してもよい。 Further, it is desirable that the surface of the shielding ring 10 be processed so that the secondary electron emission ratio is 1 or less. For example, the surface is roughened, or the surface is composed of antimony trisulfide (Sb 2 S 3 ), arsenic triselenide (As 2 Se 3 ), or porous cadmium telluride (CdTe). You may give the process etc. which form a thin film.

また、以上では、光導電部2にセレン(Se)を主原料とする非晶質半導体層を含む光導電膜2bを用いた撮像デバイスについて説明したが、遮蔽リング10は、光導電部2の種類を問わず、様々な種類の光導電膜を有する撮像デバイスに適用することができる。特に、以上で説明したセレン(Se)を主原料とする非晶質半導体層を光導電膜2bに用いた撮像デバイスでは、光導電膜内で電荷のアバランシェ増倍が生じる程の高電圧をターゲット電極に印加して使用することにより、画像不良現象を抑制して超高感度、高解像度、低残像の極めて高品質な画質を実現することができるが、その他の種類の光導電膜を用いた撮像デバイスにおいても、画像不良現象を抑制して極めて高品質な画質を実現することができる。   In the above description, the imaging device using the photoconductive film 2b including the amorphous semiconductor layer mainly composed of selenium (Se) in the photoconductive portion 2 has been described. Regardless of the type, it can be applied to an imaging device having various types of photoconductive films. In particular, in an imaging device using an amorphous semiconductor layer mainly composed of selenium (Se) as described above for the photoconductive film 2b, a high voltage that causes charge avalanche multiplication within the photoconductive film is targeted. By applying it to the electrodes, it is possible to suppress the image defect phenomenon and realize extremely high quality image quality with ultra-high sensitivity, high resolution, and low afterimage, but other types of photoconductive films were used. Also in the imaging device, it is possible to suppress the image defect phenomenon and realize an extremely high quality image quality.

なお、本実施の形態の撮像デバイスを駆動させるために各電極に印加する電圧は前記の値に限定されるものではない。   Note that the voltage applied to each electrode to drive the imaging device of the present embodiment is not limited to the above values.

また、透光性基板1は、ガラス基板に限らず、透光性樹脂基板、又はオプティカルファイバープレートであってもよい。また、X線に対する透過率が高いベリリウム(Be)、結晶シリコン(Si)、又は窒化ホウ素(BN)等の薄板等を透光性基板1として用いれば、以上で説明した遮蔽部材(遮蔽リング10)をX線用の撮像デバイスにも適用することができる。この場合、入射X線の吸収量を高めるために、光導電膜2bの厚さを増大させ、ターゲット電圧を高くして動作させても、画像不良現象を大幅に抑制することができる。   The translucent substrate 1 is not limited to a glass substrate, and may be a translucent resin substrate or an optical fiber plate. Further, when a thin plate such as beryllium (Be), crystalline silicon (Si), or boron nitride (BN) having a high X-ray transmittance is used as the translucent substrate 1, the shielding member (shielding ring 10 described above) is used. ) Can be applied to an X-ray imaging device. In this case, even if the thickness of the photoconductive film 2b is increased and the target voltage is increased in order to increase the absorption amount of incident X-rays, the image defect phenomenon can be significantly suppressed.

また、以上では、一般的に広く使われている磁界集束・磁界偏向型撮像管を用いて説明したが、電子ビームを真空中で加速し、光導電部にランディングさせて蓄積電荷を読み出す方式のデバイスであれば、他の形式の撮像デバイスであってもよい。   In the above description, a generally used magnetic field focusing / deflection image pickup tube has been described. However, a method of reading an accumulated charge by accelerating an electron beam in a vacuum and landing it on a photoconductive portion. Any other type of imaging device may be used as long as it is a device.

[実施の形態2]
図3は、実施の形態2の撮像デバイスの構成を概略的に示す側断面図である。実施の形態2の撮像デバイスでは、電子ビーム源として電子放出源アレイ20を備える点と、透光性基板1として厚さ0.5mm、直径25mmのベリリウム(Be)製の薄板状の導電性基板を用いる点が実施の形態1の撮像デバイスと主に相違する。以下、実施の形態1の撮像デバイスと同一又は同等の構成要素には同一の符号を用い、その説明を省略する。
[Embodiment 2]
FIG. 3 is a side sectional view schematically showing a configuration of the imaging device of the second embodiment. In the imaging device of the second embodiment, a thin plate-like conductive substrate made of beryllium (Be) having a thickness of 0.5 mm and a diameter of 25 mm as the translucent substrate 1 is provided with an electron emission source array 20 as an electron beam source. Is different from the imaging device of the first embodiment. Hereinafter, the same reference numerals are used for the same or equivalent components as those of the imaging device of Embodiment 1, and the description thereof is omitted.

実施の形態2の撮像デバイスはX線画像用撮像デバイスに好適である。ベリリウム(Be)製の薄板状の透光性基板1は導電性を有するため、実施の形態1のように片方の面上に導電膜1Aを形成する必要はない。このため、導電面1aは、透光性基板1の片方の表面となる。光導電部2は、実施の形態1の光導電部2と同一であり、導電面1aの上に形成される。   The imaging device of Embodiment 2 is suitable for an X-ray imaging device. Since the thin plate-like translucent substrate 1 made of beryllium (Be) has conductivity, it is not necessary to form the conductive film 1A on one surface as in the first embodiment. For this reason, the conductive surface 1 a becomes one surface of the translucent substrate 1. The photoconductive portion 2 is the same as the photoconductive portion 2 of the first embodiment, and is formed on the conductive surface 1a.

また、ガラス管4はカップ状であり、内部には漂遊電子の突入を遮蔽する遮蔽手段として外径20mm、内径17mm、高さ10mmのセラミック製の遮蔽リング21が配設される。この遮蔽リング21の表面には、圧力0.1〜0.4Torrのアルゴン(Ar)ガス雰囲気中で膜厚100nmの三硫化アンチモン(Sb)からなる二次電子放出抑制層が蒸着されている。なお、カップ状のガラス管4の代わりに、金属製の真空チャンバを用いてもよい。 The glass tube 4 is cup-shaped, and a ceramic shielding ring 21 having an outer diameter of 20 mm, an inner diameter of 17 mm, and a height of 10 mm is disposed inside as a shielding means for shielding stray electrons from entering. A secondary electron emission suppression layer made of antimony trisulfide (Sb 2 S 3 ) having a thickness of 100 nm is deposited on the surface of the shielding ring 21 in an argon (Ar) gas atmosphere at a pressure of 0.1 to 0.4 Torr. ing. A metal vacuum chamber may be used instead of the cup-shaped glass tube 4.

電子放出源アレイ20は、微小カソードがマトリクス状に配列された平板状の電子ビーム源である。走査ラインと選択ラインに印加する電圧値を制御することにより、所望のカソードから電子ビームを光導電部2に発射することができる。なお、電子放出源アレイ20はカソードを選択して電子ビームを発射できるため、実施の形態1の撮像デバイスのように、第1グリッド電極6、第2グリッド電極7、第3グリッド電極8、偏向コイル、及び集束コイルは配設されない。   The electron emission source array 20 is a flat electron beam source in which micro cathodes are arranged in a matrix. By controlling the voltage value applied to the scanning line and the selection line, an electron beam can be emitted from the desired cathode to the photoconductive portion 2. Since the electron emission source array 20 can select the cathode and emit an electron beam, the first grid electrode 6, the second grid electrode 7, the third grid electrode 8, the deflection, as in the imaging device of the first embodiment. A coil and a focusing coil are not provided.

遮蔽リング21は、開口部が電子放出源アレイ20から見て走査領域2Cを妨害しないように、光導電部2の走査面2Aに接した状態で配設される。図3に示すように光導電部2とガラス管4内の底部との間に遮蔽リング21を挟んだ状態で、透光性基板1とガラス管4とはインジウムリング3を介してシールされる。   The shield ring 21 is disposed in contact with the scanning surface 2A of the photoconductive portion 2 so that the opening does not interfere with the scanning region 2C when viewed from the electron emission source array 20. As shown in FIG. 3, the transparent substrate 1 and the glass tube 4 are sealed via the indium ring 3 with the shielding ring 21 sandwiched between the photoconductive portion 2 and the bottom portion in the glass tube 4. .

本実施の形態の撮像デバイスによれば、遮蔽リング21を有することにより、導電面1a及びインジウムリング3がガラス管4内の真空空間に存在する漂遊電子から遮蔽されるので、実施の形態1の撮像デバイスと同様に、導電性のある透光性基板1及びインジウムリング3への漂遊電子の突入を抑制することができ、この結果、例えばターゲット電圧として1000V〜5000Vの高電圧を透光性基板1の導電面1aに印加しても、偽信号、さざ波現象、反転現象といった画像不良現象を伴うことなく高画質な撮像信号を得ることができる。   According to the imaging device of the present embodiment, by having the shielding ring 21, the conductive surface 1a and the indium ring 3 are shielded from stray electrons existing in the vacuum space in the glass tube 4, so Similar to the imaging device, stray electrons can be prevented from entering the conductive translucent substrate 1 and the indium ring 3. As a result, for example, a high voltage of 1000 V to 5000 V is used as the target voltage. Even when applied to one conductive surface 1a, it is possible to obtain a high-quality image pickup signal without causing an image defect phenomenon such as a false signal, a ripple phenomenon, or an inversion phenomenon.

また、従来のように、透光性基板1に金属ピンを植設する等の複雑な製造工程を要することなく、容易に製造することができる。   Moreover, it can manufacture easily, without requiring complicated manufacturing processes, such as planting a metal pin in the translucent board | substrate 1, like the past.

以上、実施の形態1及び2で得られる撮像デバイスをテレビカメラに実装し、光導電膜2bの電界強度が約1×10V/mになるような電圧を光導電部2に印加したところ、いずれの撮像デバイスを使用したテレビカメラでも、画像不良現象は全く認められなかった。特に、膜厚50μmのセレン(Se)を主原料とする非晶質半導体からなる光導電膜2bを有する撮像デバイスでは、5000V以上のターゲット電圧を印加してアバランシェ増倍を生じさせて使用しても、画像不良現象は全く認められなかった。 As described above, when the imaging device obtained in Embodiments 1 and 2 is mounted on a television camera and a voltage is applied to the photoconductive portion 2 such that the electric field strength of the photoconductive film 2b is about 1 × 10 8 V / m. In any television camera using any imaging device, no image defect phenomenon was observed. In particular, in an imaging device having a photoconductive film 2b made of an amorphous semiconductor whose main material is selenium (Se) with a thickness of 50 μm, a target voltage of 5000 V or more is applied to cause avalanche multiplication. However, no image defect phenomenon was observed.

このように、実施の形態1及び2の撮像デバイスは、高画質が要求されるテレビジョンカメラ、特にハイビジョン用カメラに最適であり、産業、医療、理化学分野等の画像解析システムに適用すれば、高S/Nでの信号処理が可能になる等の効果が得られる。   Thus, the imaging devices of Embodiments 1 and 2 are most suitable for television cameras that require high image quality, particularly high-definition cameras, and if applied to image analysis systems in the industrial, medical, physics and chemistry fields, Effects such as signal processing with a high S / N are obtained.

以上、本発明の例示的な実施の形態の撮像デバイスについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。   Although the imaging device of the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiment, and does not depart from the scope of the claims. Various modifications and changes are possible.

実施の形態1の撮像デバイスの構成を示す図であり、(a)は側断面図、(b)は撮像デバイスを(a)のA−A矢視断面で示す図である。It is a figure which shows the structure of the imaging device of Embodiment 1, (a) is a sectional side view, (b) is a figure which shows an imaging device by the AA arrow cross section of (a). 実施の形態1の撮像デバイスの透光性基板1及び光導電部2の構成を詳細に示す図であり、(a)は図1(b)の構成を詳細に示す平面図、(b)は撮像デバイスを(a)のB−B矢視断面で示す図である。It is a figure which shows the structure of the translucent board | substrate 1 and the photoconductive part 2 of the imaging device of Embodiment 1 in detail, (a) is a top view which shows the structure of FIG.1 (b) in detail, (b) is It is a figure which shows an imaging device in the BB arrow cross section of (a). 実施の形態2の撮像デバイスの構成を概略的に示す側断面図である。4 is a side sectional view schematically showing a configuration of an imaging device according to a second embodiment. FIG.

符号の説明Explanation of symbols

1 透光性基板
1A 導電膜
1a 導電面
1B リード部
2 光導電部
2a 正孔注入阻止強化層
2b 光導電膜
2c 電子ビームランディング層
2A 走査面
2B 光入射面
2C 走査領域
3 インジウムリング
3A 開口部
4 ガラス管
5 電子ビーム源
6 第1グリッド電極
7 第2グリッド電極
8 第3グリッド電極
9 メッシュ電極
10、21 遮蔽リング
10A 開口部
11 電源
12 読み出し部
20 電子放出源アレイ
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 1A Conductive film 1a Conductive surface 1B Lead part 2 Photoconductive part 2a Hole injection prevention reinforcement | strengthening layer 2b Photoconductive film 2c Electron beam landing layer 2A Scanning surface 2B Light incident surface 2C Scanning area 3 Indium ring 3A Opening part 4 Glass tube 5 Electron beam source 6 First grid electrode 7 Second grid electrode 8 Third grid electrode 9 Mesh electrode 10, 21 Shielding ring 10 A Opening 11 Power supply 12 Reading unit 20 Electron emission source array

Claims (6)

導電面を有する透光性基板と、
前記導電面上に形成される光導電部と、
前記光導電部に走査用の電子ビームを発射する電子ビーム源と、
前記導電面に電気的に接続され、前記電子ビームの走査又は前記電子ビーム源の選択によって得る撮像信号を読み出すための信号読み出し電極と、
前記光導電部と前記電子ビーム源との間に電子が走行する真空空間を形成する筐体と
を具える撮像デバイスにおいて、
前記導電面のうち前記光導電部が形成されない非形成面、又は、前記信号読み出し電極のうちの少なくとも一部を前記真空空間内の漂遊電子から遮蔽する遮蔽手段を含む、撮像デバイス。
A translucent substrate having a conductive surface;
A photoconductive portion formed on the conductive surface;
An electron beam source for emitting a scanning electron beam to the photoconductive portion;
A signal readout electrode electrically connected to the conductive surface and for reading out an imaging signal obtained by scanning the electron beam or selecting the electron beam source;
In an imaging device comprising: a housing that forms a vacuum space in which electrons travel between the photoconductive portion and the electron beam source,
An imaging device comprising: a non-formed surface on which the photoconductive portion is not formed in the conductive surface; or a shielding unit that shields at least a part of the signal readout electrode from stray electrons in the vacuum space.
前記遮蔽手段は、前記電子ビーム源から見て、前記電子ビームによって前記光導電部が走査される有効走査領域と重複しないように配置される、請求項1に記載の撮像デバイス。   The imaging device according to claim 1, wherein the shielding unit is disposed so as not to overlap with an effective scanning region in which the photoconductive portion is scanned by the electron beam as viewed from the electron beam source. 前記遮蔽手段は、セラミック、ガラス、サファイア、又は樹脂のうちのいずれかで構成される絶縁体である、請求項1又は2に記載の撮像デバイス。   The imaging device according to claim 1, wherein the shielding unit is an insulator made of any one of ceramic, glass, sapphire, or resin. 前記遮蔽手段は、表面の二次電子放出比が1以下である、請求項1乃至3のいずれか一項に記載の撮像デバイス。   The imaging device according to claim 1, wherein the shielding means has a secondary electron emission ratio of 1 or less on a surface. 前記遮蔽手段の表面には、三硫化アンチモン製、三セレン化ヒ素製、又はテルル化カドミウム製の多孔質状の薄膜が形成される、請求項1乃至4のいずれか一項に記載の撮像デバイス。   The imaging device according to any one of claims 1 to 4, wherein a porous thin film made of antimony trisulfide, arsenic triselenide, or cadmium telluride is formed on the surface of the shielding means. . 前記光導電部は、セレンを主原料とする非晶質半導体層で構成される光導電膜を含む、請求項1乃至5のいずれか一項に記載の撮像デバイス。   The imaging device according to claim 1, wherein the photoconductive portion includes a photoconductive film including an amorphous semiconductor layer containing selenium as a main material.
JP2007294284A 2007-11-13 2007-11-13 Imaging device Pending JP2009123423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294284A JP2009123423A (en) 2007-11-13 2007-11-13 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294284A JP2009123423A (en) 2007-11-13 2007-11-13 Imaging device

Publications (1)

Publication Number Publication Date
JP2009123423A true JP2009123423A (en) 2009-06-04

Family

ID=40815382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294284A Pending JP2009123423A (en) 2007-11-13 2007-11-13 Imaging device

Country Status (1)

Country Link
JP (1) JP2009123423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082008A (en) * 2012-10-12 2014-05-08 Nippon Hoso Kyokai <Nhk> Image pick-up device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246545A (en) * 1984-05-22 1985-12-06 Hitachi Ltd Pickup tube
JPH02204944A (en) * 1989-02-03 1990-08-14 Hitachi Ltd Image pickup tube
JPH04230941A (en) * 1990-05-23 1992-08-19 Hitachi Ltd Image pickup tube and operating method thereof
JPH0729507A (en) * 1993-07-13 1995-01-31 Hitachi Ltd Image pickup tube and operating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246545A (en) * 1984-05-22 1985-12-06 Hitachi Ltd Pickup tube
JPH02204944A (en) * 1989-02-03 1990-08-14 Hitachi Ltd Image pickup tube
JPH04230941A (en) * 1990-05-23 1992-08-19 Hitachi Ltd Image pickup tube and operating method thereof
JPH0729507A (en) * 1993-07-13 1995-01-31 Hitachi Ltd Image pickup tube and operating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082008A (en) * 2012-10-12 2014-05-08 Nippon Hoso Kyokai <Nhk> Image pick-up device

Similar Documents

Publication Publication Date Title
US3546515A (en) Photocathode control of electron flow through lead monoxide,bombardment-induced conductivity layer
US2177736A (en) Television transmitting apparatus
JP5739763B2 (en) Photoconductive element and imaging device
US20160161426A1 (en) Pillar Based Amorphous and Polycrystalline Photoconductors for X-ray Image Sensors
US2970219A (en) Use of thin film field emitters in luminographs and image intensifiers
US2212923A (en) Picture transmitter
JP2009123423A (en) Imaging device
US3370168A (en) Anode aperture plate for a television camera tube in an electron microscope comprising a stainless steel foil
JP3384840B2 (en) Image pickup tube and operation method thereof
JP5111276B2 (en) Imaging device
Zhang et al. Highly Sensitive Direct‐Conversion Vacuum Flat‐Panel X‐Ray Detectors Formed by Ga2O3‐ZnO Heterojunction Cold Cathode and ZnS Target and their Photoelectron Multiplication Mechanism
JP4675578B2 (en) Image pickup device and image pickup apparatus using the same
JP2010212087A (en) Imaging element, and radiation resistant camera
JP5167043B2 (en) PIN TYPE DETECTOR AND CHARGED PARTICLE BEAM DEVICE PROVIDED WITH PIN TYPE DETECTOR
US3268764A (en) Radiation sensitive device
JP2793618B2 (en) Imaging tube
US3735139A (en) Photo detector system with dual mode capability
JP2753264B2 (en) Imaging tube
US3225240A (en) Image tube having external semiconductive layer on target of wires in glass matrix
JP5503387B2 (en) Photoconductive element and imaging device
JP2009224192A (en) Imaging apparatus
JP4172881B2 (en) Imaging device and operation method thereof
JP2014082008A (en) Image pick-up device
US3278782A (en) Electron emitter comprising photoconductive and low work function layers
US3872344A (en) Image pickup tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625