JP2945732B2 - Image pickup tube and operation method thereof - Google Patents

Image pickup tube and operation method thereof

Info

Publication number
JP2945732B2
JP2945732B2 JP23066190A JP23066190A JP2945732B2 JP 2945732 B2 JP2945732 B2 JP 2945732B2 JP 23066190 A JP23066190 A JP 23066190A JP 23066190 A JP23066190 A JP 23066190A JP 2945732 B2 JP2945732 B2 JP 2945732B2
Authority
JP
Japan
Prior art keywords
layer
weight
injection blocking
image pickup
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23066190A
Other languages
Japanese (ja)
Other versions
JPH04112433A (en
Inventor
一之 長妻
賢二 鮫島
忠明 平井
幸男 高嵜
圭一 設楽
健吉 谷岡
順一 山崎
節 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Broadcasting Corp
Original Assignee
Hitachi Ltd
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Hoso Kyokai NHK filed Critical Hitachi Ltd
Priority to JP23066190A priority Critical patent/JP2945732B2/en
Publication of JPH04112433A publication Critical patent/JPH04112433A/en
Application granted granted Critical
Publication of JP2945732B2 publication Critical patent/JP2945732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光導電層の少なくとも一部がSeを主体とす
る非晶質半導体から成る撮像管およびその動作方法に関
する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup tube in which at least a part of a photoconductive layer is made of an amorphous semiconductor mainly composed of Se, and an operation method thereof.

〔従来の技術〕[Conventional technology]

非晶質Seは光導電性を示し、一般にp形導電性を有す
るとともに、n形導電性の材料と整流性接触をなすこと
から、非晶質Seを光導電層として用い、この特徴を生か
した阻止型撮像管ターゲットを作ることができる。
Amorphous Se has photoconductivity and generally has p-type conductivity and makes rectifying contact with n-type conductive material. In this case, a blocking type image pickup tube target can be manufactured.

また、上記阻止型撮像管ターゲットに高電界を印加す
ると、材料内部で電荷のアバランシェ増倍が誘起され、
撮像管の光感度がめざましく増大することが知られてい
る。これについては、例えば、特開昭63−304551号公報
に述べられている。
Further, when a high electric field is applied to the above-mentioned blocking type image pickup tube target, avalanche multiplication of charges is induced inside the material,
It is known that the light sensitivity of an image pickup tube increases remarkably. This is described, for example, in JP-A-63-304551.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

さて、非晶質Seは室温近傍にガラス転移温度を持つた
め、非晶質Seを用いた撮像管を長時間連続動作させる
と、温度上昇、光照射、電界印加に由来する局所的な結
晶化が起こり、再生画像に白点状の画面欠陥(以下、こ
れを単に白キズと呼ぶ)が発生する。
Now, since amorphous Se has a glass transition temperature near room temperature, if an imaging tube using amorphous Se is operated continuously for a long time, local crystallization resulting from temperature rise, light irradiation, and electric field application Occurs, and a white spot-like screen defect (hereinafter, simply referred to as a white defect) occurs in the reproduced image.

これを改善する手段として、SeにAsを添加し、ガラス
転移点を上昇させる方法が知られている。しかし、As添
加は、非晶質Se内に電子捕獲準位の形成を伴うので、非
晶質Se系光導電層全体にわたって一様に多量のAsを添加
することは、暗電流や残像等の増加をもたらすため、得
策ではない。
As a means for improving this, a method of adding As to Se to raise the glass transition point is known. However, since the addition of As involves the formation of electron trap levels in the amorphous Se, the addition of a large amount of As uniformly over the entire amorphous Se-based photoconductive layer requires dark current and afterimages. It's not a good idea because it will increase.

上記従来技術には、結晶化に起因する白キズの発生の
防止には有効であるが、撮像管を高電界下で長時間動作
すると、暗電流が大きくなる問題があった。
The above-mentioned prior art is effective in preventing the occurrence of white scratches due to crystallization, but has a problem that the dark current increases when the image pickup tube is operated for a long time under a high electric field.

本発明の目的は、非晶質Seを主体とする光導電層を用
いた撮像管において、長時間連続動作させても白キズが
発生せず、かつ高電界下においても暗電流を小さくする
ことができる構造を提供することにある。
It is an object of the present invention to provide an image pickup tube using a photoconductive layer mainly composed of amorphous Se without causing white spots even when operated continuously for a long time, and reducing dark current even under a high electric field. It is to provide a structure that can be used.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の撮像管は、Seを
主体とする非晶質半導体から成る光導電層の、電子注入
阻止層または正孔注入阻止層との界面または界面近傍の
少なくともいずれかの光導電層内の狭い領域のAs添加量
を極力低減し、また、この狭い領域を除く中央部の領域
のAs添加量は該狭い領域よりも少なくすることにより達
成される。
In order to achieve the above object, an image pickup tube according to the present invention has a photoconductive layer composed of an amorphous semiconductor containing Se as a main component, at least at an interface with or near an interface with an electron injection blocking layer or a hole injection blocking layer. This is achieved by minimizing the amount of As added in a narrow region in the photoconductive layer and making the amount of As added in a central region excluding the narrow region smaller than that in the narrow region.

すなわち、本発明では、Seを主体とする非晶質半導体
層から成る光導電層内の電子注入阻止層の界面から、ま
たは界面近傍から層厚10nm以上・400nm以下の領域に、A
sを22重量%以上・38重量%以下添加する。また、光導
電層内の正孔注入阻止層の界面から、または界面近傍か
ら層厚10nm以上・100nm以下の領域に、Asを1重量%以
上・5重量%以下添加する。さらに、上記特定の領域以
外の領域に、Asを1重量%以下添加し、非晶質半導体層
全体の層厚を2〜10μmとしたものである。
That is, in the present invention, from the interface of the electron injection blocking layer in the photoconductive layer composed of an amorphous semiconductor layer mainly composed of Se, or from the vicinity of the interface to a region having a layer thickness of 10 nm or more and 400 nm or less,
s is added in an amount of 22% by weight or more and 38% by weight or less. Further, As is added in an amount of 1 wt% or more and 5 wt% or less from the interface of the hole injection blocking layer in the photoconductive layer or from the vicinity of the interface to a region having a layer thickness of 10 nm or more and 100 nm or less. Furthermore, 1% by weight or less of As is added to a region other than the above-mentioned specific region, so that the entire amorphous semiconductor layer has a thickness of 2 to 10 μm.

また、本発明の撮像管の動作方法は、光導電層の内部
で、電荷のアバランシェ増倍が誘起される電界領域で撮
像管を動作させることを特徴とする。
In addition, the method of operating the image pickup tube according to the present invention is characterized in that the image pickup tube is operated in an electric field region where avalanche multiplication of charges is induced inside the photoconductive layer.

〔作用〕[Action]

第1図は、本発明の撮像管の一例を示す断面図であ
る。1は透光性基板、2は透光性導電膜、3は正孔注入
阻止層、4はSeを主体とする非晶質半導体層から成る光
導電層、5は電子注入阻止層である。光導電層4は、Se
−As(I)層41、Se−As(II)層42、Se−As(III)層4
3から構成されている。Aは入射光側、Bは電子ビーム
走査側である。
FIG. 1 is a sectional view showing an example of the image pickup tube of the present invention. 1 is a light-transmitting substrate, 2 is a light-transmitting conductive film, 3 is a hole injection blocking layer, 4 is a photoconductive layer made of an amorphous semiconductor layer mainly composed of Se, and 5 is an electron injection blocking layer. The photoconductive layer 4 is made of
-As (I) layer 41, Se-As (II) layer 42, Se-As (III) layer 4
Consists of three. A is the incident light side, and B is the electron beam scanning side.

本発明者らの最近の研究によれば、非晶質Se膜におけ
る結晶化の核発生は、他層と接する界面領域でのみ起こ
り、内部で起こることはほとんどない。この核発生の物
理的機構は、まだ充分解明されていないが、核発生に必
要な転移エネルギーが、他層との界面で最も低くなって
いるためと考えられる。
According to recent studies by the present inventors, nucleation of crystallization in an amorphous Se film occurs only in an interface region in contact with another layer, and hardly occurs inside. Although the physical mechanism of this nucleation has not been fully elucidated yet, it is considered that the transition energy required for nucleation is the lowest at the interface with another layer.

上記の事実は、撮像管動作時の暗電流を小さくし、か
つ結晶化に起因する白キズを防止するためには、非晶質
半導体層内の電子注入阻止層または正孔注入阻止層の、
界面または界面近傍の領域のみを結晶化しにくい材料組
成とすることが重要であることを示唆している。
The above fact is that, in order to reduce the dark current during the operation of the image pickup tube and to prevent white scratches due to crystallization, the electron injection blocking layer or the hole injection blocking layer in the amorphous semiconductor layer is
This suggests that it is important to make the material composition difficult to crystallize only at the interface or in the vicinity of the interface.

そこで本発明は、第1図のSe−As(I)層41により正
孔注入阻止層3との界面領域での結晶化を防止し、Se−
As層(III)43により電子注入阻止層5との界面領域で
の結晶化を防止している。
In the present invention, the Se-As (I) layer 41 shown in FIG.
As layer (III) 43 prevents crystallization in the interface region with electron injection blocking layer 5.

Se−As層(I)41、Se−As層(III)43の層厚とAs添
加量は、前記目的のために、実験的に定められたもので
ある。
The layer thickness and the amount of As added of the Se-As layer (I) 41 and the Se-As layer (III) 43 are experimentally determined for the above purpose.

なお、第1図の例では、As高濃度領域と正孔注入阻止
層3、あるいは電子注入阻止層5を隣接させたが、その
間に、ごく薄い(100nm以下、30〜60nmが望ましい)、A
s添加量が1重量%以下のSe−As層(図示せず)を介在
させても、結晶化に対する効果はほとんど変わらないこ
とが判ってい。また、第1図の例では、Se−As(I)層
41とSe−As(III)層43以外の半導体層をSe、Asより成
る層としたが、この層にAs以外の添加物、たとえばTeな
どの元素を添加しても、上記の結晶化防止効果は不変で
あることは明らかである。
In the example of FIG. 1, the high-concentration As region and the hole injection blocking layer 3 or the electron injection blocking layer 5 are adjacent to each other, but a very thin (100 nm or less, preferably 30 to 60 nm) A
It has been found that the effect on crystallization hardly changes even if an Se-As layer (not shown) containing 1% by weight or less of s is interposed. In the example of FIG. 1, the Se-As (I) layer
The semiconductor layers other than 41 and the Se-As (III) layer 43 are made of Se and As. However, even if an additive other than As, for example, an element such as Te is added to this layer, the above-described crystallization prevention is prevented. Obviously, the effect is unchanged.

すなわち、本発明の撮像管では、光導電層のSeにAsを
添加することにより、ガラス転移点を上昇させることが
できるので、長時間連続動作させても白キズが発生せ
ず、また、上記のような界面近傍の特定の領域のみにAs
を高濃度に導入したので、高電界下においても暗電流を
小さく抑えることができる。
That is, in the image pickup tube of the present invention, by adding As to Se of the photoconductive layer, the glass transition point can be raised, so that white scratches do not occur even when the device is continuously operated for a long time. As only in a specific area near the interface like
Is introduced at a high concentration, so that dark current can be suppressed even under a high electric field.

〔実施例〕〔Example〕

実施例1 第1図を用いて、本発明の撮像管の第1の実施例を説
明する。
Embodiment 1 A first embodiment of the imaging tube of the present invention will be described with reference to FIG.

ガラス基板1上に、酸化インジウムを主体とする透明
導電膜2を形成し、その上に、CeO2を30nmの厚さに蒸着
し、正孔注入阻止層3を形成する。その上に、Se、Asか
ら成る厚さ60nmの非晶質半導体層41を真空蒸着法により
形成する。膜形成に際しては、Se、As2Se3をそれぞれ別
のボートから同時に蒸着させて蒸着し、As濃度が3重量
%となるようにする。その上に、Se、Asから成る非晶質
半導体層42を真空蒸着法により形成する。このときのAs
濃度は0.5重量%とする。その上に、やはり、Se、Asか
ら成る非晶質半導体層43を真空蒸着法により形成する。
このとき、As濃度は、10〜39重量%、膜厚は5〜500nm
の間で変化させ、光導電層全体の膜厚を5μmとする。
その上に電子注入阻止層5としてSb2S3を1×10-1Torr
の不活性ガス雰囲気中で0.1μmの厚さに蒸着し、阻止
型構造の光導電ターゲットを得る。さらに、得られたタ
ーゲットを電子銃を内蔵した撮像管匡体中に組込み、光
導電型撮像管を得る。
A transparent conductive film 2 mainly composed of indium oxide is formed on a glass substrate 1, and CeO 2 is deposited thereon to a thickness of 30 nm to form a hole injection blocking layer 3. An amorphous semiconductor layer 41 made of Se and As and having a thickness of 60 nm is formed thereon by a vacuum evaporation method. At the time of film formation, Se and As 2 Se 3 are simultaneously deposited from different boats and deposited so that the As concentration becomes 3% by weight. An amorphous semiconductor layer made of Se and As is formed thereon by a vacuum evaporation method. As at this time
The concentration is 0.5% by weight. On top of that, an amorphous semiconductor layer 43 made of Se and As is formed by a vacuum evaporation method.
At this time, the As concentration is 10 to 39% by weight, and the film thickness is 5 to 500 nm.
And the thickness of the entire photoconductive layer is set to 5 μm.
Sb 2 S 3 as an electron injection blocking layer 5 is formed thereon at 1 × 10 −1 Torr.
Is deposited in an inert gas atmosphere to a thickness of 0.1 μm to obtain a photoconductive target having a blocking structure. Further, the obtained target is incorporated into an imaging tube housing containing an electron gun to obtain a photoconductive imaging tube.

得られた撮像管に、青色光を当て、徐々に電界強度を
大きくすると、全ての撮像管で約7×107V/mで、アバラ
ンシェ増倍を開始し、約1.1×108V/mで増倍率10が得ら
れた。各撮像管を寿命試験装置に入れ、増倍率10を与え
る電界下で2000時間、連続動作させた。そして、寿命試
験終了後、高電界での暗電流値と寿命試験による白キズ
発生の有無を調べた。
When blue light was applied to the obtained image pickup tube and the electric field intensity was gradually increased, avalanche multiplication was started at about 7 × 10 7 V / m in all the image pickup tubes, and about 1.1 × 10 8 V / m And a multiplication factor of 10 was obtained. Each imaging tube was placed in a life test apparatus and operated continuously for 2000 hours under an electric field giving a multiplication factor of 10. After the end of the life test, the dark current value in a high electric field and the presence or absence of white flaws by the life test were examined.

以上の結果を、第2図に示す。一点鎖線Aは、増倍率
が10となる電界を印加したとき、暗電流がほぼ1nAとな
る点を結ぶ特性線であり、暗電流は一点鎖線Aより上方
では1nAより大きく、一点鎖線Aより下方では1nAより小
さい。同様に、破線Bは、増倍率が30となる電界を印加
したとき、暗電流がほぼ1nAとなる点を結ぶ特性線であ
り、暗電流は破線Bより上方では1nAより大きく、破線
Bより下方では1nAより小さい。
The above results are shown in FIG. The dashed line A is a characteristic line connecting points at which the dark current becomes approximately 1 nA when an electric field having a multiplication factor of 10 is applied. The dark current is larger than 1 nA above the dashed line A and below the dashed line A. Is smaller than 1nA. Similarly, the dashed line B is a characteristic line connecting the points where the dark current becomes approximately 1 nA when an electric field having a multiplication factor of 30 is applied. Is smaller than 1nA.

一方、実線Cは、上記の寿命試験を行った後、白キズ
の発生が認められた否かを区別する特性線で、実線Cよ
り上方では白キズが発生せず、実線Cより下方では白キ
ズが発生したことを示す。
On the other hand, a solid line C is a characteristic line for distinguishing whether or not white flaws are observed after the life test is performed. No white flaws occur above the solid line C, and white flaws appear below the solid line C. Indicates that a scratch has occurred.

すなわち、一点鎖線Aと実線Cとによって囲まれた領
域が適正範囲であり、破線Bと実線Cとによって囲まれ
た領域が最適範囲である。
That is, the area surrounded by the dashed-dotted line A and the solid line C is the appropriate range, and the area surrounded by the broken line B and the solid line C is the optimum range.

なお、一点鎖線Aについて、y=38(x≦350)、y
=−0.32x+150(x≧350)、破線Bについて、y=36
(x≦150)、y=−0.28x+78(x≧150)、また、実
線Cについて、y=−0.8x+46(x≦30)、y=22(x
≧30)である。
Note that for the dashed line A, y = 38 (x ≦ 350), y
= −0.32x + 150 (x ≧ 350), and for the broken line B, y = 36
(X ≦ 150), y = −0.28x + 78 (x ≧ 150), and for the solid line C, y = −0.8x + 46 (x ≦ 30), y = 22 (x
≧ 30).

実施例2 ガラス基板1(第1図参照)上に、酸化スズを主体と
する透明導電膜2を形成し、その上にGeO2を40nm、その
上にCeO2を40nmの厚さに蒸着し、正孔注入阻止層3を形
成する。その上に、Se、AsとLiFから成る膜厚60nmの非
晶質半導体層41を真空蒸着法により形成する。膜形成に
際しては、Se、As2Se3およびLiFをそれぞれ別々のボー
トから同時に蒸発させて蒸着し、As濃度を2重量%と
し、LiF濃度は、2000ppm重量%となるようにする。次
に、Se、Asとから成る非晶質半導体層42を真空蒸着法で
形成する。このときのAs濃度は0.5重量%とする。その
上にSe、Asとから成る非晶質半導体層43を20〜500nmの
厚さの範囲で変化させ、真空蒸着法により形成する。こ
のときのAs濃度は30重量%とする。その上に、Seのみか
ら成る非晶質半導体層(図示せず)を50nmの厚さに、真
空蒸着法により形成し、非晶質半導体層全体の厚さが5
μmとなるようにする。その上に、電子注入阻止層5と
して、Sb2S3を2×10-2Torrの不活性ガス雰囲気中で0.1
μmの厚さに蒸着し、阻止型構造の光導電ターゲットを
得る。さらに、これを電子銃を内蔵した撮像管匡体に組
込み、光導電型撮像管を得る。
Example 2 A transparent conductive film 2 mainly composed of tin oxide was formed on a glass substrate 1 (see FIG. 1), and GeO 2 was deposited thereon to a thickness of 40 nm, and CeO 2 was deposited thereon to a thickness of 40 nm. The hole injection blocking layer 3 is formed. An amorphous semiconductor layer 41 of Se, As, and LiF with a thickness of 60 nm is formed thereon by a vacuum evaporation method. At the time of film formation, Se, As 2 Se 3 and LiF are simultaneously evaporated from different boats and vapor-deposited, so that the As concentration is 2% by weight and the LiF concentration is 2000 ppm by weight. Next, an amorphous semiconductor layer made of Se and As is formed by a vacuum evaporation method. At this time, the As concentration is 0.5% by weight. An amorphous semiconductor layer 43 made of Se and As is formed thereon by changing the thickness in a range of 20 to 500 nm by a vacuum evaporation method. At this time, the As concentration is 30% by weight. An amorphous semiconductor layer (not shown) made of only Se is formed thereon to a thickness of 50 nm by a vacuum evaporation method, and the thickness of the entire amorphous semiconductor layer becomes 5 nm.
μm. On top of that, Sb 2 S 3 is deposited as an electron injection blocking layer 5 in an inert gas atmosphere of 2 × 10 −2 Torr by 0.1%.
It is deposited to a thickness of μm to obtain a photoconductive target having a blocking structure. Further, this is incorporated into an imaging tube housing containing an electron gun to obtain a photoconductive imaging tube.

得られた撮像管を、実施例1と同様に、寿命試験装置
内で、青色光照射時に増倍率10を与える電界下で、2000
時間、連続動作させた。
In the same manner as in Example 1, the obtained image pickup tube was placed in a life test apparatus under an electric field giving a multiplication factor of 10 when irradiating blue light.
It was operated continuously for hours.

連続動作後、白キズの発生の有無を調べたところ実施
例1の結果とほぼ同様であった。また、暗電流に関する
データ値は、概ね、実施例1の0.8〜1.0倍程度と実施例
1と同等もしくは優れた結果が得られた。
After the continuous operation, the presence or absence of white flaws was examined. The result was almost the same as the result of Example 1. Further, the data value regarding the dark current was about 0.8 to 1.0 times that of the first embodiment, and the same or better results as in the first embodiment were obtained.

本実施例により、Sb2S3の電子注入阻止層5と、Asを
高濃度に含む層43との間に純Seを50nm程度介在させて
も、As高濃度層の暗電流低減、白キズ発生の抑止効果は
十分有効であることが判る。
According to the present embodiment, even if pure Se is interposed about 50 nm between the electron injection blocking layer 5 of Sb 2 S 3 and the layer 43 containing high concentration of As, the dark current of the high concentration layer of As can be reduced and white spots can be reduced. It turns out that the effect of suppressing the occurrence is sufficiently effective.

実施例3 ガラス基板1(第1図参照)上に、酸化インジウムを
主体とする透明光導電層2を形成し、その上に、正孔注
入阻止層3としてCeO2を50nmの厚さに蒸着する。その上
に、Se、AsとLiFから成る50nmの厚さの非晶質半導体層4
1を真空蒸着法により形成する。膜形成に際しては、S
e、As2Se3およびLiFをそれぞれ別のボートから蒸発させ
て蒸着し、As濃度を2.0重量%、LiFを1000ppm重量%と
なるようにする。次に、その上に、Se、As、およびTe
(赤の増感)から成る50nmの厚さの非晶質半導体層(図
示せず)を形成する。このときのAs濃度は2.0重量%、T
e濃度は10重量%とする。その上に、Se、Asから成る非
晶質半導体層42を形成する。このときのAs濃度は、1.0
重量%とする。その上に、Se、AsおよびGaF3よりなる20
0nmの膜厚の非晶質半導体層43を形成する。このときのA
s濃度は25重量%、GaF3の濃度は、2000ppm重量%とす
る。その上に、SeとGaF3よりなる50nmの非晶質半導体層
(図示せず)を形成する。このときのGaF3濃度は、2000
ppmとし、光導電層全体の膜厚を5μmとする。次に、
電子注入阻止層5として、Sb2S3を1×10-1Torrの不活
性ガス雰囲気中で0.2μmの厚さに蒸着し、阻止型構造
の光導電ターゲットを得る。さらに、これを電子銃を内
蔵した撮像管匡体に組込み、光導電型撮像管を得る。
Example 3 A transparent photoconductive layer 2 mainly composed of indium oxide was formed on a glass substrate 1 (see FIG. 1), and CeO 2 was deposited thereon as a hole injection blocking layer 3 to a thickness of 50 nm. I do. On top of this, a 50 nm thick amorphous semiconductor layer 4 composed of Se, As and LiF
1 is formed by a vacuum evaporation method. When forming the film, S
e, As 2 Se 3 and LiF are evaporated from different boats and vapor-deposited so that the As concentration becomes 2.0% by weight and the LiF becomes 1000 ppm by weight. Then, on top of that, Se, As, and Te
An amorphous semiconductor layer (not shown) having a thickness of 50 nm made of (red sensitization) is formed. At this time, the As concentration was 2.0% by weight and T
e The concentration is 10% by weight. An amorphous semiconductor layer made of Se and As is formed thereon. The As concentration at this time is 1.0
% By weight. On top of that, 20 consisting of Se, As and GaF 3
An amorphous semiconductor layer 43 having a thickness of 0 nm is formed. A at this time
The s concentration is 25% by weight, and the concentration of GaF 3 is 2000 ppm by weight. A 50 nm amorphous semiconductor layer (not shown) made of Se and GaF 3 is formed thereon. The GaF 3 concentration at this time is 2000
ppm, and the thickness of the entire photoconductive layer is 5 μm. next,
As the electron injection blocking layer 5, Sb 2 S 3 is deposited to a thickness of 0.2 μm in an inert gas atmosphere of 1 × 10 −1 Torr to obtain a photoconductive target having a blocking type structure. Further, this is incorporated into an imaging tube housing containing an electron gun to obtain a photoconductive imaging tube.

得られた撮像管を実施例1、2と同様に、青色光を当
てたとき増倍率10となる電界で2000時間連続動作させ
た。連続動作後の暗電流を、実施例1、2と同様にして
測定した結果、暗電流は1nA以下と良好であった。ま
た、白キズも発生していなかった。
The obtained image pickup tube was continuously operated for 2000 hours in an electric field having a multiplication factor of 10 when blue light was applied, as in Examples 1 and 2. The dark current after the continuous operation was measured in the same manner as in Examples 1 and 2, and as a result, the dark current was as good as 1 nA or less. In addition, no white scratches occurred.

本実施例により、Teを含む非晶質Se系光導電層におい
ても、本発明が有効であることが判る。
This example shows that the present invention is also effective for an amorphous Se-based photoconductive layer containing Te.

実施例4 ガラス基板1(第1図参照)上に、Al製の透明光導電
層2を形成し、その上にCeO2を30nmの厚さに蒸着し、正
孔注入阻止層3を形成する。その上に、SeとLiFから成
る100nmの厚さの非晶質半導体(図示せず)を真空蒸着
法により形成する。膜形成に際しては、SeおよびLiFを
それぞれ別のボートから蒸発させて蒸着し、LiFを1000p
pm重量%となるようにする。次に、その上に、Se、Asか
ら成る非晶質半導体層42を形成する。このときのAs濃度
は、1.0重量%とする。その上に、Se、Asよりなる250nm
膜厚の非晶質半導体層43を形成する。このときのAs濃度
は、25重量%とし、光導電層全体の膜厚を6μmとす
る。次に、電子注入阻止層5として、Sb2S3を2×10-1T
orrの不活性ガス雰囲気中で0.1μmの厚さに蒸着し、阻
止型ターゲットを得る。これを電子銃を内蔵した撮像管
匡体に組込み、撮像管を得る。
Example 4 A transparent photoconductive layer 2 made of Al is formed on a glass substrate 1 (see FIG. 1), and CeO 2 is deposited thereon to a thickness of 30 nm to form a hole injection blocking layer 3. . An amorphous semiconductor (not shown) made of Se and LiF and having a thickness of 100 nm is formed thereon by a vacuum evaporation method. At the time of film formation, Se and LiF were evaporated from different boats and evaporated, and LiF was
pm weight%. Next, an amorphous semiconductor layer made of Se and As is formed thereon. At this time, the As concentration is 1.0% by weight. On top of that, 250nm consisting of Se and As
An amorphous semiconductor layer 43 having a thickness is formed. At this time, the As concentration is 25% by weight, and the film thickness of the entire photoconductive layer is 6 μm. Next, Sb 2 S 3 was applied to the electron injection blocking layer 5 at 2 × 10 −1 T
Evaporate to a thickness of 0.1 μm in an inert gas atmosphere of orr to obtain a blocking target. This is incorporated into an imaging tube housing containing an electron gun to obtain an imaging tube.

得られた撮像管を実施例1〜3と同様に、青色光を当
てたとき増倍率10となる電界で1000時間連続動作させ
た。連続動作後の暗電流を、実施例1、2と同様にして
測定した結果、暗電流は1nA以下と良好であった。ま
た、白キズも発生していなかった。
The obtained imaging tube was operated continuously for 1000 hours in an electric field having a multiplication factor of 10 when irradiated with blue light, as in Examples 1 to 3. The dark current after the continuous operation was measured in the same manner as in Examples 1 and 2, and as a result, the dark current was as good as 1 nA or less. In addition, no white scratches occurred.

本実施例により、第1図のSe−As層(I)41が、必ず
しも無くとも、長時間安定な撮像管動作が可能であるこ
とが判る。
According to the present embodiment, it can be seen that the Se-As layer (I) 41 of FIG.

以上本発明を上記実施例に基づいて具体的に説明した
が、本発明は上記実施例に限定されるものではなく、そ
の要旨を逸脱しない範囲において種々変更可能であるこ
とは勿論である。
Although the present invention has been specifically described based on the above embodiments, the present invention is not limited to the above embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、非晶質Seを主
体とする光導電層を用いた撮像管において、高電界印加
時の暗電流が低く、かつ、長時間連続動作させても白キ
ズを発生しない効果がある。
As described above, according to the present invention, in an image pickup tube using a photoconductive layer mainly composed of amorphous Se, a dark current when a high electric field is applied is low, and even when the device is continuously operated for a long time, white light is generated. This has the effect of not causing scratches.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の非晶質Se系光導電層を用いた撮像管
ターゲットの断面構造の一例を示す図、第2図は、本発
明の実施例の結果を示す説明図である。 1……透光性基板 2……透光性導電膜 3……正孔注入阻止層 4……光導電層 5……電子注入阻止層 41……Se−As(I)層 42……Se−As(II)層 43……Se−As(III)層
FIG. 1 is a diagram showing an example of a cross-sectional structure of an image pickup tube target using an amorphous Se-based photoconductive layer of the present invention, and FIG. 2 is an explanatory diagram showing a result of an example of the present invention. DESCRIPTION OF SYMBOLS 1 ... Translucent board 2 ... Translucent conductive film 3 ... Hole injection blocking layer 4 ... Photoconductive layer 5 ... Electron injection blocking layer 41 ... Se-As (I) layer 42 ... Se -As (II) layer 43 ... Se-As (III) layer

フロントページの続き (72)発明者 平井 忠明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 高嵜 幸男 千葉県茂原市早野3300番地 株式会社日 立製作所茂原工場内 (72)発明者 設楽 圭一 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 谷岡 健吉 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 山崎 順一 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (72)発明者 久保田 節 東京都世田谷区砧1丁目10番11号 日本 放送協会放送技術研究所内 (56)参考文献 特開 昭57−80639(JP,A) 特開 昭63−19738(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01J 29/45 Continuing from the front page (72) Inventor Tadaaki Hirai 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd. Central Research Laboratory (72) Inventor Yukio Takasaki 3300 Hayano, Mobara-shi, Chiba Pref. (72) Inventor Keiichi Shitara 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Research Institute (72) Inventor Kenkichi Tanioka 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Research Institute (72) Inventor Junichi Yamazaki 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Research Institute (72) Inventor Kubota 1-10-11 Kinuta, Setagaya-ku, Tokyo Japan Broadcasting Corporation Research Institute (56) References JP-A-57-80639 (JP, A) JP-A-63-19738 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01J 29/45

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光性基板上に透光性導電膜、正孔注入阻
止層、少なくとも一部がSeを主体とする非晶質半導体か
ら成る光導電層、および電子注入阻止層を少なくとも形
成して成るターゲットと、電子ビームにより上記ターゲ
ットを走査する電子ビーム制御部とを有する撮像管にお
いて、上記光導電層内の上記電子注入阻止層との界面か
ら、または界面近傍から層厚10nm以上・400nm以下の領
域に、Asを22重量%以上・38重量%以下添加したことを
特徴とする撮像管。
At least a light-transmitting conductive film, a hole injection blocking layer, a photoconductive layer at least partially composed of an amorphous semiconductor mainly composed of Se, and an electron injection blocking layer are formed on a light-transmitting substrate. In an image pickup tube having a target composed of the above and an electron beam control unit that scans the target with an electron beam, a layer thickness of 10 nm or more from the interface with or near the interface with the electron injection blocking layer in the photoconductive layer. An imaging tube, characterized in that As is added in an amount of 22% by weight or more and 38% by weight or less in a region of 400 nm or less.
【請求項2】透光性基板上に透光性導電膜、正孔注入阻
止層、少なくとも一部がSeを主体とする非晶質半導体か
ら成る光導電層、および電子注入阻止層を少なくとも形
成して成るターゲットと、電子ビームにより上記ターゲ
ットを走査する電子ビーム制御部とを有する撮像管にお
いて、上記光導電層内の上記電子注入阻止層との界面か
ら、または界面近傍から層厚12.5nm以上・200nm以下の
領域に、Asを22重量%以上・36重量%以下添加したこと
を特徴とする撮像管。
2. A light-transmitting conductive film, a hole injection blocking layer, a photoconductive layer at least partially composed of an amorphous semiconductor mainly composed of Se, and an electron injection blocking layer formed on a light-transmitting substrate. A target having a thickness of 12.5 nm or more from the interface with or near the interface with the electron injection blocking layer in the photoconductive layer in an imaging tube having an electron beam control unit that scans the target with an electron beam. -An image pickup tube characterized by adding As to 22% by weight or more and 36% by weight or less in a region of 200nm or less.
【請求項3】上記光導電層の上記正孔注入阻止層との界
面から、または界面近傍から層厚10nm以上・100nm以下
の領域に、Asを1重量%以上・5重量%以下添加したこ
とを特徴とする請求項1または2記載の撮像管。
3. The method according to claim 1, wherein 1% by weight or more and 5% by weight or less of As are added to a region having a layer thickness of 10 nm or more and 100 nm or less from or near the interface of the photoconductive layer with the hole injection blocking layer. The imaging tube according to claim 1, wherein:
【請求項4】上記光導電層の上記特定の領域以外の領域
に、Asを1重量%以下添加したことを特徴とする請求項
1、2または3記載の撮像管。
4. The image pickup tube according to claim 1, wherein 1% by weight or less of As is added to a region other than said specific region of said photoconductive layer.
【請求項5】上記光導電層の内部で、電荷のアバランシ
ェ増倍が誘起される電界領域で上記撮像管を動作させる
ことを特徴とする請求項1、2、3または4記載の撮像
管の動作方法。
5. The imaging tube according to claim 1, wherein the imaging tube is operated in an electric field region in which avalanche multiplication of charges is induced inside the photoconductive layer. How it works.
JP23066190A 1990-09-03 1990-09-03 Image pickup tube and operation method thereof Expired - Lifetime JP2945732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23066190A JP2945732B2 (en) 1990-09-03 1990-09-03 Image pickup tube and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23066190A JP2945732B2 (en) 1990-09-03 1990-09-03 Image pickup tube and operation method thereof

Publications (2)

Publication Number Publication Date
JPH04112433A JPH04112433A (en) 1992-04-14
JP2945732B2 true JP2945732B2 (en) 1999-09-06

Family

ID=16911311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23066190A Expired - Lifetime JP2945732B2 (en) 1990-09-03 1990-09-03 Image pickup tube and operation method thereof

Country Status (1)

Country Link
JP (1) JP2945732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529410B2 (en) * 2008-11-21 2014-06-25 日本放送協会 Imaging apparatus and imaging method

Also Published As

Publication number Publication date
JPH04112433A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
US3350595A (en) Low dark current photoconductive device
EP0005543A1 (en) Photosensor
FR2724767A1 (en) METHOD FOR REDUCING THE LEAKAGE LEAKAGE CURRENT IN A FIELD EFFECT DISPLAY VISUALIZATION DEVICE
FR2530851A1 (en) PLAN VIEWING APPARATUS FOR TELEVISIONS AND TERMINALS
US3346755A (en) Dark current reduction in photoconductive target by barrier junction between opposite conductivity type materials
JP2945732B2 (en) Image pickup tube and operation method thereof
US4463279A (en) Doped photoconductive film comprising selenium and tellurium
JP4054168B2 (en) Imaging device and operation method thereof
US3571646A (en) Photoconductive target with n-type layer of cadmium selenide including cadmium chloride and cuprous chloride
JP3384840B2 (en) Image pickup tube and operation method thereof
US4563611A (en) Image pick-up tube target
US4007395A (en) Target structure for use in photoconductive image pickup tubes
US4307319A (en) Semiconductor layer of oxygen depletion type cerium oxide or lead oxide
JPH0936341A (en) Image sensing device and its operating method
JP2793618B2 (en) Imaging tube
EP0045203B1 (en) Method of producing an image pickup device
JP2753264B2 (en) Imaging tube
JP2686266B2 (en) Manufacturing method of light receiving element
JP4172881B2 (en) Imaging device and operation method thereof
JPS58194231A (en) Image pickup tube
US4240006A (en) Photoconductive layer and target structure for image pickup tube
JPS59112663A (en) Photodetector device
EP0011021A1 (en) Process for making semiconductor components with optoelectronic conversion properties
US4150165A (en) Lead monoxide target and method of manufacturing same
KR820002330B1 (en) Photosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110625

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110625