JPH07105528B2 - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH07105528B2
JPH07105528B2 JP1932284A JP1932284A JPH07105528B2 JP H07105528 B2 JPH07105528 B2 JP H07105528B2 JP 1932284 A JP1932284 A JP 1932284A JP 1932284 A JP1932284 A JP 1932284A JP H07105528 B2 JPH07105528 B2 JP H07105528B2
Authority
JP
Japan
Prior art keywords
helium
container
port
liquid
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1932284A
Other languages
Japanese (ja)
Other versions
JPS60164374A (en
Inventor
良裕 和智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1932284A priority Critical patent/JPH07105528B2/en
Publication of JPS60164374A publication Critical patent/JPS60164374A/en
Publication of JPH07105528B2 publication Critical patent/JPH07105528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0687Special properties of materials for vessel walls superconducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、円筒形横置の超電導マグネツト装置に関す
る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a horizontal cylindrical superconducting magnet device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、核磁気共鳴診断装置用の如き円筒形横置の超電導
マグネツト装置は、第1図に示すような概観を有し、外
周容器(1)内に収納された超電導コイルの予冷、およ
び液溜への注液、コイルの励磁は、全て、外周容器
(1)の上部に設けた箱部(2)上のポート(3)に配
置された注入口,回収口,電流供給リード等の周辺構成
要素を操作して行う。この場合、冷媒の装置への注入
は、真空断熱された二重管を利用し、作業者がはしご
(4)を登り箱部(2)上に立つて、冷媒をためた図示
されていないデユワーからポート(3)を介して行う。
この時、液注入に際して使用する二重管は、スパン長約
2m両端各々、1mおよび1.5〜2mの長さを有するコの字形
状を成しており、使用時には、ポート(3)から上方に
2m以上の空間を有しておかなければ作業が不可能であ
る。仮にフレキシブルな二重管を用いた場合も1m以上必
要である。又、同様に、コイルを励磁する為の電流供給
リードは、熱侵入の低減の為、着脱を可能とした構造を
持ち、長さは、0.5〜1mである為、ポート(3)から上
方に1m以上の空間を必要とする。一方、本装置の操作に
際しては、ポート(3)上での作業がほとんどであり、
その作業性も非常に悪い。本装置の使用場所は主として
医療機関がほとんどであり、おのずと使用場所,作業性
の点から種々の制約をうけるなどの欠点、不都合があつ
た。
Conventionally, a cylindrical horizontal superconducting magnet apparatus such as a nuclear magnetic resonance diagnostic apparatus has an overview as shown in FIG. 1, and precools a superconducting coil housed in an outer peripheral container (1) and stores a liquid. Liquid injection to the coil and excitation of the coil are all made up of peripheral components such as an injection port, a recovery port, and a current supply lead arranged at the port (3) on the box (2) provided on the upper part of the outer peripheral container (1). Manipulate the elements. In this case, the refrigerant is injected into the device by using a vacuum insulated double pipe, and the worker stands on the ladder (4) and stands on the box part (2) to accumulate the refrigerant (not shown). Through port (3).
At this time, the double pipe used for liquid injection has a span length of approx.
Each of the 2m ends has a U-shape with a length of 1m and a length of 1.5 to 2m.
Work cannot be done without a space of 2 m or more. Even if a flexible double tube is used, it is necessary to have at least 1 m. Also, similarly, the current supply lead for exciting the coil has a structure that can be attached and detached to reduce heat intrusion, and the length is 0.5 to 1 m. Therefore, upward from the port (3). Requires a space of 1 m or more. On the other hand, when operating this device, most of the work is done on the port (3),
Its workability is also very poor. Most of the places where this device is used are medical institutions, and there are drawbacks and inconveniences such as the fact that it is subject to various restrictions in terms of place of use and workability.

〔発明の目的〕[Object of the Invention]

本発明は、上記のような欠点に鑑みなされたもので、円
筒形横置の超電導マグネツト装置の使用場所に伴う制約
を大幅に軽減するとともに、作業性,操作性のよい超電
導マグネツト装置を提供することを目的とする。
The present invention has been made in view of the above-described drawbacks, and provides a superconducting magnet device having a workability and an operability, which is capable of significantly reducing the restrictions associated with the use place of the cylindrical laterally arranged superconducting magnet device. The purpose is to

〔発明の概要〕[Outline of Invention]

上記の目的を達成する為、本発明の超電導マグネット装
置は、円筒形横置の超電導マグネット装置の使用環境に
伴う制約を大幅に軽減し、作業性、操作性を良好にする
ため、冷媒である液体ヘリウムの充填口、ガスヘリウム
の回収口、マグネット励磁の為の電流供給部(電流供給
リード)などを集合したポートを真空容器の横側面に配
置し、高さ方向の寸法を低減するとともに、マグネット
異常(クエンチ)時の極低温容器内の圧力上昇に伴う安
全性の確保が実現できる構成としたことを特徴とする。
In order to achieve the above-mentioned object, the superconducting magnet device of the present invention is a refrigerant in order to significantly reduce the restrictions associated with the usage environment of the cylindrical laterally superconducting magnet device, and to improve workability and operability. A port that collects a liquid helium filling port, a gas helium recovery port, and a current supply unit (current supply lead) for magnet excitation is arranged on the lateral side surface of the vacuum container to reduce the dimension in the height direction. The feature is that the safety can be secured with the pressure rise in the cryogenic container when the magnet is abnormal (quenched).

〔発明の実施例〕Example of Invention

以下、本発明を第2図に示す一実施例について説明す
る。超電導コイル(5)はヘリウム容器(6)に収納さ
れ、その空間には液体ヘリウム(7)が充填される。ヘ
リウム容器(6)の側面下部に、電流供給リード,液体
ヘリウム注入口等を接続する為のポート(8)を設け
る。内部ポート(8)の端部は、フランジ(9)によつ
て真空域(10)と完全に隔離される構造となる。フラン
ジ(9)には、超電導コイル(5)に電力を供給する為
の着脱式のパワーリードの接続部(11)や液体ヘリウム
注入用パイプ(12)が溶接してある。接続部(11)に
は、フランジ(9)の真空域側にパワーリードを蒸発ヘ
リウムガスにて冷却する為のガスヘリウム回収管(13)
が接続してある。一方、ヘリウム容器(6)の上部に
は、ヘリウム容器(6)の外周に沿つて配置された液体
ヘリウム注入用パイプ(14)が一度立ちあげてからヘリ
ウム容器(6)内に貫通して溶接してある。ヘリウム容
器(6)の外には、交互に真空域(10)を介して20Kシ
ールド(15)、液体窒素(16)を溜めた80Kシールド(1
7)、真空容器(18)が配置されている。又、ヘリウム
容器(6)の上部には、液体ヘリウム注入用パイプ(1
4)の他に放圧管(19)が溶接されており、蒸発したガ
スヘリウムは、この放圧管(19)を介して図示されてい
ない回収系へ接続される。一方この放圧管(19)は途中
より分岐してガスヘリウム回収管(13)にも接続されて
いる。又、接続部(11)の真空域(10)側には、超電導
コイル(5)に電力を供給する為の着脱式のパワーリー
ド(20)がスムーズに挿入でき、尚かつ蒸発ガスの冷却
流路を構成するよう案内管(21)がベローズを介して真
空容器(18)に設けたフランジ(22)に接続されてい
る。更に、このフランジ(22)を取りつける外部ポート
(23)には液体ヘリウムを、図示していないデユワーか
ら供給する為の供給口(24)や、液体ヘリウムの流れる
流路や流量を調節するための低温バルブ(25)も設置し
てある。この他、図示していないが80Kシールド(17)
用液体窒素(16)の供給、回収配管やバルブなども設置
してある。
The present invention will be described below with reference to an embodiment shown in FIG. The superconducting coil (5) is housed in a helium container (6), and its space is filled with liquid helium (7). A port (8) for connecting a current supply lead, a liquid helium injection port, etc. is provided in the lower portion of the side surface of the helium container (6). The end of the internal port (8) is completely separated from the vacuum region (10) by the flange (9). The flange (9) is welded with a detachable power lead connection (11) for supplying electric power to the superconducting coil (5) and a liquid helium injection pipe (12). At the connection part (11), a gas helium recovery pipe (13) for cooling the power lead with evaporated helium gas on the vacuum region side of the flange (9).
Is connected. On the other hand, at the upper part of the helium container (6), a liquid helium injection pipe (14) arranged along the outer circumference of the helium container (6) once stands up and then penetrates into the helium container (6) for welding. I am doing it. Outside of the helium container (6), a 20K shield (15) and a 80K shield (1) accumulating liquid nitrogen (16) were alternately stored via a vacuum area (10).
7), the vacuum container (18) is arranged. In addition, on the upper part of the helium container (6), a liquid helium injection pipe (1
In addition to 4), the pressure relief pipe (19) is welded, and the vaporized gas helium is connected to the recovery system (not shown) via this pressure relief pipe (19). On the other hand, the pressure relief pipe (19) is branched from the middle and is also connected to the gas helium recovery pipe (13). In addition, a detachable power lead (20) for supplying electric power to the superconducting coil (5) can be smoothly inserted into the vacuum region (10) side of the connection part (11), and the cooling flow of the evaporative gas can be increased. A guide tube (21) is connected to a flange (22) provided on the vacuum container (18) via a bellows so as to form a passage. Further, the external port (23) to which the flange (22) is attached has a supply port (24) for supplying liquid helium from a dewar (not shown), a flow passage for the liquid helium, and a flow rate adjusting device. A low temperature valve (25) is also installed. Besides this, although not shown, 80K shield (17)
Liquid nitrogen (16) supply, recovery pipes and valves are also installed.

案内管(21)は、温度レベルごとに20Kシールド(1
5)、80Kシールド(17)と接続され、定常時の熱侵入を
減少させるようなされている。又各配管は熱収縮に対応
できるよう要所要所にベローズを用いてある。一方、安
全の為、ヘリウム容器(6)の上部には、各シールド,
真空層を貫通して真空容器(18)の外へ放圧管(19)を
設け、超電導コイル(5)のクエンチ等による急激な内
圧上昇に対処できるよう構成してある。
The guide tube (21) has a 20K shield (1
5), it is connected with 80K shield (17) and is designed to reduce heat intrusion in steady state. In addition, bellows are used for each pipe where necessary to cope with heat shrinkage. On the other hand, for safety, each shield,
A pressure relief pipe (19) is provided outside the vacuum container (18) penetrating the vacuum layer so as to cope with a sudden increase in internal pressure due to quenching of the superconducting coil (5).

次に上記のように構成した本発明の超電導マグネツト装
置の操作を説明する。80Kシールド(17)およびヘリウ
ム容器(6)に液体窒素を充填してまず超電導コイル
(5)の予冷をおこなう。次にヘリウム容器(6)から
液体窒素をおいだして液体ヘリウムの注液を行う。供給
口(24)より低温バルブ(25)を操作して液体ヘリウム
注入用パイプ(12)にて超電導コイル(5)の下部から
液体ヘリウム(7)を送液する。ヘリウム容器(6)の
下部に液体ヘリウム(7)がある程度溜まつた段階で低
温バルブ(25)を操作し、液体ヘリウム注入用パイプ
(14)を用いてヘリウム容器(6)の上部より液体ヘリ
ウム(7)を供給する。又、この液体ヘリウム注入用パ
イプ(14)は、液面より高くなるよう一度立ちあげてあ
り、液体ヘリウム(7)が外部へ流出しないようほどこ
されている。ヘリウム容器(6)に十分液体ヘリウム
(7)が保液された段階で超電導コイル(5)の励磁を
行う。励磁にあたりパワーリード(20)をフランジ(2
2)に装着し、接続部(11)に接続する。ヘリウム容器
(6)は一種の密閉容器であるため、貯液された液体ヘ
リウム(7)の気化ガスによる内圧上昇で、外気圧と圧
力差を生じる。この圧力差を利用してヘリウム容器
(6)の外周にはわせたガスヘリウム回収管(13)を介
してヘリウムガスが接続部(11)に導びかれる。接続部
(11)には、図示されていないバネ機構の封鎖弁がつい
ておりパワーリード(20)の接続によつてこの弁が開く
構造になつている。この為、接続部(11)まで導びかれ
たガスヘリウムは、この弁を通つて案内管(21)とパワ
ーリード(20)とで構成される冷却流路を流れて冷却を
行い、パワーリード(20)の大気側端部から回収され
る。所定励磁し終えた後、ただちにこのパワーリード
(20)はとりはずされ、ヘリウム容器(6)への熱侵入
を極力低下させる。
Next, the operation of the superconducting magnet apparatus of the present invention constructed as above will be described. The 80K shield (17) and the helium container (6) are filled with liquid nitrogen to first precool the superconducting coil (5). Next, liquid nitrogen is discharged from the helium container (6) to inject liquid helium. By operating the low temperature valve (25) from the supply port (24), liquid helium (7) is sent from the lower part of the superconducting coil (5) through the liquid helium injection pipe (12). When the liquid helium (7) has accumulated in the lower part of the helium container (6) to some extent, the low temperature valve (25) is operated, and the liquid helium injection pipe (14) is used to start the liquid helium from the upper part of the helium container (6). Supply (7). The liquid helium injection pipe (14) is once erected so as to be higher than the liquid surface, and is rubbed so that the liquid helium (7) does not flow out. When the liquid helium (7) is sufficiently retained in the helium container (6), the superconducting coil (5) is excited. For excitation, attach the power lead (20) to the flange (2
Attach to (2) and connect to the connection (11). Since the helium container (6) is a kind of closed container, the internal pressure rise of the stored liquid helium (7) due to the vaporized gas causes a pressure difference from the external atmospheric pressure. Utilizing this pressure difference, helium gas is guided to the connection part (11) through the gas helium recovery pipe (13) fitted to the outer periphery of the helium container (6). The connecting portion (11) is provided with a not-shown closing valve of a spring mechanism, and the valve is opened by connecting the power lead (20). Therefore, the gas helium guided to the connection part (11) flows through this valve and flows through the cooling flow path composed of the guide pipe (21) and the power lead (20) to cool the power lead. Recovered from the atmospheric side end of (20). Immediately after the predetermined excitation is completed, the power lead (20) is immediately removed to reduce heat invasion into the helium container (6) as much as possible.

以上のような構造および作用により、本発明の超電導マ
グネツト装置を用いれば、操作箇所が横面に配置される
為、使用場所特に天井寸法等の制約をほとんど受けるこ
となく、又作業場所も低位置であるため、従来の装置の
ように操作時における高所作業に伴う墜落、工具等の落
下などを防止することができる。又バルブ操作や液体ヘ
リウムの注入、パワーリードの着脱作業が、すみやかか
つ安全に行なうことが可能である。さらに、コイル予冷
時におけるヘリウム容器内への液体窒素を追いだす際液
体ヘリウム注入用パイプ(12)が低位置に配置している
ため、十分なガスヘリウムとの置換が可能である。
With the structure and operation as described above, when the superconducting magnet apparatus of the present invention is used, since the operation location is arranged on the lateral surface, there is almost no restriction on the place of use, especially the ceiling size, and the work place is at a low position. Therefore, like the conventional device, it is possible to prevent a fall due to work at a high place during operation and a drop of a tool or the like. Further, the valve operation, the injection of liquid helium, and the attachment / detachment work of the power lead can be performed promptly and safely. Furthermore, since the liquid helium injection pipe (12) is arranged at a low position when the liquid nitrogen is expelled into the helium container during coil precooling, it can be sufficiently replaced with gas helium.

上記の実施例においては、ポート(8)および(23)を
円筒形横置の超電導コイル(5)の円周横面に設置した
が、ポート(8)と(23)は円筒形横置の超電導コイル
(5)の開口端横面に設置してもよい。
In the above example, the ports (8) and (23) were installed on the circumferential lateral surface of the cylindrical laterally arranged superconducting coil (5), but the ports (8) and (23) were cylindrically laterally arranged. It may be installed on the lateral surface of the open end of the superconducting coil (5).

また、上記実施例においてはポートを真空容器の円周横
側面の下半部に設けたが、これは上半部に設けてもよ
い。さらに、液体ヘリウム注入用のポートと、パワーリ
ード用のポートを別に設けてもよい。このようにして
も、本発明の効果はかなりの程度得られる。
Further, in the above-mentioned embodiment, the port is provided in the lower half of the circumferential lateral surface of the vacuum container, but it may be provided in the upper half. Further, a port for injecting liquid helium and a port for power lead may be separately provided. Even in this case, the effect of the present invention can be obtained to a considerable extent.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、円筒形横置の超電
導マグネツト装置の使用場所に伴う寸法制約を大幅に軽
減するとともに、操作時における墜落、工具などの落下
を防ぐなど作業性、操作性の改善に加え、マグネット異
常(クエンチ)時の極低温容器内圧力上昇に伴う安全性
の問題を生じることのない超電導マグネツト装置を得る
ことができる。
As described above, according to the present invention, the dimensional constraints associated with the place of use of the cylindrical horizontal superconducting magnet device are greatly reduced, and the workability and operability such as the fall at the time of operation and the fall of tools are prevented. In addition to the above improvement, it is possible to obtain a superconducting magnet device which does not cause a safety problem due to an increase in pressure in the cryogenic container when the magnet is abnormal (quenched).

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の超電導マグネツト装置の外観図、第2図
は本発明の一実施例の超電導マグネツト装置の縦断面図
である。 5……超電導コイル、6……ヘリウム容器、8,23……ポ
ート、11……接続部、12,14……液体ヘリウム注入用パ
イプ、20……パワーリード、24……供給口、25……低温
バルブ。
FIG. 1 is an external view of a conventional superconducting magnet device, and FIG. 2 is a vertical sectional view of the superconducting magnet device according to an embodiment of the present invention. 5 ... Superconducting coil, 6 ... Helium container, 8,23 ... Port, 11 ... Connection part, 12,14 ... Liquid helium injection pipe, 20 ... Power lead, 24 ... Supply port, 25 ... … Cryogenic valve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 6/04 ZAA 6/06 ZAA H01F 5/08 ZAA G 7/22 ZAA F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01F 6/04 ZAA 6/06 ZAA H01F 5/08 ZAA G 7/22 ZAA F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液体ヘリウムが充填され超電導コイルを収
容したヘリウム容器を内包して円筒形をなし横置される
真空容器の前記ヘリウム容器内の液体ヘリウム液面下で
かつその側面下部に、それぞれ前記ヘリウム容器、真空
容器を貫通して前記超電導コイルを励磁するための電流
供給リード、超電導コイルを冷却するための液体ヘリウ
ム注入口、前記電流供給リードをガスヘリウムにて冷却
するためのガスヘリウム回収口等を接続する為のポート
を設けるとともに、前記ヘリウム容器の上部にヘリウム
容器および前記真空容器を貫通して放圧管を設け、この
放圧管と前記ポートに接続されたガスヘリウム回収口と
を連通させたことを特徴とする超電導マグネット装置。
1. A vacuum vessel which is laid horizontally in a cylindrical shape containing a helium container filled with liquid helium and containing a superconducting coil, below the liquid helium liquid level in the helium container and below the side surface thereof. The helium container, a current supply lead for exciting the superconducting coil through the vacuum container, a liquid helium inlet for cooling the superconducting coil, a gas helium recovery for cooling the current supply lead with gas helium A port for connecting a port and the like is provided, and a pressure release pipe is provided above the helium container so as to penetrate the helium container and the vacuum container, and the pressure release pipe and the gas helium recovery port connected to the port are connected. A superconducting magnet device characterized by being made.
JP1932284A 1984-02-07 1984-02-07 Superconducting magnet device Expired - Lifetime JPH07105528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1932284A JPH07105528B2 (en) 1984-02-07 1984-02-07 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1932284A JPH07105528B2 (en) 1984-02-07 1984-02-07 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPS60164374A JPS60164374A (en) 1985-08-27
JPH07105528B2 true JPH07105528B2 (en) 1995-11-13

Family

ID=11996165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1932284A Expired - Lifetime JPH07105528B2 (en) 1984-02-07 1984-02-07 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH07105528B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959964A (en) * 1988-09-16 1990-10-02 Hitachi, Ltd. Cryostat with refrigerator containing superconductive magnet
JPH0442977A (en) * 1990-06-07 1992-02-13 Toshiba Corp Superconducting magnet device
JP4807841B2 (en) * 2006-03-20 2011-11-02 株式会社日立メディコ Superconducting magnet and magnetic resonance imaging apparatus
US8726489B2 (en) 2009-06-11 2014-05-20 Hitachi Medical Corporation Adjustment method of a magnetic resonance imaging apparatus
GB2530029A (en) * 2014-09-09 2016-03-16 Siemens Healthcare Ltd Low Cryogen Level Superconducting Magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114294A (en) * 1976-03-22 1977-09-24 Hitachi Ltd Cryogenic temperature device
JPS5789279A (en) * 1980-11-26 1982-06-03 Toshiba Corp Inserting tube for cryostat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRYOGENICS(JULY1982)PP.335−343

Also Published As

Publication number Publication date
JPS60164374A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
US7764153B2 (en) Magnetic field generator
JPH11159899A (en) Cryostat
JP2011176289A (en) Method for recovering helium
JP4855990B2 (en) Recondensing device, mounting method thereof and superconducting magnet using the same
JPH07105528B2 (en) Superconducting magnet device
US8316651B2 (en) Superconducting magnet system with radiation shield disposed between the cryogenic fluid tank and a refrigerator
KR100843389B1 (en) Undercooled horizontal cryostat configuration
US20110120147A1 (en) Pressurized Superfluid Helium Cryostat
JP2013008975A (en) Superconducting magnet systems
JP4808465B2 (en) Cryogenic equipment
JP2007173460A (en) Superconducting electromagnet device
JP2006253655A (en) Quenching seal
CH697042A5 (en) A method for maintaining a vacuum and superconducting device.
JP4837202B2 (en) NMR superconducting magnet system
US20100199690A1 (en) Refrigerator Isolation Valve
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
JP2015079786A (en) Superconducting magnet transportation container
JPH0445740B2 (en)
Küssel et al. The cryogenic forevacuum system for the JET active gas handling plant
JPH0442977A (en) Superconducting magnet device
JP4079101B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
CN114931840B (en) Helium three-gas purifying system
JPH0719399A (en) Cryogetic liquid injection device
JPH08240353A (en) Cryostat and its operating method
JPH054530U (en) Liquefied gas circulation device