GB2530029A - Low Cryogen Level Superconducting Magnet - Google Patents

Low Cryogen Level Superconducting Magnet Download PDF

Info

Publication number
GB2530029A
GB2530029A GB1415878.6A GB201415878A GB2530029A GB 2530029 A GB2530029 A GB 2530029A GB 201415878 A GB201415878 A GB 201415878A GB 2530029 A GB2530029 A GB 2530029A
Authority
GB
United Kingdom
Prior art keywords
cryogen
superconducting magnet
vessel
level
cryogen vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1415878.6A
Other versions
GB201415878D0 (en
Inventor
Patrick William Retz
Neil Charles Tigwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare Ltd
Original Assignee
Siemens Healthcare Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthcare Ltd filed Critical Siemens Healthcare Ltd
Priority to GB1415878.6A priority Critical patent/GB2530029A/en
Publication of GB201415878D0 publication Critical patent/GB201415878D0/en
Priority to PCT/EP2015/068964 priority patent/WO2016037811A1/en
Publication of GB2530029A publication Critical patent/GB2530029A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/061Level of content in the vessel

Abstract

A superconducting magnet assembly, or methods of filling a cryogen into the said assembly, comprises: a superconducting magnet structure 10 supported within a cryogenic vessel 12 with an access pipe 16 which extends from the exterior of the assembly to a lower region of the cryogen vessel where the end of the pipe 16 is at a desired maximum fill level 32 for the liquid cryogen when the magnet is in operation. The access pipe 16 may extend within the cryogen vessel 12. The assembly may have a horizontal bore 14a and the end 32 of the pipe may extend to a position below a lower extremity of the bore 14a of an outer vacuum container 14. The pipe 16 may be supported and retained in position by a turret 20 which includes a cryogenic refrigerator and sock 22. Cryogen venting may be provided which allows the cryogen level to be filled to a higher level than the maximum fill level set for normal operation. The methods of filling the assembly may include selecting a suitable vent level in the cryogen vessel at a desired cryogen level for transportation, ramping or normal operation, with no other vents above this level. The level of the turret position on the assembly may be adjusted. The assembly may be rotated to give different cryogen levels within the vessel 12.

Description

LOW CRYOGEN LEVEL SUPERCONDUCTING MAGNET
As is well known to those skilled in the art, Magnetic Resonance Imaging (MRI) systems typically include a number of superconducting magnet coils which are maintained at a cryogenic temperature by being enclosed within a cryogen vessel with a cryogen at its boiling point. The type of superconducting wire used will determine the required boiling point, and therefore the required cryogen. Helium has the lowest known boiling point, and so is commonly used as the cryogen. The present invention applies to such magnet coils, but is not limited to helium as a cryogen, or to superconducting magnets used in MRI systems.
Tn recent years, the cost of helium for use in cooling superconducting magnets has increased, and its availability has diminished. Future supply of this finite resource at a reasonable cost is something of a concern to the industry.
Tt is accordingly desirable to be able to run MRT magnets with a low level of liguid cryogen. Although some development has revealed this to be possible, certain arrangements make use of a conventionally sized cryogen vessel to permit circulation of cryogen vapour in thermal contact with the coils. In such arrangements, during initial cryogen fill, or during refill following a service intervention, the cryogen may inadvertently be overfilled. In addition to the unnecessary consumption of cryogen material, an overfilled cryogen vessel may reach a high quench pressure. This possibility in turn requires a thick walled cryogen vessel and large bore turret and quench line, all of which add considerable expense and woulLd not be needed if one could ensure that cryogen overfill will not take place.
Overfilling could be addressed by placing displacers in the cryogen vessel to limit the volume available for cryoqen fill. Such an arrangement may be difficult and costly to implement. Undesirably high quench pressures may result, even with the correct quantity of cryogen, due to the reduced volume of free space available for gas expansion.
A disadvantage of some known minimum-cryogen solutions is that they do not have the capacity for enough cryogen to achieve a required hold time for transport. They are commonly transported at ambient temperature and require cooling on installation. This raises the problem of cryogen consumption and availability at the installation site.
It would accordingly be advantageous to provide a superconducting magnet cooling arrangement which requires a relatively small volume of liquid cryogen for operation, but which may be filled with a greater volume of liquid cryogen for transport, yet is arranged to prevent overfilling with cryogen after service operations.
The present invention addresses the above issues by providing methods and apparatus as defined in the appended claims.
The above, and further, objects, advantages and characteristics of the present invention will be described with reference to the following description of certain embodiments thereof, in conjunction with the accompanying drawings, wherein: Fig. 1 shows a schematic cross-section of a superconducting magnet assembly according to an embodiment of the present invention, in an operational orientation; Fig. 2 shows a schematic cross-section of a superconducting magnet assembly according to an alternative embodiment of the present invention, in an operational orientation; and Fig. 3 shows a schematic cross-section of a superconducting magnet assembly according to an embodiment of the present invention, in an orientation suitable for filling and shipping.
According to the present invention, a cryostat for maintaining a superconducting magnet coil structure is adapted by extending a conventional vent and filling path from an access turret to a position near the bottom of the cryogen vessel.
Fig. 1 schematically illustrates an embodiment of the invention, being a cylindrical magnet coil assembly with a horizontal bore 14a. A superconducting magnet coil structure 10 is provided, supported by conventional means within a cryogen vessel 12. An outer vacuum container (OVC) 14 provides thermal isolation of the cryogen vessel from ambient temperature. Intermediate thermal isolation, such as thermal radiation shields, and metaliised polyester layers may be provided as is conventional. An access vent pipe 16, shown mounted towards one side of the cryogen vessel, provides an access path into the cryogen vessel from the exterior, for filling with liguid cryogen, for example; and possibly also for venting boiled-off cryogen. An amount of liquid cryogen 18 is shown in the bottom of the cryogen vessel. The access vent pipe 16 in the illustrated embodiment is shown supported and retained in position by a turret 20. The turret 20 may conventionally also support and accommodate a cryogenic refrigerator (not shown) within a refrigerator sock 22, for cooling the cryogen 18.
According to a feature of the present invention, access vent pipe 16 within the cryogen vessel extends to a location corresponding to a desired maximum fill level for liquid cryogen when the magnet is In its operational position.
Preferably, the access vent pipe 16 extends to a position below a lower extremity of a bore tube 14a of the OVC 14, when the magnet is in its operational position.
When the cryogen vessel 12 is filled with liquid cryogen, no other ports should be open above the lower extremity of the access vent pipe 16. Accordingly, it will be found impossible to fill the cryogen vessel above a level corresponding to an upper level 32 of the lower open end of the access vent pipe 16. Any attempt to fill beyond this level will be prevented by a gas look: gas pressure of cryogen vapour within the upper part of the cryogen vessel -that is to say, the part of the vessel above level 32 when the magnet is in operation. Another feature limiting the filling of cryogen will be the heat load placed on the cryogen if it is in contact with the access vent pipe. It may be found that the thermal load represented by contact between liquid cryogen and access vent pipe 16 which extends to a temperature of about 300K at its upper end may prevent further filling of liguid cryogen, rather than -or in addition to -the gas lock mechanism described above.
By filling the cryogen vessel in this position, the chance of overfilling the magnet, thereby raising quench pressure and cryogen consumption, is avoided. A relatively large gas space 34 is maintained, which will reduce quench pressure by providing a larger volume for the cryogen 18 to occupy than would be the case with a greater volume of liquid cryogen. If the liquid cryogen 18 has a small contact area with the magnet coil structure 10, transfer of heat energy from the magnet coil structure to the liquid cryogen during quench will be slower than in the case of a larger contact area with the magnet coil structure. This will be especially true in the case illustrated in Fig. 1, where the liquid cryogen does not touch the magnet coil structure 10 at all. This slower transfer will reduce a peak rate of boiling of the liquid cryogen, and so will reduce a peak value of quench pressure.
A quench path will be provided in the arrangement of Fig. 1, although not illustrated. During a quench, the pressure within the cryogen vessel will increase sufficiently to open a valve or burst disc closing the quench path. The open quench path allows cryogen to escape, to avoid a dangerously high pressure developing within the cryogen vessel. By providing a relatively low mass of cryogen within the cryogen vessel, and a relatively low peak quench pressure, the required rate of evacuation of cryogen during a quench is reduced, which in turn means that the access vent pipe 16 and quench path (not shown) may be reduced in diameter, saving material and cost.
As mentioned above, while it is generally advantageous to prevent overfilling of the cryogen vessel following a service, it may be preferred to allow a greater mass of cryogen to be introduced into the cryogen vessel for transport. Typically, the cryogenic refrigerator is not operational during transport. The magnet coil structure 10 is kept cool in such arrangements by boiling of liguid cryogen. The resulting cryogen vapour may simply be vented to atmosphere. As cryogen is consumed during transport, the length of time for which the magnet coil structure 10 may be kept cold during transport is reduced by provision of a reduced mass of cryogen in the cryogen vessel.
According to a feature of some embodiments of the present invention, a venting path may be provided from the cryogen vessel to allow escape of cryogen vapour from the cryogen vessel at a position above the level 32. For example, in Fig. 1, a refrigerator outlet pipe 26 is shown, extending from refrigerator sock 22 into the gas space 34. In use, this allows cryogen vapour to pass from gas space 34 into the refrigerator sock 22, there to be cooled and recondensed into liquid by the refrigerator. The resultant liquid cryogen then drips through the outlet pipe 26 into the cryogen vessel 12. In the present invention, a valve 36 or similar may be opened to provide a vent path from the cryogen vessel, through the refrigerator sock. With that vent path open, further liquid cryogen may be introduced into the cryogen vessel, up to the level of an upper extremity of an open end of the outlet pipe in the cryogen vessel. This upper fill level is shown by a dotted line at 24. Precautions should be taken to ensure that the valve 36 is closed again after fill for shipping; and that it is closed during any subsequent refill operations after servicing.
Preferably, filling the cryogen vessel with liguid cryogen to upper level 24 provides a thirty day time-to-dry for shipping -Valve 36 may be an absolute valve typically required to vent the cryogen vessel in case of excessive internal pressure.
This valve could be used to open the venting path for cryogen filling to the upper level 24. After arrival on site the valve would be closed. In alternative arrangements, where the valve is not required during operation, it may be removed and the port sealed, avoiding incorrect use in overfilling the cryogen vessel after future servicing operations.
A safety interlock may be provided, using an output from a cryogen level sensor to enable a magnet power supply or magnet supervisory system, to ensure that the superconducting magnet can not be brought into operation (ramped' ) while there is too great a volume of liquid cryogen within the cryogen vessel. The criterion of "too great" may be set by a threshold cryogen level.
When ramping the magnet -that is, introducing electric current into the superconducting coils, some heat dissipation is expected. Accordingly, before ramping begins, valve 36 or similar may be opened or removed to provide an egress path for cryogen vapour out of the cryogen vessel 12, through refrigerator outlet pipe 26 and refrigerator sock 22.
With this egress path opened, it is possible to fill the cryogen vessel to a higher level: up to the level of an upper extremity of an open end of the outlet pipe 26 in the cryogen vessel. This upper fill level is shown by a dotted line at 40. This higher quantity of cryogen allows for some cryogen boil-off during ramping, without reducing the level of liquid cryogen available for cooling the magnet coil assembly 10 during operation.
The pressure produced by a quench during ramping would be self limiting. During the early stages of the ramp when more liquid cryogen is present there will be less energy available to produce the heat required to boil the cryogen. As full field is approached the cryogen level will have diminished to approximately its normal level.
Valve 36 must be closed after ramping, for example using any of the precautions described above with respect to closing valve 36 for transport.
Figs. 2 and 3 illustrate an alternative embodiment which may be employed to achieve similar results to those discussed above with reference to Fig. 1. However, in this embodiment, it is required to rotate the cryostat between a first position for operation and filling after service operations (Fig. 2) and a second position for transport, and for filling for transport (Fig. 3) Tn the embodiment of Figs. 2, 3, the access vent pipe 16 is not extended, but rather, the whole turret 20 is positioned lower on the side of the cryostat. In some embodiments, access vent pipe 16 may terminate flush with the wall of the cryogen vessel 12, and not extend into the cryogen vessel 12 at all.
The refrigerator may be tilted away from the vertical, which may not be preferred for certain types of refrigerator.
However, such arrangement may provide service and configuration advantages such as simplification of cryogen filling and replacement of the refrigerator. Such procedures can be undertaken by an operator standing on a floor which supports the cryostat, rather than the operator having to be elevated on steps or a platform. The overall height of the cryostat is reduced as compared to conventional cryostats in which the refrigerator and turret are located towards the upper extremity of the cryostat. The reduced overall height facilitates installation and removal of the cryostat.
In Figs. 2, 3, features corresponding to features in Fig. 1 carry corresponding reference numerals.
When the cryostat is in its first position, shown in Fig. 2, operation corresponds to that discussed above for the structure of Fig. 1 in operation.
Access vent pipe 16, shown mounted towards a lower part of one side of the cryogen vessel, provides an access path into the cryogen vessel from the exterior, for filling with liquid cryogen, for example; and possibly also for venting boiled-off cryogen. An amount of liguid cryogen 18 is shown in the bottom of the cryogen vessel. As in the embodiment of Fig. 1, access vent pipe 16 within the cryogen vessel has a lower extremity which extends to a location corresponding to a desired maximum fill level for liquid cryogen when the magnet is in operation.
Preferably, the access vent pipe 16 has a lower extremity which extends to a position below a lower extremity of a bore tube l4a of the OVC 14, when the magnet is in its first, operational, position.
When the cryogen vessel 12 is filled with liquid cryogen, no other ports should be open above the lower extremity of the access vent pipe 16. Accordingly, it will be found impossible to fill the cryogen vessel above a level corresponding to an upper level 32 of the lower open end of the access vent pipe 16. Any attempt to fill beyond this level will be prevented by a gas lock: gas pressure of cryogen vapour within the upper part of the cryogen vessel -that is to say, the part of the vessel above level 32 when the magnet is in its operational position. Another feature limiting the filling of cryogen will be the heat load placed on the liquid cryogen if it is in contact with the access vent pipe. It may be found that the thermal load represented by contact between liquid cryogen and access vent pipe 16 which extends to a temperature of about 300K at its upper end may prevent further filling of liquid cryogen, rather than -or in addition to -the gas lock mechanism described above.
Filling the cryogen vessei with liquid cryogen to level 40 preferably enables liquid cryogen to come into direct contact with the magnet coil structure 10, to provide more effective cooling during the ramping stage. However, this is unlikely to provide sufficient mass of cryogen to provide cooling during transport.
Fig. 3 illustrates the structure of Fig. 2 rotated into its second position, for transport and for filling for transport.
According to this aspect of the present invention, the cryostat is rotated on its axis A such that the lower extremity of the access vent pipe 16 moves towards the top of the cryostat. In this second position, a lower extremity of access vent pipe 16 rises above its former position, thereby enabling the cryogen vessel 12 to be filled with liquid cryogen 18 to a higher level 24, sufficient to provide cooling of the magnet coil structure 10 during transport.
Preferably, filling the cryogen vessel with liquid cryogen to upper level 24 provides a thirty day time-to-dry for shipping.
The cryostat would be transported in its second position, as shown in Fig. 3, to prevent flooding of the turret 20 with liquid cryogen and the consequent additional heat load that would provide. The magnet could be returned to normal orientation as shown in Fig. 2 on installation, for example when lifted from a shipping pallet to be moved to its intended installation location.
Although providing the advantage of an extended maximum shipping time, the amount of liquid cryogen introduced into the cryogen vessel may be modulated according to the expected duration of transport. That way, excessive consumption due to over-provision for transport may be reduced. For transport which is not expected to take a significant time, the steps described with respect to Fig. 3 may be avoided, and the cryostat may be transpcrted with the level cf liquid cryogen introduced during the steps described with reference to Fig. 2.
After shipping, the cryostat may be rotated to its first position, as illustrated in Fig. 2. If liquid cryogen remains in excess of level 32, some crycgen may be drawn cff for re-use, or be allowed to vent to atmosphere.
An enhancement to the above would be to allow an additional volume of cryogen to remain in the vessel to allow for boil off during magnet ramping. By opening valve 36, cryogen gas may egress through outlet pipe 26 to allow cryogen filling to the level of the outlet pipe 26, higher than level 32 of access vent pipe 16.

Claims (12)

  1. IICLAIMS: 1. A superconducting magnet assembly comprising: -a superconducting magnet structure (10), supported within a cryostat comprising a cryogen vessel (12) isolated from ambient temperature by an cuter vacuum container (CVC) (14); and -an access vent pipe (16) providing an access path into the cryogen vessel from the exterior, characterised in that the access vent pipe (16) extends to a lower extremity at a location corresponding to a desired maximum fill level (32) for liquid cryogen when the magnet is in operation.
  2. 2. A superconducting magnet assembly according to claim 1 wherein the access vent pipe (16) extends within the cryogen vessel (12) to the lower extremity.
  3. 3. A superconducting magnet assembly according to claim 1, being a cylindrical magnet coil assembly with a horizontal bore, wherein the access vent pipe (16) extends to a position below a lower extremity of a bore tube (14a) of the OVC (14), when the magnet is in operation.
  4. 4. A superconducting magnet assembly according to claim 3 wherein the access vent pipe (16) extends to the lower extremity which is flush with the wall of the cryogen vessel, at a position below a lower extremity of a bore tube (14a) of the OVC (14)
  5. 5. A superconducting magnet assembly according to any preceding claim, wherein the access vent pipe (16) is supported and retained in position by a turret (20)
  6. 6. A superconducting magnet assembly according to claim 5, wherein the turret (20) supports and accommodates a cryogenic refrigerator within a refrigerator sock (22)
  7. 7. A superconducting magnet assembly according to any preceding claim, wherein a venting path is provided from the cryogen vessel (12) to allow escape of cryogen vapour from the cryogen vessel at a position above the maximum fill level (32).
  8. 8. A superconducting magnet assembly according to claim 7 when dependent upon claim 6, wherein the venting path passes through a valve (36) , refrigerator sock (22) and a refrigerator outlet pipe (26)
  9. 9. A superconducting magnet assembly according to any preceding claim, further comprising a safety interlock using an output from a cryogen level sensor prevent the superconducting magnet being brought into operation while there is a level of liquid cryogen within the cryogen vessel in excess of a threshold cryogen level.
  10. 10. A method for filling a cryogen vessel (12) of a superconducting magnet coil assembly of any preceding claim with liguid cryogen (18), wherein, during a filling step, no ports are open above the desired maximum fill level (32) at the lower extremity of the access vent pipe (16) 11. A method according to claim 10, wherein, once the liquid cryogen (18) has been filled to the desired maximum fill level (32), the liquid cryogen (18) does not touch the magnet coil structure (10) 12. A method for filling a cryogen vessel (12) of a superconducting magnet coil assembly of any of claims 1-9 with liguid cryogen (18) for transport, comprising the steps of: -opening a venting path from the cryogen vessel (12) through an outlet pipe (26) to allow escape of cryogen vapour from the cryogen vessel at a position above the maximum fill level (32); and -introducing liquid cryogen into the cryogen vessel, up to the level of an upper extremity of an open end of the outlet pipe in the cryogen vessel.13. A method for filling a cryogen vessel (12) of a superconducting magnet coil assembly of any of claims 1-9 with liquid cryogen (18) for transport, comprising the steps of: -rotating the oryostat such that a lower extremity of acoess vent pipe (16) rises above its former position; -filling the cryogen vessel (12) with liquid cryogen (18) to a level (24) exceeding the former position of the lower extremity of access vent pipe (16) 14. A method for filling a cryogen vessel (12) of a superconducting magnet coil assembly of any of claims 1-9 with liquid cryogen (18) for ramping, comprising the steps of: -opening a port (26) above the lower extremity of the access vent pipe (16); and -filling the cryogen vessel to a level (24) exceeding the position of the lower extremity of access vent pipe (16) Amendments to the claims have been filed as follows CLAIMS: 1. A superconducting magnet assertly comprising: -a superconducting magnet structure (10) , supported within a cryostat comprising a cryogen vessel (12) isolated from ambient temperature by an outer vacuum container (CVC) (14); and -an access vent pipe (16) providing an access pach into the cryogen vessel from the exterior, characterised in that the access vent pipe (16) extends within the cryogen vessel (12) to define a maximum fill level (32) for liguid cryogen when the magnet is in operation at a lower extrenity of the access vent pipe.2. A superconducting magnet assembly according to claim 1, being a cylindrical magnet coil assembly with a horizontal bore, wherein the access vent pipe (16) extends within the cryogen vessel (12) to a position below a lower extremity of a bore tube (14a) of the OVC (14), when the magnet is in (0 operation. r3. A silperconducting magnet assembly according to any preceding claim, wherein the access vent pipe (16) is supported and retained in position by a turret (20) 4. A superconducting magnet assembly according to claim 3, wherein the turret (20) supports and accommodates a cryogenic refrigerator within a refrigerator sock (22) 5. A superconducting magnet assembly according to any preceding claim, wherein a venting path is provided from the cryogen vessel (12) to allow escape of cryogen vapour from the cryogen vessel at a position above the maximllm fill level (32) 6. A superconducting magnet assembly according to claim 5 when dependent upon claim 4, wherein the venting path passes through a valve (36) , refrigerator sock (22) and a refrigerator outlet pipe (26) 7. A superconducting magnet assembly according to any preceding claim, further comprising a safety interlock and an associated cryogen level sensor, operable to prevent the superconducting magnet being brought into operation while there is a level of liquid cryogen within the cryogen vessel in excess of a threshold cryogen level.8. A method of filling a cryogen vessel (12) of a superconducting magnet coil assembly of any preceding claim with liquid cryogen (18), wherein liguid cryogen is introduced through the access vent pipe (16) and, during the filling step, no ports are open above the maximum fill level IC') (32) 9. A method according to claim 8, wherein, once the liguid cryogen (18) has been filled to the maximum fill level (32) the liguid cryogen (18) does not touch the magnet coil (.0 structure (10) r 10. A method of filling a cryogen vessel (12) of a superconducting magnet coil assembly of any of claims 1-7 with liquid cryogen (18) for transport, comprising the steps of: -opening a venting path from the cryogen vessel (12) through an outlet pipe (26) to allow escape of cryogen vapour from the cryogen vessel at a position above the maximum fill level (32); and -introducing liquid cryogen into the cryogen vessel, up to the maximum fill level.
  11. 11. A method of filling a cryogen vessel (12) of a superconducting magnet coil assembly of any of claims 1-7 with liquid cryogen (18) for transport, comprising the steps of: -rotating the cryostat such that the lower extremity of the access vent pipe (16) rises above its former position; -filling the cryogen vessel (12) with liguid cryogen (18) to a level (24) exceeding the former position of the lower extremity of access vent pipe (16)
  12. 12. A method of filling a cryogen vessel (12) of a superconducting magnet coil assembly of any of claims 1-7 with liguid cryogen (18) for ramping, comprising the steps of: -opening a port (26) above the maximum fill level (32); and -filling the cryogen vessel to a level (24) exceeding the maximum fill level (32) IC) (0 r
GB1415878.6A 2014-09-09 2014-09-09 Low Cryogen Level Superconducting Magnet Withdrawn GB2530029A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1415878.6A GB2530029A (en) 2014-09-09 2014-09-09 Low Cryogen Level Superconducting Magnet
PCT/EP2015/068964 WO2016037811A1 (en) 2014-09-09 2015-08-18 Superconducting magnet assembly with an access pipe, and methods for filling the assembly with cryogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1415878.6A GB2530029A (en) 2014-09-09 2014-09-09 Low Cryogen Level Superconducting Magnet

Publications (2)

Publication Number Publication Date
GB201415878D0 GB201415878D0 (en) 2014-10-22
GB2530029A true GB2530029A (en) 2016-03-16

Family

ID=51796379

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1415878.6A Withdrawn GB2530029A (en) 2014-09-09 2014-09-09 Low Cryogen Level Superconducting Magnet

Country Status (2)

Country Link
GB (1) GB2530029A (en)
WO (1) WO2016037811A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922725B (en) * 2018-08-16 2020-05-15 西南交通大学 Nitrogen fixation low-temperature container for bearing superconducting magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507616A (en) * 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
SU1406431A1 (en) * 1986-12-08 1988-06-30 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Apparatus for low-temperature studies of object
US5417073A (en) * 1993-07-16 1995-05-23 Superconductor Technologies Inc. Cryogenic cooling system
US20130237425A1 (en) * 2012-03-06 2013-09-12 Tesla Engineering Limited Multi Orientation Cryostats

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105528B2 (en) * 1984-02-07 1995-11-13 株式会社東芝 Superconducting magnet device
GB0411605D0 (en) * 2004-05-25 2004-06-30 Oxford Magnet Tech Reduction of croygen loss during transportation
GB2441778B (en) * 2006-09-15 2008-08-13 Siemens Magnet Technology Ltd Integrated access turret-refrigerator turret assembly for cryostat
GB2458265B (en) * 2008-03-10 2010-05-26 Siemens Magnet Technology Ltd Low field, cryogenic, termination reservoir

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507616A (en) * 1982-03-08 1985-03-26 Board Of Trustees Operating Michigan State University Rotatable superconducting cyclotron adapted for medical use
SU1406431A1 (en) * 1986-12-08 1988-06-30 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Apparatus for low-temperature studies of object
US5417073A (en) * 1993-07-16 1995-05-23 Superconductor Technologies Inc. Cryogenic cooling system
US20130237425A1 (en) * 2012-03-06 2013-09-12 Tesla Engineering Limited Multi Orientation Cryostats

Also Published As

Publication number Publication date
GB201415878D0 (en) 2014-10-22
WO2016037811A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6338755B2 (en) A cryostat device having a vacuum vessel and an object to be cooled with a evacuable cavity
US7733089B2 (en) Transportable magnetic resonance imaging (MRI) system
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
US7559205B2 (en) Cryogen tank for cooling equipment
EP2567162B1 (en) Improved method and apparatus for shipping and storage of cryogenic devices
JP5228177B2 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
CN107110928B (en) System and method for cooling a magnetic resonance imaging apparatus
US20160187435A1 (en) Cooling system and method for a magnetic resonance imaging device
US8922308B2 (en) Systems and methods for alternatingly switching a persistent current switch between a first mode and a second mode
CN106158228B (en) Cooling system for superconducting magnet and magnet system
US7832216B2 (en) Apparatus for cooling
CN108987027B (en) Cooling device for superconducting magnet structure of MRI system
US20090224862A1 (en) Magnetic apparatus and method
GB2530029A (en) Low Cryogen Level Superconducting Magnet
KR102426500B1 (en) Arrangement for cryogenic cooling
JP2013245907A (en) Cooling container
GB2528919A (en) Superconducting magnet assembly
US20200058423A1 (en) Thermal bus heat exchanger for superconducting magnet
JP2009065016A (en) Superconduction part cooling apparatus and its operating method
US20240136097A1 (en) Switch assemblies of superconducting magnet assemblies and reconfigurable superconducting magnet assemblies of a cryogenic system
CN117912788A (en) Switch assembly for superconducting magnet assembly and reconfigurable superconducting magnet assembly for cryogenic system
CN117912789A (en) Switch assembly for superconducting magnet assembly and reconfigurable superconducting magnet assembly for cryogenic system
US20160071638A1 (en) Superconducting magnet device including a cryogenic cooling bath and cooling pipes
GB2431982A (en) Cryostat Heat Influx Reduction
GB2440692A (en) Transportable Magnetic Resonance Imaging (MRI) system

Legal Events

Date Code Title Description
COOA Change in applicant's name or ownership of the application

Owner name: SIEMENS HEALTHCARE LIMITED

Free format text: FORMER OWNER: SIEMENS PLC

WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)