JPH07104478B2 - Focus detection device - Google Patents
Focus detection deviceInfo
- Publication number
- JPH07104478B2 JPH07104478B2 JP61026461A JP2646186A JPH07104478B2 JP H07104478 B2 JPH07104478 B2 JP H07104478B2 JP 61026461 A JP61026461 A JP 61026461A JP 2646186 A JP2646186 A JP 2646186A JP H07104478 B2 JPH07104478 B2 JP H07104478B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- focus detection
- detection device
- light
- conversion element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0018—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Description
【発明の詳細な説明】 利用分野 本発明は光電素子を具えた光学装置に関し、特に不所望
光に原因する精度の低下を防止した焦点検出装置を含
む。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device including a photoelectric element, and in particular, includes a focus detection device that prevents deterioration in accuracy due to undesired light.
産業上の利用分野 カメラに組込まれていて、対物レンズの焦点調節状態を
検出する装置は既に良く知られている。特に、対物レン
ズの像から複数の平行関係の再結像レンズあるいはイメ
ージスプリツトプリズムと再結像レンズの組合わせによ
って互に視差を持った複数の物体像を再形成し、これら
物体像の相互間隔を光電変換素子の画素列で受像し、対
物レンズの焦点調節状態を検出する位相差検出法が主流
になりつつある。BACKGROUND OF THE INVENTION Industrialized devices that are incorporated into cameras and detect the focus adjustment state of an objective lens are already well known. In particular, a plurality of parallel re-imaging lenses or a combination of image split prisms and re-imaging lenses are used to re-form a plurality of object images with parallax from the image of the objective lens. A phase difference detection method in which an image is received by a pixel array of photoelectric conversion elements and a focus adjustment state of an objective lens is detected is becoming mainstream.
一方、焦点検出装置においては、対物レンズの色収差が
良好に補正されている波長を測定して光電変換素子へ入
射させるために、例えば700nm以上の波長をカツトする
様な処置を取っている。尚、この赤外領域をカツトする
ためには多層干渉フイルターを使用することが多くなっ
てきており、フイルターを透過しなかった光のほとんど
は反射される。On the other hand, in the focus detection device, in order to measure the wavelength at which the chromatic aberration of the objective lens is favorably corrected and to make it enter the photoelectric conversion element, a measure such as cutting a wavelength of 700 nm or more is taken. In order to cut the infrared region, a multilayer interference filter is often used, and most of the light that has not passed through the filter is reflected.
第4図はフイルタリング特性の1例を示しているが、波
長カツト領域の特性曲線が多少傾斜しており、例えば70
0nmの波長の光は50%が透過し、50%が反射することに
なる。FIG. 4 shows an example of the filtering characteristic, but the characteristic curve in the wavelength cut region is slightly inclined.
50% of the light with a wavelength of 0 nm is transmitted and 50% is reflected.
ところで自動合焦撮影を行う場合、被写界からの光の中
には700nm程度の比較的強い光が含まれることがままあ
り、殊に低輝度、低コントラストの被写体に対して自動
合焦を行う為に補助的な照明を行う場合、慣用される照
明光源には700nm程度の波長光が含まれるのが普通であ
る。By the way, when performing auto-focus shooting, the light from the scene sometimes contains a relatively strong light of about 700 nm, which is especially useful for low-brightness, low-contrast subjects. When performing supplementary illumination to do so, a commonly used illumination light source usually contains light with a wavelength of about 700 nm.
時折、特定の環境下における被写体を撮影した際に検出
誤差が確認され、その原因は波長カツトフイルターを通
過した光の内の不所望波長の光によると考えられる。即
ち、上で述べた様に波長カツトフイルターを装着してい
ても、一部の不所望光はフイルターを通過し、光電変換
素子の画素列以外の所に掛けられたマスクで主に反射
し、例えば再結像レンズに関して光電変換素子と光学的
に共役な位置あるいは光電変換素子の直前に配されたフ
イルター裏面で反射して、再度光電変換素子に入射し、
その光がゴーストを生じさせると推測される。尚、光電
変換素子に掛けられるマスクは、大方高反射率のアルミ
ニウムが使用され、またフイルターは他の光学的要請に
基づいて光電変換素子と共役な位置あるいはその直前に
設ける配置がより事態を悪くしているが、他の配置でも
大なり小なりのゴースト発生は避け難い。Occasionally, a detection error is confirmed when a subject is photographed under a specific environment, and it is considered that the cause is an undesired wavelength of light that has passed through the wavelength cut filter. That is, as described above, even if the wavelength cut filter is attached, some undesired light passes through the filter and is mainly reflected by a mask hung on a portion other than the pixel row of the photoelectric conversion element, For example, with respect to the re-imaging lens, it is reflected at the position optically conjugate with the photoelectric conversion element or the back surface of the filter arranged immediately before the photoelectric conversion element, and then enters the photoelectric conversion element again.
It is speculated that the light causes a ghost. The mask applied to the photoelectric conversion element is mostly made of aluminum with high reflectance, and the filter is placed at a position conjugate with the photoelectric conversion element or immediately before the position based on other optical requirements. However, even with other arrangements, it is difficult to avoid large or small ghosts.
第5図は均一輝度面を対物レンズ1によって投影した場
合の光電変換素子出力を示す図であり、矢印A,Bで示し
た部分がゴーストによる出力である。FIG. 5 is a diagram showing the output of the photoelectric conversion element when the uniform luminance surface is projected by the objective lens 1, and the portions indicated by arrows A and B are the output due to the ghost.
このようにゴーストが生じると、2つの画素列出力間の
相対的位置ズレを検出する際、検出誤差を生じ正確な焦
点検出は不可能となる。尚、相対的位置ズレの検出方法
については特開昭58−142306等に開示されている。ま
た、このゴーストによる焦点検出誤差は、赤外カツト干
渉フイルターの透過率が20〜80%程度の場合に顕著に現
れるため、上で触れた様に波長700nmの光で物体を照明
している場合等に影響が大きい。When a ghost occurs in this way, a detection error occurs when detecting a relative positional deviation between two pixel column outputs, and accurate focus detection becomes impossible. A method of detecting the relative positional deviation is disclosed in Japanese Patent Laid-Open No. 142306/1983. In addition, the focus detection error due to this ghost appears remarkably when the transmittance of the infrared cut interference filter is about 20 to 80%, so when the object is illuminated with light with a wavelength of 700 nm as mentioned above. And so on.
発明が解決しようとしている問題点 本発明は上記ゴースト像に起因する検出精度の低下、あ
るいは誤検出を防止することにある。Problems to be Solved by the Invention The present invention is to prevent a decrease in detection accuracy or an erroneous detection due to the ghost image.
そして、この目的を達成するために、 焦点調節状態に係る信号を出力する光電変換手段と、物
体光を前記光電変換手段に導くための光学手段と、物体
光の赤外波長領域をカットし可視光を透過させるフィル
タリング手段を具えた装置であって、前記フィルタリン
グ手段と前記光電変換手段との両面が光学的に非平行状
態になる様に構成している。ここで、光学的に非平行と
は光軸が反射鏡等によって物理的に折れ曲がっていて
も、光軸を展開した時に非平行なことを云う。Then, in order to achieve this object, photoelectric conversion means for outputting a signal relating to the focus adjustment state, optical means for guiding the object light to the photoelectric conversion means, and visible light by cutting the infrared wavelength region of the object light A device comprising a filtering means for transmitting light, wherein both surfaces of the filtering means and the photoelectric conversion means are configured to be in an optically non-parallel state. Here, “optically non-parallel” means that even if the optical axis is physically bent by a reflecting mirror or the like, it is not parallel when the optical axis is expanded.
実施例の説明 以上、第1図,第2図を使って本発明の実施例を説明す
る。Description of Embodiments An embodiment of the present invention will be described with reference to FIGS. 1 and 2.
図中、1は予定結像面上に物体像を形成するための着脱
自在の対物レンズで、検出信号で駆動される図示しない
調節装置で調節される。2は光分割器で、一眼レフレツ
クスカメラの場合は、元の光軸Xの延長上にフイルムあ
るいはビデオ撮影素子が配され、分岐された光軸上に以
降説明する部材が配されるが、ここでは便宜上光軸を展
開して示す。In the figure, reference numeral 1 denotes a detachable objective lens for forming an object image on a predetermined image plane, which is adjusted by an adjusting device (not shown) driven by a detection signal. Reference numeral 2 denotes an optical splitter, and in the case of a single-lens reflex camera, a film or a video shooting element is arranged on the extension of the original optical axis X, and members described below are arranged on the branched optical axis. Here, the optical axis is shown expanded for convenience.
3は視野マスク、4はフイールドレンズで予定結像面上
に配される。5は絞り、6は2次結像レンズ、7は2つ
の画素列を有する光電変換素子である。視野マスク3は
対物レンズ1の予定結像面近傍に位置し、その開口部3a
内に形成された対物レンズ1による物体像は2次結像レ
ンズ6によって光電変換素子上に再結像される。このと
き、絞り5の2つの開口部5a,5bに対応して2次結像レ
ンズの2つのレンズ部6a,6bがあるため、光電変換素子
上には2つに分割された2次像が形成される。さらにフ
イールドレンズ4によって絞り5と対物レンズ1の射出
瞳とは共役関係にあるため、光電変換素子面上に投影さ
れた2次像は対物レンズ1の異なる領域を通った光束に
よって形成されたものとなる。従って、対物レンズ1に
よる物体像が予定結像面よりも対物レンズよりに結像し
ている前ピン状態においては、視野マスク像8a,8b内の
照度分布は矢印方向に移動し、後ピン状態においては矢
印と反対方向に移動する。3 is a field mask, and 4 is a field lens, which is arranged on the planned image forming plane. Reference numeral 5 is a diaphragm, 6 is a secondary imaging lens, and 7 is a photoelectric conversion element having two pixel columns. The field mask 3 is located in the vicinity of the planned image plane of the objective lens 1 and has an opening 3a.
The object image formed by the objective lens 1 is re-formed on the photoelectric conversion element by the secondary imaging lens 6. At this time, since there are two lens portions 6a and 6b of the secondary imaging lens corresponding to the two openings 5a and 5b of the diaphragm 5, the secondary image divided into two is formed on the photoelectric conversion element. It is formed. Further, since the diaphragm 5 and the exit pupil of the objective lens 1 are in a conjugate relationship by the field lens 4, the secondary image projected on the photoelectric conversion element surface is formed by the light flux passing through different regions of the objective lens 1. Becomes Therefore, in the front focus state in which the object image by the objective lens 1 is formed on the objective lens rather than the planned image formation plane, the illuminance distribution in the field mask images 8a and 8b moves in the arrow direction, and the rear focus state. In, it moves in the direction opposite to the arrow.
視野マスク像8a,8b内には画素列7a,7bがそれぞれ位置
し、被写体像の照度分布を電気信号として取り出してい
る。この光電変換素子の出力に基づいて2像の相対的位
置ズレを検出することによって対物レンズの合焦状態を
知ることができる。Pixel columns 7a and 7b are located in the visual field mask images 8a and 8b, respectively, and the illuminance distribution of the subject image is extracted as an electric signal. The focus state of the objective lens can be known by detecting the relative positional deviation between the two images based on the output of this photoelectric conversion element.
9はフイルターで分光感度補正のために赤外波長領域を
カツトする多層干渉薄膜が透光平板上に蒸着されて成
り、画素列7a,7b並び方向と直交する軸に対して傾く様
に、光軸に垂直な面に対して傾斜して配置されている。Reference numeral 9 denotes a filter, which is formed by vapor-depositing a multilayer interference thin film that cuts an infrared wavelength region for spectral sensitivity correction on a light-transmissive flat plate. It is arranged to be inclined with respect to a plane perpendicular to the axis.
第2図(A)は画素列と直角方向の焦点検出装置の断面
図で、図(B)は図(A)に直交する断面図である。第
2図で説明した様に光電変換素子7面で反射した光線は
2次結像レンズ6b、絞り開口5Bを逆に進み、赤外線カツ
ト干渉フイルター9に達して集光するが、フイルターは
傾斜して配置されているためその反射光は絞り開口5aに
は再び入射しない。従って、この迷光は光電変換素子7
には達することなく、何ら焦点検出精度には影響を与え
ない。第3図は均一輝度面を対物レンズ1によって投影
した場合の光電変換素子出力であり、光学系の特性によ
る周辺光量落ち込みのみがあるだけで均一な出力が得ら
れる。2A is a cross-sectional view of the focus detection device in the direction perpendicular to the pixel row, and FIG. 2B is a cross-sectional view orthogonal to FIG. As described in FIG. 2, the light rays reflected by the surface of the photoelectric conversion element 7 travel in the opposite direction through the secondary imaging lens 6b and the diaphragm aperture 5B, reach the infrared cut interference filter 9 and are condensed, but the filter is tilted. The reflected light does not enter the diaphragm aperture 5a again because it is arranged. Therefore, this stray light is generated by the photoelectric conversion element 7.
And does not affect the focus detection accuracy. FIG. 3 shows the output of the photoelectric conversion element when a uniform luminance surface is projected by the objective lens 1, and a uniform output can be obtained with only a drop in the peripheral light amount due to the characteristics of the optical system.
尚、赤外線カツト干渉フイルターを傾斜させたことによ
ってカツト波長は変化するが、傾斜角を考慮して特性を
選ぶことで対処できる。また上例では、光電変換素子と
光学的にほぼ共役な位置にフイルターを配しているが、
光電変換素子の直前に配した場合等でも同様にして解消
できる。他方、フイルターを傾ける代りに光電変換素子
に掛けるマスクの表面を傾斜させて不所望光を逸すこと
も考えられ、そのときは干渉薄膜はフイールドレンズ表
面に設けることもできる。Although the cut wavelength changes by tilting the infrared cut interference filter, this can be dealt with by selecting the characteristics in consideration of the tilt angle. Further, in the above example, the filter is arranged at a position that is optically conjugate with the photoelectric conversion element,
The same problem can be solved even when it is arranged immediately before the photoelectric conversion element. On the other hand, instead of tilting the filter, it is also possible to tilt the surface of the mask to be applied to the photoelectric conversion element to divert undesired light, and in that case, the interference thin film can be provided on the surface of the field lens.
更に本発明は一眼レフレツクスカメラ以外にビデオカメ
ラ等にも適用でき、その他、加工機械の間隔決定装置な
どへの応用も可能である。Further, the present invention can be applied not only to a single-lens reflex camera, but also to a video camera and the like, and can also be applied to an interval determining device of a processing machine.
発明の効果 本発明によれば、物界から来る光の波長光によらず焦点
検出が可能となり、検出環境を考慮して手動と自動を切
替えるといった煩わしさから解放され、また照明光に因
み誤動作の心配もないものである。EFFECTS OF THE INVENTION According to the present invention, focus detection can be performed regardless of the wavelength of light coming from the object field, and the annoyance of switching between manual operation and automatic operation in consideration of the detection environment is released, and it is also related to illumination light. There is no fear of malfunction.
また特に、低輝度下の検出のために補助光を使用する場
合、光源として発光波長700nm程度の入手の容易な発光
ダイオードや小型電球を利用できるから、安価で性能を
信頼することができ、そのときでも検出エラーを生じな
いと云う効果がある。Further, in particular, when auxiliary light is used for detection under low brightness, an easily available light emitting diode or small light bulb with an emission wavelength of about 700 nm can be used as a light source, so that the performance can be inexpensive and reliable. Even at times, there is an effect that a detection error does not occur.
第1図は本発明の実施例を示す斜視図で、第2図(A)
(B)はそれぞれ断面図である。第3図は光電変換素子
の出力を示す図。第4図はフイルターの特性図。第5図
はゴースト像が生じた際の光電変換素子の出力を示す
図。FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 (A)
(B) is a cross-sectional view. FIG. 3 is a diagram showing the output of the photoelectric conversion element. Fig. 4 is a characteristic diagram of the filter. FIG. 5 is a diagram showing an output of the photoelectric conversion element when a ghost image is generated.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 剛史 神奈川県川崎市高津区下野毛770番地 キ ヤノン株式会社玉川事業所内 (56)参考文献 特開 昭60−32013(JP,A) 特開 昭62−34113(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Takeshi Koyama 770 Shimonoge, Takatsu-ku, Kawasaki-shi, Kanagawa Canon Inc. Tamagawa Plant (56) References JP-A-60-32013 (JP, A) JP-A-62 -34113 (JP, A)
Claims (6)
換手段と、物体光を前記光電変換手段に導くための光学
手段と、物体光の赤外波長領域をカットし可視光を透過
させるフィルタリング手段を具えた装置であって、前記
フィルタリング手段と前記光電変換手段との両面が光学
的に非平行状態になる様に構成したことを特徴とする焦
点検出装置。1. A photoelectric conversion unit that outputs a signal relating to a focus adjustment state, an optical unit that guides object light to the photoelectric conversion unit, and a filtering that cuts an infrared wavelength region of the object light and transmits visible light. A focus detection apparatus comprising a means, wherein both surfaces of the filtering means and the photoelectric conversion means are configured to be in an optically non-parallel state.
手段の近傍あるいは前記光学手段に関して前記光電変換
手段と光学的に共役な位置もしくはその位置の近傍に配
置されている特許請求の範囲第1項記載の焦点検出装
置。2. The filter according to claim 1, wherein the filtering means is arranged in the vicinity of the photoelectric conversion means or in a position optically conjugate with the photoelectric conversion means with respect to the optical means or in the vicinity thereof. Focus detection device.
を形成する特許請求の範囲第2項記載の焦点検出装置。3. The focus detection device according to claim 2, wherein the optical means forms a plurality of object images from object light.
定波長に対して半透過半反射特性を有する特許請求の範
囲第1項記載の焦点検出装置。4. The focus detection device according to claim 1, wherein said filtering means has a semi-transmission / semi-reflection characteristic for at least a specific wavelength.
ルターである特許請求の範囲第2項に記載する焦点検出
装置。5. The focus detection device according to claim 2, wherein the filtering means is a multilayer interference filter.
請求の範囲第1項記載の焦点検出装置。6. The focus detection device according to claim 1, wherein the photoelectric conversion means has a pixel column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61026461A JPH07104478B2 (en) | 1986-02-07 | 1986-02-07 | Focus detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61026461A JPH07104478B2 (en) | 1986-02-07 | 1986-02-07 | Focus detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62183416A JPS62183416A (en) | 1987-08-11 |
JPH07104478B2 true JPH07104478B2 (en) | 1995-11-13 |
Family
ID=12194146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61026461A Expired - Fee Related JPH07104478B2 (en) | 1986-02-07 | 1986-02-07 | Focus detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07104478B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09265040A (en) | 1996-03-28 | 1997-10-07 | Minolta Co Ltd | Focus detector |
JPH09105857A (en) * | 1996-09-13 | 1997-04-22 | Minolta Co Ltd | Photoelectric converter for focus detection |
JP6575179B2 (en) * | 2015-07-06 | 2019-09-18 | セイコーエプソン株式会社 | Optical module and imaging device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6234113A (en) * | 1985-08-07 | 1987-02-14 | Hitachi Ltd | Automatic focus adjusting device |
-
1986
- 1986-02-07 JP JP61026461A patent/JPH07104478B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62183416A (en) | 1987-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4054422B2 (en) | Camera and interchangeable lens device | |
JP2632941B2 (en) | camera | |
US5784656A (en) | Camera with light dividing devices | |
JPH07104478B2 (en) | Focus detection device | |
JPH09189852A (en) | Focus detection device | |
JP4950634B2 (en) | Imaging apparatus and imaging system | |
JP2007033653A (en) | Focus detection device and imaging apparatus using the same | |
JPH07107576B2 (en) | Focus detection device | |
JP5043402B2 (en) | Photometric device and camera | |
JPS63259521A (en) | Composite type focusing detection device | |
JP2537145B2 (en) | Metering / ranging device | |
US6052533A (en) | Optical apparatus such as a camera | |
JP3437262B2 (en) | Projection system for automatic focus detection | |
JPS63139310A (en) | Pattern projecting device for detecting focus | |
JP3243020B2 (en) | Optical viewfinder | |
JPH09211310A (en) | Camera | |
JP2744420B2 (en) | Camera with gaze detection means | |
JPS6388512A (en) | Focus detector | |
JPH07333689A (en) | Observing device and camera provided with the same | |
JPS6388513A (en) | Focus detector | |
JPH05188278A (en) | Visual axis detecting device for camera | |
JPS6187114A (en) | Single-lens reflex camera having automatic focus mechanism | |
JPS5912406A (en) | Automatic focus detector | |
JPS6280511A (en) | Optical system for range finding | |
JPH08171049A (en) | Projection system for automatic focus detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |