JPH07103757A - Optical subsidence measurement system - Google Patents

Optical subsidence measurement system

Info

Publication number
JPH07103757A
JPH07103757A JP24767493A JP24767493A JPH07103757A JP H07103757 A JPH07103757 A JP H07103757A JP 24767493 A JP24767493 A JP 24767493A JP 24767493 A JP24767493 A JP 24767493A JP H07103757 A JPH07103757 A JP H07103757A
Authority
JP
Japan
Prior art keywords
sensor
image sensor
laser beams
laser light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24767493A
Other languages
Japanese (ja)
Other versions
JP2757952B2 (en
Inventor
Ryoji Komatsu
亮二 小松
Fujiki Shimoyama
藤樹 下山
Kazuo Suda
和男 須田
Satoshi Kinoshita
敏 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Sakata Denki Co Ltd
Original Assignee
Kajima Corp
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Sakata Denki Co Ltd filed Critical Kajima Corp
Priority to JP24767493A priority Critical patent/JP2757952B2/en
Publication of JPH07103757A publication Critical patent/JPH07103757A/en
Application granted granted Critical
Publication of JP2757952B2 publication Critical patent/JP2757952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To instantly display laser light reception by providing an image sensor within specific multiple of the focal distance of a cylindrical lens, expanding a measurement range, providing a plurality of rows of light reception diodes in front of the sensor for synchronizing with the sensor, and then connecting them to the same number of LEDs at different positions. CONSTITUTION:An image sensor 2 is provided at a position which is 1/2 of the focal distance of a cylindrical lens 1. Laser beams 3 are refracted at a focal axis side by the lens 1, the distance to the focal axis reaches 1/2 at the position of the sensor 2, and the measurement range of the sensor 2 is doubled. Also, photo diode arrays 5 provided in front of the sensor 2 receive laser beams 3, take out data of the sensor 2, at the same time emit a signal R for returning the sensor 2 to zero, thus enabling the sensor 2 to receive the laser beams 3 without being greatly affected by disturbance light. Also, the arrays 5 are connected to the same number of LEDs 6, the arrays 5 which receive the laser beams 3 immediately transmit signals to LEDs 6, enabling them to blink and the passage position of laser beams 3 to be confirmed visually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物の沈下を測定す
る光学式沈下測定システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical settlement measurement system for measuring settlement of structures.

【0002】[0002]

【従来の技術】構造物の沈下測定に、直径9〜12mm
の光束のレーザ光を、発光器を中心にして400rpm
程度で回転させて水平なレーザ光面を造り、このレーザ
光面を基準に測点の高さを測定する方法がある。すなわ
ち図3に示すように回転可能なレーザ発光器Lからのレ
ーザ光3は矢印Aの方向に回転し、受光器R1はそのレ
ーザ光3を受光高さH1の所で受光し、別の受光器R2
はレーザ光3を受光高さH2の所で受光するようになっ
ている。この測定法のレーザ受光器には2つのタイプが
あって、ひとつは等間隔に区切ったイメージセンサの照
射位置と間隔からレーザ光通過高さを算定するタイプで
あり、他のひとつは受光器の上部と下部にイメージセン
サを置いて両方の受光量が等量になるように受光器を上
下移動させ、その時の高さを別の変位計で測定するタイ
プである。
2. Description of the Related Art 9-12 mm diameter for measuring settlement of structures
The laser light of the luminous flux of 400 rpm centered on the light emitter
There is a method in which a horizontal laser beam surface is created by rotating the laser beam at a certain degree, and the height of a measuring point is measured with this laser beam surface as a reference. That is, as shown in FIG. 3, the laser light 3 from the rotatable laser light emitter L rotates in the direction of arrow A, and the light receiver R1 receives the laser light 3 at the light receiving height H1 and receives another light. Bowl R2
Receives the laser light 3 at a light receiving height H2. There are two types of laser receivers of this measuring method, one is a type that calculates the laser beam passing height from the irradiation position and the interval of the image sensor divided at equal intervals, and the other one is This is a type in which image sensors are placed on the upper part and the lower part, the light receivers are moved up and down so that the light receiving amounts of both are equal, and the height at that time is measured by another displacement gauge.

【0003】前者は、イメージセンサの区切りが細かい
ほど高精度となるが、細かく区切るには高度の技術と費
用を要し、また、後者は受光器の上下移動制御に高精度
のものが必要で高価となるなどから、両タイプとも市販
品の精度が±1mm程度となっている。当然であるが、
後者は、レーザ光が揺らぐような環境での測定は困難で
ある。
In the former, the finer the division of the image sensor, the higher the precision becomes. However, the fine division requires a high technique and cost, and the latter requires a high precision in the vertical movement control of the light receiver. Since both types are expensive, the precision of both types is about ± 1 mm. Of course,
The latter is difficult to measure in an environment where the laser light fluctuates.

【0004】両タイプの測定可能な距離は、レーザ光の
距離による減衰、遠距離ほどレーザ光の通過速度が高速
となること、さらに、現在のイメージセンサの性能とコ
ストなどから、±1mmの精度とするには30m程度が
限度となっている。また、この測定法では、通過部分の
気流の乱れや温湿度差によるレーザ光の曲りや揺らぎを
抑えるために目に見えない赤外線レーザ光を使っている
が、このために市販測定器による測定では、測定と同じ
操作を繰返しながら受光器を移動させてレーザ光通過位
置を探す。という面倒な作業を事前に行う必要がある。
The measurable distance of both types is accurate to ± 1 mm because of the attenuation of the laser light due to the distance, the higher the passing speed of the laser light as the distance is longer, and the performance and cost of the current image sensor. The limit is about 30m. In addition, in this measurement method, invisible infrared laser light is used to suppress bending and fluctuation of laser light due to turbulence of the air flow in the passing part and temperature and humidity differences, but for this reason it is not possible to measure with commercial measuring instruments. , Repeat the same operation as the measurement, move the light receiver, and search for the laser beam passage position. It is necessary to do the troublesome work in advance.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、回転
型赤外線レーザ発光器と受光器を用いた沈下測定におい
て、全長は短いが区切りが細かいイメージセンサを使っ
た受光器の測定範囲を広げ、また、測定距離を広げ、さ
らに、レーザ光受光を即座に目視確認できるようにし
た、高精度で信頼性が高く、かつ、経済的な沈下測定シ
ステムを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to extend the measurement range of a photodetector using an image sensor having a short total length and a fine division in sinking measurement using a rotary infrared laser emitter and a photodetector. Another object of the present invention is to provide a highly accurate, highly reliable, and economical squat measurement system in which the measurement distance can be widened and laser light reception can be visually checked immediately.

【0006】[0006]

【課題を解決するための手段】本発明によれば、回転型
赤外線レーザ発光器と組合せて使用する受光器につい
て、イメージセンサが焦点距離の二倍以内で、かつ焦点
距離を外した位置に来るようにシリンドリカルレンズを
イメージセンサの前面に取付け、また、レーザ光がイメ
ージセンサを通過する前側に数個のフォトダイオードア
レを取付けてイメージセンサと同期させるとともに別位
置に取付けた同数個のLEDに接続してレーザ光受光を
表示させるようにする。
According to the present invention, with respect to a light receiver used in combination with a rotary infrared laser light emitter, the image sensor is located within twice the focal length and out of the focal length. Attach a cylindrical lens to the front of the image sensor, and attach several photodiodes to the front side where the laser light passes through the image sensor to synchronize with the image sensor and connect to the same number of LEDs installed at different positions. Then, the laser light reception is displayed.

【0007】[0007]

【作用】本発明によれば、照射したレーザ光は焦点軸側
に寄せられるので受光器のイメージセンサを設置する範
囲が短くなるとともに受光器がコンパクトになり、ま
た、レーザ光の直径が凝縮されて単位面積当りの光量が
増大するのでイメージセンサの応答性が良くなり、測定
精度と測定距離が向上する。さらに、フォトダイオード
アレがレーザ光を受光すると、イメージセンサのデータ
を取り出すとともにイメージセンサを零に復帰させる信
号を出すので、イメージセンサは外乱光の受光が少ない
状態でレーザ光を受光でき、したがってレーザ光受光を
明確に捕らえることができる。このため、レーザ光通過
毎に信頼性の高いデータの取込みができ、また、短時間
に多数のデータ取込みが可能となって統計処理を行うこ
とができ、測定精度とデータの信頼性が向上する。ま
た、どの高さ位置をレーザ光が通過したかがLED群の
表示で分かるために受光器の設置が正確で早く、測定作
業を短縮できる。
According to the present invention, since the irradiated laser beam is brought closer to the focal axis side, the range in which the image sensor of the light receiver is installed is shortened and the light receiver becomes compact, and the diameter of the laser light is condensed. Since the amount of light per unit area is increased, the responsiveness of the image sensor is improved, and the measurement accuracy and the measurement distance are improved. Furthermore, when the photodiode array receives the laser light, it outputs the signal of the image sensor and outputs a signal for returning the image sensor to zero, so that the image sensor can receive the laser light with little reception of ambient light, and thus the laser light. The light reception can be clearly captured. Therefore, highly reliable data can be captured each time the laser light passes, and a large number of data can be captured in a short time, and statistical processing can be performed, and measurement accuracy and data reliability are improved. . In addition, since the height of the laser beam can be known from the display of the LED group, the receiver can be installed accurately and quickly, and the measurement work can be shortened.

【0008】[0008]

【実施例】以下、図面に沿って本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は、本発明によって製作され測定に使
用される受光器の受光部分の一例を示したものである。
シリンドリカルレンズ1を置き、その後方でシリンドリ
カルレンズ1の焦点距離の1/2の位置(L1 =L2
に、50μm間隔で区切った512個の受光長さ25.
6mm(0.05mm×512)のイメージセンサ2を
置く。これにより受光器に入射する直径9〜12mmの
レーザ3はシリンドリカルレンズ1によって焦点軸側に
屈折し、焦点軸(0はレンズ焦点)との距離はイメージ
センサ2の位置で1/2になるので、イメージセンサ2
による測定範囲は二倍に広がる。また、レーザ光3はシ
リンドリカルンズ1によって凝縮されて直径4.5〜
6.0mmとなるため、レーザ光3が距離減衰して入射
してもイメージセンサ2の位置での単位面積当りの光量
は二倍になり、イメージセンサ2の応答性が良くなる。
したがって、測定精度は良くなり、これまで以上の遠距
離測定が可能となる。
FIG. 1 shows an example of a light receiving portion of a light receiver manufactured according to the present invention and used for measurement.
The cylindrical lens 1 is placed, and the position behind the cylindrical lens 1 is 1/2 the focal length of the cylindrical lens 1 (L 1 = L 2 ).
, 512 light receiving lengths 25.
The 6 mm (0.05 mm × 512) image sensor 2 is placed. As a result, the laser 3 having a diameter of 9 to 12 mm entering the light receiver is refracted toward the focal axis side by the cylindrical lens 1, and the distance from the focal axis (0 is the lens focal point) is halved at the position of the image sensor 2. , Image sensor 2
The measuring range by is doubled. Further, the laser light 3 is condensed by the cylindrical keluns 1 to have a diameter of 4.5 to
Since the distance is 6.0 mm, the amount of light per unit area at the position of the image sensor 2 is doubled even when the laser light 3 is attenuated and is incident, and the response of the image sensor 2 is improved.
Therefore, the measurement accuracy is improved, and it becomes possible to measure a long distance more than ever.

【0010】次に、図2は受光器にフォトダイオードア
レ5を設置した一例を示したものである。イメージセン
サ2の前側(レーザ光3が水平に横切る前側)に取付け
たフォトダイオードアレ5は、レーザ光3を受光すると
イメージセンサ2のデータを取出すとともにイメージセ
ンサ2を零に復帰させる信号Rを出す。これによってイ
メージセンサ2は外乱光の受光が少ない状態でレーザ光
3を受光でき、S/N比が大巾に向上するのでレーザ光
3は外乱光と明確に区分けできる。このため、レーザ光
の通過毎にイメージセンサ2のデータの取込みが可能と
なり、多数のデータを短時間に取り込めることができる
ので、レーザ光通過経路の環境条件から生じるレーザ光
のゆらぎに対しても統計処理が可能となり、測定精度と
データの信頼性を向上することができる。
Next, FIG. 2 shows an example in which the photodiode array 5 is installed in the light receiver. The photodiode array 5 mounted on the front side of the image sensor 2 (the front side where the laser beam 3 horizontally crosses) takes out the data of the image sensor 2 when receiving the laser beam 3, and outputs a signal R for returning the image sensor 2 to zero. . As a result, the image sensor 2 can receive the laser light 3 with little reception of ambient light, and the S / N ratio is greatly improved, so that the laser light 3 can be clearly distinguished from ambient light. Therefore, it is possible to capture the data of the image sensor 2 each time the laser light passes, and it is possible to capture a large amount of data in a short time, so that the fluctuation of the laser light caused by the environmental condition of the laser light passage path can be captured. Statistical processing is possible, and measurement accuracy and data reliability can be improved.

【0011】また、フォトダイオードアレ5は同数個の
LED6に接続し、レーザ光3を受光したフォトダイオ
ードアレ5は即座に接続するLED6に信号を送って点
滅させる。これによってレーザ光通過位置が目視確認で
きるので、受光器を正確に早く設置できる。
Further, the photodiode arrays 5 are connected to the same number of LEDs 6, and the photodiode arrays 5 receiving the laser light 3 immediately send a signal to the connected LEDs 6 to blink them. This allows the laser beam passage position to be visually confirmed, so that the light receiver can be installed accurately and quickly.

【0012】[0012]

【発明の効果】本発明による効果は以下の通りである。The effects of the present invention are as follows.

【0013】(イ) イメージセンサの設置範囲が短
く、装置がコンパクトになる。
(A) The installation range of the image sensor is short, and the apparatus is compact.

【0014】(ロ) 従来の測定器より測定距離が長く
なる。
(B) The measuring distance becomes longer than that of the conventional measuring device.

【0015】(ハ) フォトダイオードアレを設置して
イメージセンサと同期させているため、外乱光とレーザ
光とのS/N比を改善されとともに統計処理ができ、測
定精度とデータの信頼性が向上する。
(C) Since the photodiode array is installed and synchronized with the image sensor, the S / N ratio between the ambient light and the laser light can be improved and statistical processing can be performed, and the measurement accuracy and data reliability can be improved. improves.

【0016】(ニ) どの高さ位置をレーザ光が通過し
たかがLED群の表示で分かるために受光器の設置が正
確で早く、測定作業が短縮できる。
(D) Since the height of the laser beam passed can be known from the display of the LED group, the light receiver can be installed accurately and quickly, and the measurement work can be shortened.

【0017】(ホ) 性能が向上するため経済的とな
る。
(E) It is economical because the performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にしたがい製作され測定に使用される受
光器の受光部分の一例を示す説明図。
FIG. 1 is an explanatory view showing an example of a light receiving portion of a light receiver manufactured according to the present invention and used for measurement.

【図2】受光器にフォトダイオードアレを設置した一例
を示すブロック図。
FIG. 2 is a block diagram showing an example in which a photodiode array is installed in a light receiver.

【図3】レーザ光による測点の高さを測定する所を示す
説明図。
FIG. 3 is an explanatory diagram showing a place where the height of a measuring point is measured by laser light.

【符号の説明】[Explanation of symbols]

1・・・シリンドリカルレンズ 2・・・測定用イメージセンサ 3・・・レーザ光 4・・・クロック 5・・・フォトダイオードアレ 6・・・LED 7・・・判定回路 8・・・タイミング回路 9・・・読み出し回路 1 ... Cylindrical lens 2 ... Measurement image sensor 3 ... Laser light 4 ... Clock 5 ... Photodiode array 6 ... LED 7 ... Judgment circuit 8 ... Timing circuit 9 ... Read-out circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須田 和男 埼玉県所沢市花園4−2589−47 (72)発明者 木下 敏 埼玉県飯能市栄町1−8 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuo Suda 4-2589-47 Hanazono, Tokorozawa City, Saitama Prefecture (72) Inventor Satoshi Kinoshita 1-8 Sakaemachi, Hanno City, Saitama Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転型赤外線レーザ発光器と組合せて使
用する受光器について、イメージセンサが焦点距離の二
倍以内で、かつ焦点距離を外した位置に来るようにシリ
ンドリカルレンズをイメージセンサの前面に取付け、ま
た、レーザ光がイメージセンサを通過する前側に数個の
フォトダイオードアレを取付けてイメージセンサと同期
させるとともに別位置に取付けた同数個のLEDに接続
してレーザ光受光を表示させるようにすることを特徴と
する光学式沈下測定システム。
1. A light receiving device used in combination with a rotary infrared laser emitting device, wherein a cylindrical lens is provided on the front surface of the image sensor so that the image sensor is located within the double of the focal length and out of the focal length. In order to display the laser light reception by mounting, several photodiode arrays are mounted on the front side where the laser light passes through the image sensor and are synchronized with the image sensor and connected to the same number of LEDs mounted at different positions. An optical squat measurement system characterized by:
JP24767493A 1993-10-04 1993-10-04 Optical settlement measurement system Expired - Fee Related JP2757952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24767493A JP2757952B2 (en) 1993-10-04 1993-10-04 Optical settlement measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24767493A JP2757952B2 (en) 1993-10-04 1993-10-04 Optical settlement measurement system

Publications (2)

Publication Number Publication Date
JPH07103757A true JPH07103757A (en) 1995-04-18
JP2757952B2 JP2757952B2 (en) 1998-05-25

Family

ID=17166972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24767493A Expired - Fee Related JP2757952B2 (en) 1993-10-04 1993-10-04 Optical settlement measurement system

Country Status (1)

Country Link
JP (1) JP2757952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108265B1 (en) * 2010-04-09 2012-01-31 성균관대학교산학협력단 A roll blind with orgel
CN109405764A (en) * 2018-11-27 2019-03-01 傅博 A kind of deformation auto-monitoring system based on laser ranging
CN115031684A (en) * 2022-04-25 2022-09-09 浙江图维科技股份有限公司 Tunnel settlement alarm system and method based on lens group

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108265B1 (en) * 2010-04-09 2012-01-31 성균관대학교산학협력단 A roll blind with orgel
CN109405764A (en) * 2018-11-27 2019-03-01 傅博 A kind of deformation auto-monitoring system based on laser ranging
CN109405764B (en) * 2018-11-27 2020-05-12 傅博 Automatic deformation monitoring system based on laser ranging
CN115031684A (en) * 2022-04-25 2022-09-09 浙江图维科技股份有限公司 Tunnel settlement alarm system and method based on lens group
CN115031684B (en) * 2022-04-25 2024-04-09 浙江图维科技股份有限公司 Tunnel settlement alarm system and method based on lens group

Also Published As

Publication number Publication date
JP2757952B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US3947129A (en) Apparatus for contactless measuring of the dimensions of objects
US4269512A (en) Electro-optical position-monitoring apparatus with tracking detector
US8085394B2 (en) Optoelectronic longitudinal measurement method and optoelectronic longitudinal measurement device
KR19990028413A (en) Optical proximity sensor
CN101472796A (en) Position detector
US11022682B2 (en) Simulation apparatus for a rotating lidar light measurement system
JPH1114357A (en) Automatic tracking device of surveying equipment
US20060033935A1 (en) Laser sheet generator
CN107015236A (en) Photoelectric sensor
KR900006577B1 (en) Checking device of shape
CN107429987A (en) Multi-diaphragm collimator and its displacement detection system
JPH07103757A (en) Optical subsidence measurement system
SE427584B (en) COMBINED SPEED AND DIMENSION SENSOR
KR860001316A (en) Tool position setting device
US4403862A (en) Visibility measuring apparatus using light conductors
US4867568A (en) Optoelectronic measuring system
US6864964B2 (en) Optical distance measuring device
CN208420636U (en) A kind of LED light source particle counting sensor
CN111024978A (en) Light curtain target auxiliary measuring device and using method thereof
JP2013130487A (en) Unequal displacement state observation device
CN109839514A (en) A kind of high-precision optical accelerometer with from zeroing function
SU983398A1 (en) Tracking system pickup
US6433857B1 (en) Optical traingulation displacement sensor using a diffraction grating
RU1780016C (en) Laser meter of object speed
CN211696441U (en) Linear light spot photoelectric sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees