JPH07103625A - Method for operating ice making machine - Google Patents

Method for operating ice making machine

Info

Publication number
JPH07103625A
JPH07103625A JP25447893A JP25447893A JPH07103625A JP H07103625 A JPH07103625 A JP H07103625A JP 25447893 A JP25447893 A JP 25447893A JP 25447893 A JP25447893 A JP 25447893A JP H07103625 A JPH07103625 A JP H07103625A
Authority
JP
Japan
Prior art keywords
ice
cooler
ice making
solenoid valve
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25447893A
Other languages
Japanese (ja)
Inventor
Haruhiko Yuasa
治彦 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25447893A priority Critical patent/JPH07103625A/en
Publication of JPH07103625A publication Critical patent/JPH07103625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PURPOSE:To rapidly finish an ice separation cycle and prevent an ice from getting out of shape as far as possible even with a structure by a liquid injection method. CONSTITUTION:There are provided a cooler 1 disposed in an ice making unit, condenser 14 for feeding liquefied refrigerant to the cooler 1 through a pressure reducing means 13, compressor 15 for compressing vaporized refrigerant from the cooler 1 to send it to the condenser 14, hot gas pipe 16 for feeding delivery gas before being fed to the condenser 14 directly to the inlet side of the cooler 1, and first solenoid valve 17 provided midway in the pipe 16. Further there are provided a pipe 18 which is branched from a pipe 24 interconnecting the condenser 14 and the means 13 to feed a part of liquid refrigerant to the low pressure side in the compressor 15, second solenoid valve 19 provided midway in the pipe 18, and outside air temperature sensor 20. And at the time of making ice, water for making ice is circulated to an ice making unit to make ice, and when outside temperature is lower than a set value, the second solenoid valve 19 is closed and when outside temperature is higher than the value, the second solenoid valve is opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製氷と離氷を交互に繰
り返して製氷を行なう製氷機で、液化冷媒の一部を圧縮
機内部の低圧側へ供給して圧縮機の冷却を行なう所謂リ
キッドインジェクション回路を具備した製氷機の運転方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice making machine which alternately makes ice making and ice making to make ice and cools the compressor by supplying a part of a liquefied refrigerant to a low pressure side inside the compressor. The present invention relates to an operation method of an ice making machine equipped with a liquid injection circuit.

【0002】[0002]

【従来技術】従来この種の製氷機は、冷媒としてR12
またはR502を冷凍サイクルに用いて製氷と離氷を行
なっていたが、近年のフロン規制で代替冷媒への切り替
えが各社一斉に行なわれている。その中でR22やR1
34aが代替冷媒として採用されているが、その中で
も、従来から使用されていたR22用の圧縮機が小型か
ら大型まで既に開発されている関係から広く採用されて
いる。このR22用の圧縮機の場合、実公平5ー264
35号公報に示す、吐出ガス温度の上昇を押さえる目的
から、液化冷媒の一部を圧縮機内部の低圧側に供給し、
そこで蒸発させて圧縮機を冷却するリキッドインジェク
ション方式が採用されている。
2. Description of the Related Art Conventionally, this type of ice making machine uses R12 as a refrigerant.
Alternatively, R502 was used for the refrigeration cycle to perform ice making and ice releasing, but due to recent CFC regulations, switching to alternative refrigerants is being carried out at all companies. Among them, R22 and R1
34a is used as an alternative refrigerant, but among them, the R22 compressor that has been conventionally used has been widely used because it has already been developed from small size to large size. In the case of this R22 compressor, the fairness is 5-264.
For the purpose of suppressing the rise in discharge gas temperature shown in Japanese Patent No. 35, a part of the liquefied refrigerant is supplied to the low pressure side inside the compressor,
Therefore, a liquid injection method of evaporating and cooling the compressor is adopted.

【0003】[0003]

【解決しようとする問題点】ところが、このリキッドイ
ンジェクションは、液化冷媒の一部を圧縮機内部の低圧
側に供給し、そこで蒸発させて圧縮機を冷却するもので
あり、製氷サイクルにおいては圧縮機を十分に冷却する
ので支障はないが、ホットガスで冷却器を加熱して氷を
離脱させる離氷サイクルでは、凝縮器に流入する前の圧
縮されて高温高圧となった気化冷媒を前記冷却器の入口
側に直接バイパスする配管により供給しているが、液化
冷媒の一部を圧縮機内部の低圧側に供給し、そこで蒸発
させて圧縮機を冷却している関係から、離氷サイクルの
初期は高温高圧となった気化冷媒を冷却器に送ることが
できるが、その後(実験では約40秒後)急激に冷媒温
度が低下してしまい、常温で約3分で離氷サイクルを終
了できたものが、約5分もかかってしまう。その結果、
1製氷サイクル当りの時間が延びた分だけ、1日当りの
サイクル数が減少し、1日当り製氷量の低下を招くとと
もに、冷却器からできた氷が離脱するまでの時間が長く
なってしまうので冷却器に接触している部分の氷が余分
に解かされてしまい、形状の崩れた氷となってしまうと
いう問題が発生した。
[Problems to be Solved] However, in this liquid injection, a part of the liquefied refrigerant is supplied to the low pressure side inside the compressor and evaporated there to cool the compressor. In the ice making cycle, the compressor is used. However, in the deicing cycle in which the cooler is heated by hot gas to release the ice, the vaporized refrigerant that has been compressed into high temperature and high pressure before flowing into the condenser is cooled by the cooler. The liquefied refrigerant is supplied to the low-pressure side inside the compressor and evaporated there to cool the compressor. Was able to send the vaporized refrigerant that became high temperature and high pressure to the cooler, but after that (after about 40 seconds in the experiment), the refrigerant temperature dropped sharply, and the deicing cycle could be completed in about 3 minutes at room temperature. Things Also it takes 5 minutes. as a result,
As the time per ice making cycle is extended, the number of cycles per day is reduced, which leads to a decrease in the amount of ice making per day, and the time until the ice formed from the cooler is released becomes longer, so cooling is performed. There was a problem that the ice in the part that was in contact with the container was unraveled excessively, and the ice became a shapeless shape.

【0004】本願発明は上述した問題点に鑑みてなされ
たもので、リキッドインジェクション方式の構造であっ
ても、離氷サイクルを速やかに終了させることができる
と共に、氷の形状が崩れることを極力防止することを目
的とした製氷機の運転方法を提供するものである。
The present invention has been made in view of the above-mentioned problems, and even with a liquid injection type structure, the ice removal cycle can be quickly terminated and the shape of ice is prevented from collapsing as much as possible. The present invention provides a method of operating an ice maker for the purpose of achieving the above.

【0005】[0005]

【問題を解決するための手段】本願の請求項1の発明
は、上述した目的を達成するための手段として、製氷部
に配設した冷却器と、該冷却器に減圧手段を介して液化
冷媒を供給する凝縮器と、前記冷却器からの気化冷媒を
圧縮して前記凝縮器に送り出す圧縮機と、前記凝縮器に
流入する前の圧縮された気化冷媒を前記冷却器の入口側
に直接流入させるホットガス管と、該ホットガス管の途
中に設けた第1の電磁弁と、前記凝縮器と前記減圧手段
を連結する冷媒パイプから分岐し液化冷媒の一部を圧縮
機内部の低圧側へ供給するバイパス管と、該バイパス管
の途中に設けられた第2の電磁弁と、外気温度を検知す
る外気温度センサーとを具備し、製氷運転時、前記製氷
部に製氷用水を循環して製氷すると共に、外気温度が設
定値より低いときは第2の電磁弁を閉弁し、設定値より
高いときは第2の電磁弁を開弁する製氷機の運転方法を
提供するものである。
As a means for achieving the above-mentioned object, the invention of claim 1 of the present application is a liquefied refrigerant through a cooler arranged in an ice making section and a decompression means in the cooler. And a compressor that supplies the compressed vaporized refrigerant from the cooler and sends the compressed vaporized refrigerant to the condenser, and the compressed vaporized refrigerant that has not flowed into the condenser directly flows into the inlet side of the cooler. A hot gas pipe, a first solenoid valve provided in the middle of the hot gas pipe, and a refrigerant pipe connecting the condenser and the pressure reducing means to part of the liquefied refrigerant to the low pressure side inside the compressor. A bypass pipe for supply, a second solenoid valve provided in the middle of the bypass pipe, and an outside air temperature sensor for detecting the outside air temperature are provided, and ice making water is circulated in the ice making section during ice making operation. When the outside air temperature is lower than the set value, Closes the second electromagnetic valve, is higher than the set value is to provide a method of operating an ice making machine which opens the second solenoid valve.

【0006】また、本願の請求項2の発明は、製氷部に
配設した冷却器と、該冷却器に減圧手段を介して液化冷
媒を供給する凝縮器と、前記冷却器からの気化冷媒を圧
縮して前記凝縮器に送り出す圧縮機と、前記凝縮器に流
入する前の圧縮された気化冷媒を前記冷却器の入口側に
直接流入させるホットガス管と、該ホットガス管の途中
に設けた第1の電磁弁と、前記凝縮器と前記減圧手段を
連結する冷媒パイプから分岐し液化冷媒の一部を圧縮機
内部の低圧側へ供給するバイパス管と、該バイパス管の
途中に設けた第2の電磁弁と、凝縮温度を検知する凝縮
温度センサーとを具備し、製氷運転時、前記製氷部に製
氷用水を循環して製氷すると共に、凝縮温度が設定値よ
り低いときは第2の電磁弁を閉弁し、設定値より高いと
きは第2の電磁弁を開弁する製氷機の運転方法を提供す
るものである。
The invention according to claim 2 of the present application includes a cooler arranged in the ice making section, a condenser for supplying the liquefied refrigerant to the cooler via a pressure reducing means, and a vaporized refrigerant from the cooler. A compressor that compresses and sends out to the condenser, a hot gas pipe that directly flows the compressed vaporized refrigerant before flowing into the condenser into the inlet side of the cooler, and a hot gas pipe provided in the middle of the hot gas pipe A first solenoid valve, a bypass pipe branched from a refrigerant pipe connecting the condenser and the pressure reducing means to supply a part of the liquefied refrigerant to the low pressure side inside the compressor, and a bypass pipe provided in the middle of the bypass pipe No. 2 solenoid valve and a condensing temperature sensor for detecting the condensing temperature, and during the ice making operation, ice making water is circulated in the ice making section to make ice, and when the condensing temperature is lower than a set value, the second electromagnetic valve is used. Second solenoid valve when the valve is closed and higher than the set value There is provided a method of operating an ice making machine which is opened.

【0007】また、本願の請求項3の発明は、製氷部に
配設した冷却器と、該冷却器に減圧手段を介して液化冷
媒を供給する凝縮器と、前記冷却器からの気化冷媒を圧
縮して前記凝縮器に送り出す圧縮機と、前記凝縮器に流
入する前の圧縮された気化冷媒を前記冷却器の入口側に
直接流入させるホットガス管と、該ホットガス管の途中
に設けた第1の電磁弁と、前記凝縮器と前記減圧手段を
連結する液化冷媒パイプから分岐し液化冷媒の一部を圧
縮機内部の低圧側へ供給するバイパス管と、該バイパス
管の途中に設けた第2の電磁弁とを具備し、製氷運転
時、前記製氷部に製氷用水を循環して製氷すると共に、
前記冷却器をホットガスで加熱することにより離氷を行
ない、製氷運転中は第2の電磁弁を開弁し、離氷運転中
は第2の電磁弁を閉弁する製氷機の運転方法を提供する
ものである。
Further, the invention of claim 3 of the present application comprises a cooler arranged in the ice making section, a condenser for supplying a liquefied refrigerant to the cooler via a pressure reducing means, and a vaporized refrigerant from the cooler. A compressor that compresses and sends out to the condenser, a hot gas pipe that directly flows the compressed vaporized refrigerant before flowing into the condenser into the inlet side of the cooler, and a hot gas pipe provided in the middle of the hot gas pipe A first solenoid valve, a bypass pipe branched from a liquefied refrigerant pipe connecting the condenser and the pressure reducing means to supply a part of the liquefied refrigerant to the low pressure side inside the compressor, and a bypass pipe provided in the middle of the bypass pipe. A second electromagnetic valve is provided, and at the time of ice making operation, water for ice making is circulated through the ice making part to make ice,
An ice making machine is operated by heating the cooler with hot gas to remove ice, opening the second solenoid valve during the ice making operation, and closing the second solenoid valve during the ice making operation. It is provided.

【0008】また、本願の請求項4の発明は、製氷部に
配設した冷却器と、該冷却器に減圧手段を介して液化冷
媒を供給する凝縮器と、前記冷却器からの気化冷媒を圧
縮して前記凝縮器に送り出す圧縮機と、前記凝縮器に流
入する前の圧縮された気化冷媒を前記冷却器の入口側に
直接流入させるホットガス管と、該ホットガス管の途中
に設けた第1の電磁弁と、前記凝縮器と前記減圧手段を
連結する液化冷媒パイプから分岐し液化冷媒の一部を圧
縮機内部の低圧側へ供給するバイパス管と、該バイパス
管の途中に設けた第2の電磁弁とを具備し、前記製氷部
に製氷用水を循環して製氷した後、前記冷却器をホット
ガスで加熱することにより離氷を行なうと共に、製氷運
転から所定時間第2の電磁弁を開弁し、離氷運転開始の
所定時間前から離氷運転終了まで第2の電磁弁を閉弁す
る製氷機の運転方法を提供するものである。
Further, according to the invention of claim 4 of the present application, a cooler arranged in the ice making section, a condenser for supplying the liquefied refrigerant to the cooler via a pressure reducing means, and a vaporized refrigerant from the cooler are provided. A compressor that compresses and sends out to the condenser, a hot gas pipe that directly flows the compressed vaporized refrigerant before flowing into the condenser into the inlet side of the cooler, and a hot gas pipe provided in the middle of the hot gas pipe A first solenoid valve, a bypass pipe branched from a liquefied refrigerant pipe connecting the condenser and the pressure reducing means to supply a part of the liquefied refrigerant to the low pressure side inside the compressor, and a bypass pipe provided in the middle of the bypass pipe. A second electromagnetic valve is provided, and ice-making water is circulated through the ice-making unit to make ice, and then the cooler is heated by hot gas to remove ice, and a second electromagnetic valve is operated for a predetermined time from the ice-making operation. Open the valve and release the valve from the specified time before the start of ice removal operation. There is provided a method of operating an ice making machine for closing the second solenoid valve to end of operation.

【0009】[0009]

【作用】本願の請求項1の発明は、外気温度が設定値よ
り低い場合は、圧縮機にて凝縮器に冷媒を送り出し、こ
の凝縮器から減圧手段を介して液化冷媒を冷却器に供給
し、冷却器からの気化冷媒が圧縮機に流入する様な冷媒
循環を行わせ、外気温度が設定温度より高い場合は、第
2の電磁弁を開弁して液化冷媒の一部を圧縮機の低圧側
へ流入し、圧縮機を冷却することができる様に運転す
る。
In the invention of claim 1 of the present application, when the outside air temperature is lower than the set value, the refrigerant is sent to the condenser by the compressor, and the liquefied refrigerant is supplied to the cooler from the condenser through the pressure reducing means. The refrigerant is circulated so that the vaporized refrigerant from the cooler flows into the compressor, and when the outside air temperature is higher than the set temperature, the second solenoid valve is opened to partially discharge the liquefied refrigerant to the compressor. Operates so that it can flow to the low pressure side and cool the compressor.

【0010】また、請求項2の発明に於いては、凝縮温
度が設定温度より低い場合は、圧縮機にて凝縮器に冷媒
を送り出し、この凝縮器から減圧手段を介して液化冷媒
を冷却器に供給し、冷却器からの気化冷媒が圧縮機に流
入する様な冷媒循環を行わせ、凝縮温度が設定温度より
高い場合は、第2の電磁弁を開弁して液化冷媒の一部を
圧縮機の低圧側へ流入し、圧縮機を冷却することができ
る様に運転する。
Further, in the invention of claim 2, when the condensing temperature is lower than the set temperature, the compressor sends the refrigerant to the condenser, and the liquefied refrigerant is cooled from the condenser via the pressure reducing means. The refrigerant is circulated so that the vaporized refrigerant from the cooler flows into the compressor, and when the condensation temperature is higher than the set temperature, the second solenoid valve is opened to partially discharge the liquefied refrigerant. It flows into the low pressure side of the compressor and operates so that it can be cooled.

【0011】また、請求項3の発明に於いては、製氷運
転中は、圧縮機にて凝縮器に冷媒を送り出し、この凝縮
器から減圧手段を介して液化冷媒を冷却器に供給し、冷
却器からの気化冷媒が圧縮機に流入する様な冷媒循環を
行わせ、製氷運転中は、第2の電磁弁を開弁して液化冷
媒の一部を圧縮機の低圧側へ流入し、圧縮機を冷却する
ことができる様に運転する。
Further, in the invention of claim 3, during the ice making operation, the refrigerant is sent to the condenser by the compressor, and the liquefied refrigerant is supplied from the condenser to the cooler through the pressure reducing means to cool the condenser. Refrigerant circulation is performed so that the vaporized refrigerant from the compressor flows into the compressor. During the ice making operation, the second solenoid valve is opened to allow a part of the liquefied refrigerant to flow into the low pressure side of the compressor and compress it. Operate the machine so that it can be cooled.

【0012】また、請求項4の発明に於いては、製氷運
転中の離氷運転が開始される所定時間前から離氷運転終
了まで、圧縮機にて凝縮器に冷媒を送り出し、この離氷
運転開始の所定時間前から凝縮器から減圧手段を介して
液化冷媒を冷却器に供給し、冷却器からの気化冷媒が圧
縮機に流入する様な冷媒循環を行わせ、それ以外の製氷
運転中には、第2の電磁弁を開弁して液化冷媒の一部を
圧縮機の低圧側へ流入し、圧縮機を冷却することができ
る様に運転する。
Further, in the invention of claim 4, the refrigerant is sent to the condenser by the compressor from a predetermined time before the ice removing operation is started during the ice making operation to the end of the ice removing operation, and the ice removing operation is performed. Liquefied refrigerant is supplied to the cooler from the condenser through the decompression means from a predetermined time before the start of operation, and the refrigerant is circulated so that the vaporized refrigerant from the cooler flows into the compressor, and during other ice making operations. First, the second solenoid valve is opened to allow a part of the liquefied refrigerant to flow into the low pressure side of the compressor, and the compressor is operated so that it can be cooled.

【0013】[0013]

【実施例】図1は本願の請求項1の発明の冷凍サイクル
を示す回路図、図2は本願の請求項2の発明の冷凍サイ
クルを示す回路図、図3は本願の請求項1の発明のタイ
ムチャート、図4は本願の請求項2の発明のタイムチャ
ート、図5は本願の請求項3の発明のタイムチャート、
図6は本願の請求項4の発明のタイムチャート、図7は
本発明の水皿を具備する製氷装置の側面図、図8は水皿
傾斜状態における製氷装置の斜視図である。
1 is a circuit diagram showing a refrigeration cycle according to the invention of claim 1 of the present application, FIG. 2 is a circuit diagram showing a refrigeration cycle of the invention of claim 2 of the present application, and FIG. 3 is an invention of claim 1 of the present application. 4 is a time chart of the invention of claim 2 of the present application, FIG. 5 is a time chart of the invention of claim 3 of the present application,
6 is a time chart of the invention of claim 4 of the present application, FIG. 7 is a side view of an ice making device including the water tray of the present invention, and FIG. 8 is a perspective view of the ice making device in a tilted state of the water tray.

【0014】図7及び図8において、逆セル型製氷装置
の概要構造を説明する。1は下向きに開口する多数の区
画された製氷室1Aを有する冷却器である。この冷却器
1の下側、即ち、製氷室1Aの開口面側には、後部に回
動支点3を有し、前側部に駆動モータ4A、駆動カム4
B及びコイル発条4C等よりなる駆動装置4を装設して
傾復動可能に構成した本発明の水皿5が配設され、更に
水皿5の下側には該水皿5と共に傾復動する上面開口の
水タンク6を配設している。
The outline structure of the reverse cell type ice making device will be described with reference to FIGS. 7 and 8. Reference numeral 1 is a cooler having a large number of partitioned ice making chambers 1A that open downward. On the lower side of the cooler 1, that is, on the opening surface side of the ice making chamber 1A, there is a rotation fulcrum 3 on the rear side, and on the front side, a drive motor 4A and a drive cam 4 are provided.
A water tray 5 of the present invention is provided which is provided with a drive unit 4 including B and a coil spring 4C, and is configured to be tiltable. Further, the water tray 5 is tilted together with the water tray 5 below the water tray 5. A water tank 6 having a movable upper surface opening is provided.

【0015】而して、水皿5は給水電磁弁7を介在した
外部水道系の可撓性給水管8が接続される給水口9と、
吸込側を水タンク6に接続した循環ポンプ10の吐出管
11が接続される製氷用水流下口12を有しており、給
水管8を通って給水口9から流入した水と、入口12か
ら流入した水タンク6内の製氷用水は水皿5へ導かれ
る。尚、この水皿5内には水位検出装置25が設けら
れ、この水位検出装置25が満水を検出した時に給水電
磁弁7を閉じる様に制御するものである。また、この水
タンク6内には水温を検知する水温センサー26が設け
られている。
Thus, the water tray 5 has a water supply port 9 to which a flexible water supply pipe 8 of an external water system having a water supply solenoid valve 7 is connected.
It has an ice making water flow-down port 12 to which a discharge pipe 11 of a circulation pump 10 whose suction side is connected to a water tank 6 is connected, and which flows through a water supply pipe 8 from a water supply port 9 and an inlet 12 The ice making water in the water tank 6 is guided to the water tray 5. A water level detection device 25 is provided in the water tray 5, and the water supply solenoid valve 7 is controlled to be closed when the water level detection device 25 detects full water. A water temperature sensor 26 for detecting the water temperature is provided in the water tank 6.

【0016】以上の様な逆セル型製氷機であって、その
冷媒回路構成を図1及び図2を参照して説明する。尚、
図1及び図2に於ける実線矢印は、製氷運転時の冷媒の
流れを示し、点線矢印は、離氷運転時の冷媒の流れを示
している。構成としては、液化冷媒を流入させる冷却器
1と、この冷却器1出口側の温度を検出して冷媒流量の
制御を行う膨張弁13と、前記冷却器1に前記膨張弁1
3と、レシーバータンク22、ドライコア23を介して
液化冷媒を供給する凝縮器14と、この凝縮器14を冷
却する凝縮器冷却用ファン25と、前記冷却器1からの
気化冷媒をアキュームレータ26を介して流入し、圧縮
して前記凝縮器14に送り出す圧縮機15と、前記凝縮
器14に流入する前の圧縮された気化冷媒を前記冷却器
1の入口側に直接流入させるホットガス管16と、この
ホットガス管16の途中に設けた第1の電磁弁17と、
凝縮器14から前記膨張弁13を連結する冷媒パイプ2
4から分岐し液化冷媒の一部を圧縮機15内部の低圧側
へ供給して圧縮機15の冷却を行うバイパス管18と、
このバイパス管18の途中に設けた第2の電磁弁19
と、このバイパス管18に設けられ、前記圧縮機15に
流入する前に冷媒量を絞る絞り装置27とよりなるもの
である。また、図1の20は外気温度センサで外気温度
を検知するものであり、図2の21は凝縮温度センサー
で凝縮温度を検知するものである。基本的回路構成は請
求項1の発明から請求項4の発明まで同じであるため、
回路構成の説明は図1及び図2の説明のみとする。
A refrigerant circuit configuration of the above-described reverse cell type ice making machine will be described with reference to FIGS. 1 and 2. still,
The solid arrows in FIGS. 1 and 2 indicate the flow of the refrigerant during the ice making operation, and the dotted arrows indicate the flow of the refrigerant during the ice removing operation. As a configuration, a cooler 1 for introducing a liquefied refrigerant, an expansion valve 13 for detecting a temperature at an outlet side of the cooler 1 to control a refrigerant flow rate, and the expansion valve 1 for the cooler 1 are provided.
3, a condenser 14 for supplying a liquefied refrigerant through the receiver tank 22 and the dry core 23, a condenser cooling fan 25 for cooling the condenser 14, and a vaporized refrigerant from the cooler 1 through an accumulator 26. A compressor 15 for inflowing, compressing and sending out to the condenser 14, and a hot gas pipe 16 for directly injecting the compressed vaporized refrigerant before flowing into the condenser 14 into the inlet side of the cooler 1, A first solenoid valve 17 provided in the middle of the hot gas pipe 16,
Refrigerant pipe 2 connecting the expansion valve 13 from the condenser 14
A bypass pipe 18 branched from 4 to supply a part of the liquefied refrigerant to the low pressure side inside the compressor 15 to cool the compressor 15;
The second solenoid valve 19 provided in the middle of the bypass pipe 18
And a throttle device 27 that is provided in the bypass pipe 18 and throttles the amount of the refrigerant before flowing into the compressor 15. Further, numeral 20 in FIG. 1 is for detecting the outside air temperature by the outside air temperature sensor, and numeral 21 in FIG. 2 is for detecting the condensation temperature by the condensation temperature sensor. Since the basic circuit configuration is the same from the invention of claim 1 to the invention of claim 4,
The circuit configuration will be described only with reference to FIGS. 1 and 2.

【0017】次に、請求項1の発明を図3のタイムチャ
ートに基づき動作を説明する。製氷開始後、給水電磁弁
7が開いて製氷水循環系統に給水され、水位検出装置2
5により所定水位まで給水された時点で給水電磁弁7を
閉じて給水を完了する。圧縮機15と凝縮器冷却用ファ
ン25と製氷水循環系統の循環ポンプ10が運転し、製
氷運転を行なう。製氷水循環系統の水温が所定水温まで
低下したことを水温センサー26が検出すると第1の製
氷タイマーがカウントを開始する。この時、外気温度セ
ンサ20で周囲温度を検知するが、検出された温度が、
所定温度(例えば30℃)より高い場合は、前記バイパ
ス管18の第2の電磁弁19を開いて圧縮機15の低圧
側へ液化冷媒を供給して圧縮機15の冷却を行ない、検
出された温度が、所定温度(例えば30℃)より低い場
合は、バイパス管18の第2の電磁弁19を閉じて圧縮
機の低圧側への液化冷媒供給を停止する。その後、第1
の製氷タイマーが所定回数カウントを行なうと、製氷運
転を終了して離氷運転に移行する。離氷運転を開始する
とホットガス管16の第1の電磁弁17を開いて冷却器
1にホットガスを供給するとともに駆動装置4を運転し
て水皿5を開き冷却器1内の角氷を脱氷させる。この運
転においても外気温度センサ20で周囲温度を検知する
が、検出された温度が、所定温度(例えば30℃)より
高い場合は、前記バイパス管18の第2の電磁弁19を
開いて圧縮機15の低圧側へ液化冷媒を供給して圧縮機
15の冷却を行ない、検出された温度が、所定温度(例
えば30℃)より低い場合は、バイパス管18の第2の
電磁弁19を閉じて圧縮機の低圧側への液化冷媒供給を
停止する。冷却器1から角氷が脱氷すると再び駆動装置
4を運転して水皿5を閉じ、次の製氷運転に移行する。
Next, the operation of the invention of claim 1 will be described with reference to the time chart of FIG. After the start of ice making, the water supply solenoid valve 7 is opened to supply water to the ice making water circulation system, and the water level detecting device 2
When the water is supplied to the predetermined water level by 5, the water supply solenoid valve 7 is closed to complete the water supply. The compressor 15, the condenser cooling fan 25, and the circulation pump 10 of the ice making water circulation system operate to perform ice making operation. When the water temperature sensor 26 detects that the water temperature of the ice making water circulation system has dropped to a predetermined water temperature, the first ice making timer starts counting. At this time, the ambient temperature is detected by the outside air temperature sensor 20, but the detected temperature is
When the temperature is higher than a predetermined temperature (for example, 30 ° C.), the second electromagnetic valve 19 of the bypass pipe 18 is opened to supply the liquefied refrigerant to the low pressure side of the compressor 15 to cool the compressor 15, and it is detected. When the temperature is lower than the predetermined temperature (for example, 30 ° C.), the second electromagnetic valve 19 of the bypass pipe 18 is closed to stop the supply of the liquefied refrigerant to the low pressure side of the compressor. Then the first
When the ice making timer of (1) counts a predetermined number of times, the ice making operation is terminated and the ice making operation is started. When the ice removing operation is started, the first electromagnetic valve 17 of the hot gas pipe 16 is opened to supply the hot gas to the cooler 1, and the driving device 4 is operated to open the water tray 5 to open the ice cubes in the cooler 1. De-ice. Even in this operation, the ambient temperature is detected by the outside air temperature sensor 20, but when the detected temperature is higher than a predetermined temperature (for example, 30 ° C.), the second electromagnetic valve 19 of the bypass pipe 18 is opened to open the compressor. When the liquefied refrigerant is supplied to the low pressure side of 15 to cool the compressor 15 and the detected temperature is lower than a predetermined temperature (for example, 30 ° C.), the second solenoid valve 19 of the bypass pipe 18 is closed. The supply of liquefied refrigerant to the low pressure side of the compressor is stopped. When the ice cubes are deiced from the cooler 1, the drive device 4 is operated again to close the water tray 5, and the next ice making operation is started.

【0018】次に、請求項2の発明を図4のタイムチャ
ートに基づき動作を説明する。製氷開始後、給水電磁弁
7が開いて製氷水循環系統に給水され、水位検出装置2
5により所定水位まで給水された時点で給水電磁弁7を
閉じて給水を完了する。圧縮機15と凝縮器冷却用ファ
ン25と製氷水循環系統の循環ポンプ10が運転し、製
氷運転を行なう。製氷水循環系統の水温が所定水温まで
低下したことを水温センサー26が検出すると第1の製
氷タイマーがカウントを開始する。この時、凝縮温度セ
ンサ21で凝縮温度を検知するが、検出された温度が、
所定温度より高い場合は、前記バイパス管18の第2の
電磁弁19を開いて圧縮機15の低圧側へ液化冷媒を供
給して圧縮機15の冷却を行ない、検出された温度が、
所定温度より低い場合は、バイパス管18の第2の電磁
弁19を閉じて圧縮機の低圧側への液化冷媒供給を停止
する。その後、第1の製氷タイマーが所定回数カウント
を行なうと、製氷運転を終了して離氷運転に移行する。
離氷運転を開始するとホットガス管16の第1の電磁弁
17を開いて冷却器1にホットガスを供給するとともに
駆動装置4を運転して水皿5を開き冷却器1内の角氷を
脱氷させる。この運転においても凝縮温度センサ21で
凝縮温度を検知するが、検出された温度が、所定温度よ
り高い場合は、前記バイパス管18の第2の電磁弁19
を開いて圧縮機15の低圧側へ液化冷媒を供給して圧縮
機15の冷却を行ない、検出された温度が、所定温度よ
り低い場合は、バイパス管18の第2の電磁弁19を閉
じて圧縮機の低圧側への液化冷媒供給を停止する。冷却
器1から角氷が脱氷すると再び駆動装置4を運転して水
皿5を閉じ、次の製氷運転に移行する。
Next, the operation of the invention of claim 2 will be described based on the time chart of FIG. After the start of ice making, the water supply solenoid valve 7 is opened to supply water to the ice making water circulation system, and the water level detecting device 2
When the water is supplied to the predetermined water level by 5, the water supply solenoid valve 7 is closed to complete the water supply. The compressor 15, the condenser cooling fan 25, and the circulation pump 10 of the ice making water circulation system operate to perform ice making operation. When the water temperature sensor 26 detects that the water temperature of the ice making water circulation system has dropped to a predetermined water temperature, the first ice making timer starts counting. At this time, the condensing temperature sensor 21 detects the condensing temperature, but the detected temperature is
When the temperature is higher than the predetermined temperature, the second electromagnetic valve 19 of the bypass pipe 18 is opened to supply the liquefied refrigerant to the low pressure side of the compressor 15 to cool the compressor 15, and the detected temperature is
When the temperature is lower than the predetermined temperature, the second electromagnetic valve 19 of the bypass pipe 18 is closed to stop the supply of the liquefied refrigerant to the low pressure side of the compressor. After that, when the first ice making timer counts a predetermined number of times, the ice making operation is ended and the ice making operation is started.
When the ice removing operation is started, the first electromagnetic valve 17 of the hot gas pipe 16 is opened to supply the hot gas to the cooler 1, and the driving device 4 is operated to open the water tray 5 to open the ice cubes in the cooler 1. De-ice. In this operation as well, the condensation temperature sensor 21 detects the condensation temperature, but if the detected temperature is higher than a predetermined temperature, the second solenoid valve 19 of the bypass pipe 18 is detected.
Is opened to supply the liquefied refrigerant to the low pressure side of the compressor 15 to cool the compressor 15. When the detected temperature is lower than a predetermined temperature, the second solenoid valve 19 of the bypass pipe 18 is closed. The supply of liquefied refrigerant to the low pressure side of the compressor is stopped. When the ice cubes are deiced from the cooler 1, the drive device 4 is operated again to close the water tray 5, and the next ice making operation is started.

【0019】次に、請求項3の発明を図5のタイムチャ
ートに基づき動作を説明する。離氷運転の終了後、製氷
運転の開始と同時に、前記バイパス管18の第2の電磁
弁19を開いて圧縮機15の低圧側へ液化冷媒を供給し
て圧縮機15の冷却を行なうと共に、給水電磁弁7が開
いて製氷水循環系統に給水され、水位検出装置25によ
り所定水位まで給水された時点で給水電磁弁7を閉じて
給水を完了する。圧縮機15と凝縮器冷却用ファン25
と製氷水循環系統の循環ポンプ10が運転し、製氷運転
を行なう。製氷水循環系統の水温が所定水温まで低下し
たことを水温センサー26が検出すると第1の製氷タイ
マーがカウントを開始する。その後、第1の製氷タイマ
ーが所定回数カウントを行なうと、製氷運転を終了して
離氷運転に移行するが、この離氷運転の開始と共に、バ
イパス管18の第2の電磁弁19を閉じて圧縮機の低圧
側への液化冷媒供給を停止する。離氷運転を開始すると
ホットガス管16の第1の電磁弁17を開いて冷却器1
にホットガスを供給するとともに駆動装置4を運転して
水皿5を開き冷却器1内の角氷を脱氷させる。冷却器1
から角氷が脱氷すると再び駆動装置4を運転して水皿5
を閉じ、次の製氷運転に移行する。 次に、請求項4の
発明を図6のタイミングチャートに基づいて説明する。
製氷運転開始と同時に、前記バイパス管18の第2の電
磁弁19を開いて圧縮機15の低圧側へ液化冷媒を供給
して圧縮機15の冷却を行ない、第2の製氷タイマーに
て所定時間経過するまで第2の電磁弁19を開の状態と
する。また製氷開始と同時に、給水電磁弁7が開いて製
氷水循環系統に給水され、水位検出装置25により所定
水位まで給水された時点で給水電磁弁7を閉じて給水を
完了する。圧縮機15と凝縮器冷却用ファン25と製氷
水循環系統の循環ポンプ10が運転し、製氷運転を行な
う。製氷水循環系統の水温が所定水温まで低下したこと
を水温センサー26が検出すると第1の製氷タイマーが
カウントを開始する。製氷運転中に、第2の製氷タイマ
ーが所定時間を計測した場合、前記第2の電磁弁19を
閉弁する。その後、第1の製氷タイマーが所定回数カウ
ントを行なうと、製氷運転を終了して離氷運転に移行す
る。離氷運転を開始するとホットガス管16の第1の電
磁弁17を開いて冷却器1にホットガスを供給するとと
もに駆動装置4を運転して水皿5を開き冷却器1内の角
氷を脱氷させる。冷却器1から角氷が脱氷すると再び駆
動装置4を運転して水皿5を閉じ、次の製氷運転に移行
すると共に、第2の電磁弁19を開いて、圧縮機15の
低圧側へ液化冷媒を供給して圧縮機15の冷却を行な
う。
Next, the operation of the invention of claim 3 will be described with reference to the time chart of FIG. At the same time as the start of the ice making operation after the end of the ice removing operation, the second electromagnetic valve 19 of the bypass pipe 18 is opened to supply the liquefied refrigerant to the low pressure side of the compressor 15 to cool the compressor 15. The water supply solenoid valve 7 is opened to supply water to the ice making water circulation system, and when the water level detection device 25 supplies water to a predetermined water level, the water supply solenoid valve 7 is closed to complete the water supply. Compressor 15 and condenser cooling fan 25
The circulation pump 10 of the ice making water circulation system operates to perform ice making operation. When the water temperature sensor 26 detects that the water temperature of the ice making water circulation system has dropped to a predetermined water temperature, the first ice making timer starts counting. After that, when the first ice making timer counts a predetermined number of times, the ice making operation is finished and the ice making operation is started, but at the same time as the start of the ice making operation, the second solenoid valve 19 of the bypass pipe 18 is closed. The supply of liquefied refrigerant to the low pressure side of the compressor is stopped. When the ice removing operation is started, the first solenoid valve 17 of the hot gas pipe 16 is opened to open the cooler 1
Hot gas is supplied to the device and the drive device 4 is operated to open the water tray 5 to deice the ice cubes in the cooler 1. Cooler 1
When the ice cubes are removed from the ice cube, the drive device 4 is operated again to drive the water tray 5
Is closed and the next ice making operation is started. Next, the invention of claim 4 will be described based on the timing chart of FIG.
Simultaneously with the start of the ice making operation, the second solenoid valve 19 of the bypass pipe 18 is opened to supply the liquefied refrigerant to the low pressure side of the compressor 15 to cool the compressor 15, and the second ice making timer gives a predetermined time. The second solenoid valve 19 is kept open until the time elapses. Simultaneously with the start of ice making, the water supply solenoid valve 7 is opened to supply water to the ice making water circulation system, and when the water level detecting device 25 supplies water to a predetermined water level, the water supply solenoid valve 7 is closed to complete the water supply. The compressor 15, the condenser cooling fan 25, and the circulation pump 10 of the ice making water circulation system operate to perform ice making operation. When the water temperature sensor 26 detects that the water temperature of the ice making water circulation system has dropped to a predetermined water temperature, the first ice making timer starts counting. When the second ice making timer measures a predetermined time during the ice making operation, the second electromagnetic valve 19 is closed. After that, when the first ice making timer counts a predetermined number of times, the ice making operation is ended and the ice making operation is started. When the ice removing operation is started, the first electromagnetic valve 17 of the hot gas pipe 16 is opened to supply the hot gas to the cooler 1, and the driving device 4 is operated to open the water tray 5 to open the ice cubes in the cooler 1. De-ice. When ice cubes are deiced from the cooler 1, the drive device 4 is operated again to close the water tray 5 to shift to the next ice making operation, and at the same time, the second solenoid valve 19 is opened to the low pressure side of the compressor 15. The liquefied refrigerant is supplied to cool the compressor 15.

【0020】尚、本実施例では逆セル型製氷機に於いて
説明したが、本願発明の主旨を逸脱しない範囲で、オー
ガー式製氷機、流下式製氷機等に用いても良い。
Although the reverse cell type ice making machine is described in this embodiment, the reverse cell type ice making machine may be used in an auger type ice making machine, a falling type ice making machine and the like without departing from the gist of the present invention.

【0021】[0021]

【効果】本願の請求項1の発明は、以上説明した様な運
転制御を行うことにより、外気温度が所定温度より低い
場合には、通常の冷凍サイクルを行い、外気温度が所定
温度より高い場合には、液化冷媒の一部を圧縮機の低圧
側に流入させ、圧縮機を冷却することができると共に、
離氷時間の短縮化が図れ、外気温度によって製氷能力が
低下してしまう事を防止でき、品質の良い氷を安定的に
提供できるものである。
According to the invention of claim 1 of the present application, by performing the operation control as described above, when the outside air temperature is lower than the predetermined temperature, a normal refrigeration cycle is performed, and when the outside air temperature is higher than the predetermined temperature. In addition, a part of the liquefied refrigerant can be made to flow into the low pressure side of the compressor to cool the compressor,
It is possible to shorten the ice-free time, prevent the ice-making ability from decreasing due to the outside air temperature, and stably provide high-quality ice.

【0022】また、本願の請求項2の発明は、凝縮温度
が所定温度より低い場合には、通常の冷凍サイクルを行
い、凝縮温度が所定温度より高い場合には、液化冷媒の
一部を圧縮機の低圧側に流入させ、圧縮機を冷却するこ
とができると共に、離氷時間の短縮化が図れ、凝縮温度
によって製氷能力が低下してしまう事を防止でき、品質
の良い氷を安定的に提供できるものである。
Further, in the invention of claim 2 of the present application, when the condensing temperature is lower than the predetermined temperature, a normal refrigeration cycle is performed, and when the condensing temperature is higher than the predetermined temperature, a part of the liquefied refrigerant is compressed. It can flow into the low pressure side of the machine to cool the compressor, shorten the ice removal time, prevent the ice making capacity from decreasing due to the condensation temperature, and stabilize the quality of ice. Can be provided.

【0023】また、本願の請求項3の発明は、製氷運転
時には圧縮機の低圧側に液化冷媒を流して圧縮機を冷却
し、冷却器の冷却効率を良くして、効率的な製氷運転を
行うと共に、離氷運転時には冷却器にはホットガスを流
すため、圧縮機を冷却せずに高温高圧の冷媒を流し、効
率良く離氷を行う。このため、製氷、離氷の運転を効率
的且つ安定的に運転制御することができ、品質の良い氷
を安定的に提供することができるものである。
Further, according to the invention of claim 3 of the present application, during the ice making operation, the liquefied refrigerant is caused to flow to the low pressure side of the compressor to cool the compressor, and the cooling efficiency of the cooler is improved to perform an efficient ice making operation. At the same time, since hot gas flows through the cooler during ice removal operation, high-temperature and high-pressure refrigerant is allowed to flow without cooling the compressor, and ice removal is efficiently performed. Therefore, it is possible to efficiently and stably control the operations of ice making and ice removing, and to stably provide high quality ice.

【0024】また、本願の請求項4の発明は、製氷運転
時の途中まで圧縮機の低圧側に液化冷媒を流し、圧縮機
を冷却することができ、製氷運転の途中から、即ち、離
氷運転に移行する所定時間だけ前から圧縮機の冷却を停
止するため、圧縮機の冷却が不要となる離氷運転に移行
する時には、初期から高温高圧の冷媒を冷却に流すこと
ができ、製氷、離氷運転を効率的且つ安定的に運転制御
することができるため、品質の良い氷を安定的に提供す
ることができるものである。
Further, according to the invention of claim 4 of the present application, the liquefied refrigerant can be made to flow to the low pressure side of the compressor until the middle of the ice making operation to cool the compressor. Since the cooling of the compressor is stopped for a predetermined time before the operation starts, when the operation shifts to the ice-free operation where cooling of the compressor is unnecessary, a high-temperature and high-pressure refrigerant can be made to flow from the initial stage for cooling, ice making, Since the ice-free operation can be efficiently and stably controlled, it is possible to stably provide high-quality ice.

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の請求項1の発明の冷凍サイクルを示す回
路図である。
FIG. 1 is a circuit diagram showing a refrigeration cycle of the invention of claim 1 of the present application.

【図2】本願の請求項2の発明の冷凍サイクルを示す回
路図である。
FIG. 2 is a circuit diagram showing a refrigeration cycle according to the invention of claim 2 of the present application.

【図3】本願の請求項1の発明のタイムチャートであ
る。
FIG. 3 is a time chart of the invention of claim 1 of the present application.

【図4】本願の請求項2の発明のタイムチャートであ
る。
FIG. 4 is a time chart of the invention of claim 2 of the present application.

【図5】本願の請求項3の発明のタイムチャートであ
る。
FIG. 5 is a time chart of the invention of claim 3 of the present application.

【図6】本願の請求項4の発明のタイムチャートであ
る。
FIG. 6 is a time chart of the invention of claim 4 of the present application.

【図7】本発明の水皿を具備する製氷装置の側面図であ
る。
FIG. 7 is a side view of an ice making device including the water tray of the present invention.

【図8】水皿傾斜状態における製氷装置の斜視図であ
る。
FIG. 8 is a perspective view of the ice making device in a tilted state of the water tray.

【符号の説明】 1 冷却器 2 製氷部 13 減圧手段 14 凝縮器 15 圧縮機 16 ホットガス管 17 第1の電磁弁 18 バイパス管 19 第2の電磁弁 20 外気温度センサー 21 凝縮温度センサー 24 冷媒パイプ[Explanation of reference numerals] 1 cooler 2 ice making section 13 decompression means 14 condenser 15 compressor 16 hot gas pipe 17 first solenoid valve 18 bypass pipe 19 second solenoid valve 20 outside air temperature sensor 21 condensation temperature sensor 24 refrigerant pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25C 1/00 301 Z 1/04 302 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F25C 1/00 301 Z 1/04 302 302 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 製氷部に配設した冷却器と、該冷却器に
減圧手段を介して液化冷媒を供給する凝縮器と、前記冷
却器からの気化冷媒を圧縮して前記凝縮器に送り出す圧
縮機と、前記凝縮器に流入する前の圧縮された気化冷媒
を前記冷却器の入口側に直接流入させるホットガス管
と、該ホットガス管の途中に設けた第1の電磁弁と、前
記凝縮器と前記減圧手段を連結する冷媒パイプから分岐
し液化冷媒の一部を圧縮機内部の低圧側へ供給するバイ
パス管と、該バイパス管の途中に設けられた第2の電磁
弁と、外気温度を検知する外気温度センサーとを具備
し、製氷運転時、前記製氷部に製氷用水を循環して製氷
すると共に、外気温度が設定値より低いときは第2の電
磁弁を閉弁し、設定値より高いときは第2の電磁弁を開
弁することを特徴とする製氷機の運転方法。
1. A cooler arranged in an ice making section, a condenser for supplying a liquefied refrigerant to the cooler via a pressure reducing means, and a compressor for compressing the vaporized refrigerant from the cooler and sending it to the condenser. Machine, a hot gas pipe for directly flowing the compressed vaporized refrigerant before flowing into the condenser to the inlet side of the cooler, a first solenoid valve provided in the middle of the hot gas pipe, and the condensing Bypass pipe for branching from a refrigerant pipe connecting the pressure reducing means to the compressor and supplying a part of the liquefied refrigerant to the low pressure side inside the compressor, a second solenoid valve provided in the middle of the bypass pipe, and an outside air temperature An outside air temperature sensor for detecting the temperature, and during the ice making operation, the ice making water is circulated in the ice making section to make ice, and when the outside air temperature is lower than the set value, the second solenoid valve is closed to set the value. When it is higher, the second solenoid valve is opened. How to operate an ice maker.
【請求項2】 製氷部に配設した冷却器と、該冷却器に
減圧手段を介して液化冷媒を供給する凝縮器と、前記冷
却器からの気化冷媒を圧縮して前記凝縮器に送り出す圧
縮機と、前記凝縮器に流入する前の圧縮された気化冷媒
を前記冷却器の入口側に直接流入させるホットガス管
と、該ホットガス管の途中に設けた第1の電磁弁と、前
記凝縮器と前記減圧手段を連結する冷媒パイプから分岐
し液化冷媒の一部を圧縮機内部の低圧側へ供給するバイ
パス管と、該バイパス管の途中に設けた第2の電磁弁
と、凝縮温度を検知する凝縮温度センサーとを具備し、
製氷運転時、前記製氷部に製氷用水を循環して製氷する
と共に、凝縮温度が設定値より低いときは第2の電磁弁
を閉弁し、設定値より高いときは第2の電磁弁を開弁す
ることを特徴とする製氷機の運転方法。
2. A cooler arranged in the ice making section, a condenser for supplying the liquefied refrigerant to the cooler via a pressure reducing means, and a compressor for compressing the vaporized refrigerant from the cooler and sending it to the condenser. Machine, a hot gas pipe for directly flowing the compressed vaporized refrigerant before flowing into the condenser to the inlet side of the cooler, a first solenoid valve provided in the middle of the hot gas pipe, and the condensing Bypass pipe for branching from the refrigerant pipe connecting the pressure reducing means to the pressure reducing means and supplying a part of the liquefied refrigerant to the low pressure side inside the compressor, a second solenoid valve provided in the middle of the bypass pipe, and a condensing temperature Equipped with a condensing temperature sensor to detect,
During the ice making operation, the ice making water is circulated in the ice making section to make ice, and the second solenoid valve is closed when the condensation temperature is lower than the set value, and the second solenoid valve is opened when the condensation temperature is higher than the set value. A method for operating an ice maker, which comprises a valve.
【請求項3】 製氷部に配設した冷却器と、該冷却器に
減圧手段を介して液化冷媒を供給する凝縮器と、前記冷
却器からの気化冷媒を圧縮して前記凝縮器に送り出す圧
縮機と、前記凝縮器に流入する前の圧縮された気化冷媒
を前記冷却器の入口側に直接流入させるホットガス管
と、該ホットガス管の途中に設けた第1の電磁弁と、前
記凝縮器と前記減圧手段を連結する液化冷媒パイプから
分岐し液化冷媒の一部を圧縮機内部の低圧側へ供給する
バイパス管と、該バイパス管の途中に設けた第2の電磁
弁とを具備し、製氷運転時、前記製氷部に製氷用水を循
環して製氷すると共に、前記冷却器をホットガスで加熱
することにより離氷を行ない、製氷運転中は第2の電磁
弁を開弁し、離氷運転中は第2の電磁弁を閉弁すること
を特徴とする製氷機の運転方法。
3. A cooler arranged in the ice making section, a condenser for supplying a liquefied refrigerant to the cooler via a pressure reducing means, and a compressor for compressing the vaporized refrigerant from the cooler and sending it to the condenser. Machine, a hot gas pipe for directly flowing the compressed vaporized refrigerant before flowing into the condenser to the inlet side of the cooler, a first solenoid valve provided in the middle of the hot gas pipe, and the condensing A bypass pipe that branches from a liquefied refrigerant pipe connecting the pressure reducing means to the pressure reducing means and supplies a part of the liquefied refrigerant to the low pressure side inside the compressor; and a second solenoid valve provided in the middle of the bypass pipe. During the ice making operation, the ice making water is circulated in the ice making section to make ice, and the cooling device is heated by hot gas to remove the ice, and the second solenoid valve is opened and released during the ice making operation. The second electromagnetic valve is closed during ice operation. how to drive.
【請求項4】 製氷部に配設した冷却器と、該冷却器に
減圧手段を介して液化冷媒を供給する凝縮器と、前記冷
却器からの気化冷媒を圧縮して前記凝縮器に送り出す圧
縮機と、前記凝縮器に流入する前の圧縮された気化冷媒
を前記冷却器の入口側に直接流入させるホットガス管
と、該ホットガス管の途中に設けた第1の電磁弁と、前
記凝縮器と前記減圧手段を連結する液化冷媒パイプから
分岐し液化冷媒の一部を圧縮機内部の低圧側へ供給する
バイパス管と、該バイパス管の途中に設けた第2の電磁
弁とを具備し、前記製氷部に製氷用水を循環して製氷し
た後、前記冷却器をホットガスで加熱することにより離
氷を行なうと共に、製氷運転から所定時間第2の電磁弁
を開弁し、離氷運転開始の所定時間前から離氷運転終了
まで第2の電磁弁を閉弁することを特徴とする製氷機の
運転方法。
4. A cooler arranged in the ice making section, a condenser for supplying a liquefied refrigerant to the cooler via a pressure reducing means, and a compressor for compressing the vaporized refrigerant from the cooler and sending it to the condenser. Machine, a hot gas pipe for directly flowing the compressed vaporized refrigerant before flowing into the condenser to the inlet side of the cooler, a first solenoid valve provided in the middle of the hot gas pipe, and the condensing A bypass pipe that branches from a liquefied refrigerant pipe connecting the pressure reducing means to the pressure reducing means and supplies a part of the liquefied refrigerant to the low pressure side inside the compressor; and a second solenoid valve provided in the middle of the bypass pipe. After ice-making water is circulated in the ice-making unit to make ice, the ice cooler is heated by hot gas to remove ice, and the second solenoid valve is opened for a predetermined time from ice-making operation to perform ice-release operation. The second solenoid valve is closed from a predetermined time before the start until the end of the ice removal operation. A method for operating an ice maker, which comprises a valve.
JP25447893A 1993-10-12 1993-10-12 Method for operating ice making machine Pending JPH07103625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25447893A JPH07103625A (en) 1993-10-12 1993-10-12 Method for operating ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25447893A JPH07103625A (en) 1993-10-12 1993-10-12 Method for operating ice making machine

Publications (1)

Publication Number Publication Date
JPH07103625A true JPH07103625A (en) 1995-04-18

Family

ID=17265612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25447893A Pending JPH07103625A (en) 1993-10-12 1993-10-12 Method for operating ice making machine

Country Status (1)

Country Link
JP (1) JPH07103625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003842A (en) * 2010-11-04 2011-04-06 三花丹佛斯(杭州)微通道换热器有限公司 Evaporator and refrigeration system with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003842A (en) * 2010-11-04 2011-04-06 三花丹佛斯(杭州)微通道换热器有限公司 Evaporator and refrigeration system with same

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
JP2019500569A (en) Ice maker with dual circuit evaporator for hydrocarbon refrigerant
US2563093A (en) Ice-making machine
RU2456516C2 (en) Method to operate refrigerating unit, comprising parallel joined evaporators, and refrigerating unit
CN1732362A (en) Refrigeration system to cool a mix
EP1589305A1 (en) Ice-Making Apparatus
US3922875A (en) Refrigeration system with auxiliary defrost heat tank
US4009594A (en) Hot gas defrosting apparatus
US4884413A (en) Ice machine
WO2005061976A1 (en) Refrigerator
JPH07103625A (en) Method for operating ice making machine
JP5027685B2 (en) How to operate a jet ice maker
JPH0961025A (en) Ice making machine
JP3573911B2 (en) Ice machine control device
JPH07146014A (en) Refrigeration cycle control method in liquid cooling device, and liquid cooling device
JP2009222379A (en) Automatic ice maker
JPH05308943A (en) Freezing equipment
JPS5939571Y2 (en) automatic ice maker
JP2001263883A (en) Hot gas defrosting type refrigerating/cold storage unit
JP3735531B2 (en) Refrigeration apparatus and ice making machine using the same
JPH09318229A (en) Refrigerating device
KR102298724B1 (en) Ice maker and method for controlling the same
JP3332758B2 (en) Frozen dessert production equipment
JPH06147660A (en) Method for operating freezer device
JPH0579712A (en) Operation controller of refrigerator