JPH07103081B2 - Method for producing α-hydroxyisobutyramide - Google Patents

Method for producing α-hydroxyisobutyramide

Info

Publication number
JPH07103081B2
JPH07103081B2 JP2149959A JP14995990A JPH07103081B2 JP H07103081 B2 JPH07103081 B2 JP H07103081B2 JP 2149959 A JP2149959 A JP 2149959A JP 14995990 A JP14995990 A JP 14995990A JP H07103081 B2 JPH07103081 B2 JP H07103081B2
Authority
JP
Japan
Prior art keywords
catalyst
reactor
ach
manganese
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2149959A
Other languages
Japanese (ja)
Other versions
JPH0446145A (en
Inventor
皆人 唐沢
将実 猪俣
弘春 景山
兼光 深山
伸司 得能
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP2149959A priority Critical patent/JPH07103081B2/en
Publication of JPH0446145A publication Critical patent/JPH0446145A/en
Publication of JPH07103081B2 publication Critical patent/JPH07103081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα−ヒドロキシイソブチルアミドの製造方法に
関する。さらに、詳しくは、アセトンシアンヒドリン
(以下、ACHと略する)と水とを液相で連続的に反応さ
せて、α−ヒドロキシイソブチルアミド(以下、HAMと
略する)を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing α-hydroxyisobutyramide. More specifically, it relates to a method for producing α-hydroxyisobutyramide (hereinafter abbreviated as HAM) by continuously reacting acetone cyanohydrin (hereinafter abbreviated as ACH) and water in a liquid phase. Is.

〔従来の技術〕[Conventional technology]

一般にアミド化合物は、相応するニトリル化合物と水と
の反応でできることが公知であり、この反応に有効な触
媒が種々知られている。
It is generally known that an amide compound can be formed by reacting a corresponding nitrile compound with water, and various catalysts effective for this reaction are known.

米国特許第3,366,639号に記載されているマンガン酸化
物もその一つである。
The manganese oxide described in US Pat. No. 3,366,639 is one of them.

ニトリル化合物の水和反応に多用される銅含有触媒が、
ACHなどのα−ヒドロキシニトリル化合物の水和に全く
不十分な成績しか与えないのに反して、マンガン酸化物
は西ドイツ特許第2,131,813号に開示されているよう
に、ACHの水和に対してもかなりの成績を与えるという
特徴がある。
Copper-containing catalyst often used for hydration of nitrile compounds,
On the contrary, manganese oxides, as disclosed in West German Patent No. 2,131,813, also give poor results for hydration of α-hydroxynitrile compounds such as ACH. It has the characteristic of giving considerable results.

また、特開昭52-222号には、触媒として褐石の存在で、
ACHの水和を60〜90℃の温度範囲で行うことによりHAMを
製造するに際し、反応混合物にアセトンを加えることに
より、HAMの収率を高め得ることが記載されている。
Further, in JP-A-52-222, the presence of lignite as a catalyst,
It is described that when producing HAM by hydrating ACH in the temperature range of 60 to 90 ° C., the yield of HAM can be increased by adding acetone to the reaction mixture.

さらに、七価のマンガン酸塩とハロゲン化水素酸から得
られたマンガン酸化物を用いると、触媒活性のバラツキ
がなくなり、また、触媒の性能も向上することが、特開
昭63-57,535号に開示されている。
Furthermore, when a manganese oxide obtained from a heptavalent manganate and hydrohalic acid is used, variations in catalyst activity are eliminated, and the performance of the catalyst is also improved, as disclosed in JP-A-63-57,535. It is disclosed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、従来の技術における西ドイツ特許第2,131,813
号の実施例に示された反応条件でのACHの水和では、触
媒のHAM生産性が低いという欠点がある。
However, West German Patent No. 2,131,813 in the prior art
Hydration of ACH under the reaction conditions given in the examples of the publication has the disadvantage of low HAM productivity of the catalyst.

また、反応系にアセトンを添加した特開昭52-222号及び
特開昭63-57,535号などに示された触媒を用いる具体的
な実施方法は、いずれも回分式反応であり、工業的な生
産形態からすると効率が非常に悪いという欠点を有す
る。
Further, the specific implementation method using the catalysts shown in JP-A-52-222 and JP-A-63-57,535, in which acetone is added to the reaction system, is a batch reaction, which is an industrial method. The production method has a drawback that the efficiency is very poor.

そこで、本発明者らはACHの水和によるHAMの工業的な連
続製造方法を検討した結果、従来の技術の具体的な実施
例に記載された回分式反応に用いられた温度において
は、触媒活性は経日と共に、急速に低下することが判明
した。
Therefore, as a result of examining the industrial continuous production method of HAM by hydration of ACH, the present inventors have found that at the temperature used for the batch reaction described in the specific examples of the prior art, the catalyst The activity was found to decrease rapidly with time.

それゆえに、工業的にACHの水和によりHAMを連続製造す
る上では、マンガン酸化物触媒の経日的活性低下による
触媒交換が頻繁になることと、触媒費用の増大が大きな
問題であり、マンガン酸化物触媒の長期活性の維持が最
大の課題である。
Therefore, in industrially continuously producing HAM by hydration of ACH, frequent catalyst exchanges due to decrease in daily activity of manganese oxide catalyst and increase in catalyst cost are major problems. Maintaining the long-term activity of oxide catalysts is the greatest challenge.

また、従来、ACHの水和によりHAMを製造する方法におい
ては、上記特許及び文献などに見られるように、種々の
反応条件が報告されているが、工業的な連続製造法の観
点におけるマンガン酸化物触媒の寿命の延長について報
告されたものは全く見あたらない。
Further, conventionally, in the method for producing HAM by hydration of ACH, various reaction conditions have been reported, as seen in the above-mentioned patents and documents, but manganese oxidation in view of an industrial continuous production method has been reported. Nothing has been reported about the extension of the life of the physical catalyst.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、工業的にACHの水和反応によりHAMを経済
的に連続製造するため、マンガン酸化物触媒の上記の問
題点を取り除くべく鋭意検討を行った結果、驚くべきこ
とに、アセトンの共存下、30〜55℃の温度範囲でACHを
水和反応することにより、マンガン酸化物触媒の活性
を、非常に長期間、維持させることができることを見い
出し、本発明を完成した。
The present inventors have conducted an earnest study to eliminate the above-mentioned problems of the manganese oxide catalyst in order to industrially continuously produce HAM economically by hydration of ACH. It was found that the activity of the manganese oxide catalyst can be maintained for a very long period of time by hydrating ACH in the temperature range of 30 to 55 ° C. in the coexistence of, and the present invention was completed.

すなわち、本発明は、ACHと水とを液相で連続的に反応
させてHAMを製造するに際し、硫酸酸性下で硫酸第一マ
ンガンと過マンガン酸カリウムより調製される二酸化マ
ンガン触媒を用い、アセトンの共存下、30〜55℃の温度
範囲で水和反応させることを特徴とするHAMの製造方法
である。
That is, the present invention, when producing HAM by continuously reacting ACH and water in a liquid phase, using a manganese dioxide catalyst prepared from manganese sulfate and potassium permanganate under sulfuric acid acidity, acetone Is a hydration reaction in the temperature range of 30 to 55 ° C. in the coexistence of HAM.

本発明で使用されるマンガン酸化物は、無水または水和
されたもののどちらでもよい。
The manganese oxide used in the present invention may be either anhydrous or hydrated.

マンガン酸化物は公知の方法、例えば、中性ないしアル
カリ性の領域で七価のマンガン化合物を20〜100℃で還
元する方法(Zeit.anorg.allg.Chem.,309,p.1〜32およ
びp.121〜150,(1961));酸性で過マンガン酸化物カ
リウムと硫酸マンガンを処理する方法(Biochem.J.,50,
p.43,(1951));七価のマンガン酸塩をハロゲン化水
素酸で還元する方法(特開昭63-57,535号);硫酸マン
ガン塩水溶液を電解酸化する方法などによって得られる
二酸化マンガンを用い得るが、これらのうちでも本発明
の方法では、後述の実施例にも示すように、硫酸酸性下
で硫酸第一マンガンと過マンガン酸カリウムより調製さ
れる二酸化マンガン触媒を用いるのがよい。
The manganese oxide can be obtained by a known method, for example, a method of reducing a heptavalent manganese compound in a neutral to alkaline region at 20 to 100 ° C. (Zeit.anorg.allg.Chem., 309 , p. 1 to 32 and p. 121-150, (1961)); acidic method of treating potassium permanganate and manganese sulfate (Biochem.J., 50 ,
p.43, (1951)); a method of reducing a heptavalent manganate with hydrohalic acid (JP-A-63-57,535); manganese dioxide obtained by a method of electrolytically oxidizing an aqueous solution of manganese sulfate. Of these, in the method of the present invention, it is preferable to use a manganese dioxide catalyst prepared from manganese sulfate and potassium permanganate under acidic conditions with sulfuric acid in the method of the present invention.

触媒が固定床反応器に充填される場合には、通常、球状
または円柱状に成型されるのがよく、その寸法は、通
常、代表長さが2〜10mmに成型されるのがよい。また、
触媒が流通式触媒懸濁床型反応器に用いられる場合に
は、通常、16〜400メッシュの粉末がよい。
When the catalyst is packed in a fixed bed reactor, it is usually molded into a spherical shape or a columnar shape, and its size is usually molded into a representative length of 2 to 10 mm. Also,
When the catalyst is used in a flow type catalyst suspension bed type reactor, a powder of 16 to 400 mesh is usually preferable.

本発明において使用される水は、ACHの1モルに対し、
通常1モル以上、好ましくは、2〜20モル、特に好まし
くは、4〜10モルである。
Water used in the present invention is 1 mol of ACH,
It is generally 1 mol or more, preferably 2 to 20 mol, particularly preferably 4 to 10 mol.

また、アセトンはマンガン酸化物触媒の活性を向上させ
る作用及びHAMの選択率を高める効果があり、その使用
量はACHの1モルに対し、通常0.1モル以上、特に好まし
くは、0.5〜5.0モルの範囲で使用される。
Further, acetone has an effect of improving the activity of the manganese oxide catalyst and an effect of increasing the selectivity of HAM, and the amount thereof is usually 0.1 mol or more, and particularly preferably 0.5 to 5.0 mol per 1 mol of ACH. Used in the range.

本発明においては、反応温度が触媒活性と寿命に非常に
大きな相関を持つ。
In the present invention, the reaction temperature has a very large correlation with catalyst activity and life.

ACHの水和の触媒活性も高温にするほど大きくなる傾向
を示すが、本発明において使用される反応温度は、30〜
55℃の範囲である。
Although the catalytic activity of hydration of ACH also tends to increase as the temperature increases, the reaction temperature used in the present invention is 30 to
It is in the range of 55 ° C.

好ましくは、35〜45℃、特に好ましくは、35〜40℃の範
囲である。
It is preferably in the range of 35 to 45 ° C, particularly preferably 35 to 40 ° C.

30℃未満の温度では、触媒の活性が低くなり、実用的で
ない。また、55℃を越える温度では、触媒活性は高いも
のの、急速に経日と共に低下するため、好ましくない。
If the temperature is lower than 30 ° C, the activity of the catalyst becomes low, which is not practical. At temperatures above 55 ° C., the catalytic activity is high, but it decreases rapidly with time, which is not preferable.

本発明の好ましい実施態様は、例えば、以下のようであ
る。
Preferred embodiments of the present invention are as follows, for example.

固定床反応器に、調製された二酸化マンガン触媒を充填
し、ACH、水及びアセトンを所定量で混合された反応液
を、熱交換器などによって所定の温度にした後、固定床
反応器の下部入口に供給される。
The fixed bed reactor was filled with the prepared manganese dioxide catalyst, and the reaction solution prepared by mixing ACH, water and acetone in a predetermined amount was heated to a predetermined temperature by a heat exchanger, etc. Supplied at the entrance.

固定床反応器内は、30〜55℃に維持され、また、ACH基
準の平均滞留時間は、通常、2〜30時間、特に4〜10時
間が好ましい。
The inside of the fixed bed reactor is maintained at 30 to 55 ° C., and the average residence time based on ACH is usually 2 to 30 hours, preferably 4 to 10 hours.

また、流通式触媒懸濁床型反応器を用いる場合は、反応
器内の触媒濃度は、通常、5〜50%、好ましくは、10〜
30%の範囲が用いられる。
When a flow-through type catalyst suspension bed reactor is used, the catalyst concentration in the reactor is usually 5 to 50%, preferably 10 to
A range of 30% is used.

また、ACH基準の平均滞留時間は、通常、10〜200時間、
好ましくは、20〜100時間の範囲で用いられる。
Also, the average residence time based on ACH is usually 10 to 200 hours,
Preferably, it is used in the range of 20 to 100 hours.

〔実施例〕 以下に、実施例により本発明をさらに詳しく、説明す
る。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples.

触媒調製 硫酸第一マンガン水溶液(395g/l)2lに硫酸を添加し
て、pH=1に硫酸第一マンガン水溶液を調製した。この
溶液に過マンガン酸カリウム557.2gを添加して、酸化さ
せた後、温度を50℃前後に保ちながら、このスラリー溶
液に水を1添加し、30分間熟成させた。
Preparation of catalyst Sulfuric acid was added to 2 l of an aqueous solution of manganese sulfate (395 g / l) to prepare an aqueous solution of manganese sulfate at pH = 1. After adding 557.2 g of potassium permanganate to this solution and oxidizing it, 1 water was added to this slurry solution while maintaining the temperature at around 50 ° C., and aged for 30 minutes.

できたスラリー溶液をアスピレーターによって吸引濾過
し、乾燥器によって110℃で12時間乾燥し、二酸化マン
ガン触媒680gを得た。
The resulting slurry solution was suction filtered with an aspirator and dried with a drier at 110 ° C. for 12 hours to obtain 680 g of a manganese dioxide catalyst.

この二酸化マンガン触媒を錠剤成型機を用いて、タブレ
ット(1/8in×1/8in)に成型した。
This manganese dioxide catalyst was molded into tablets (1/8 in x 1/8 in) using a tablet molding machine.

実施例1 上記の成型した二酸化マンガン触媒200mlを充填した反
応器(内径28mm,長さ400mm,ガラス製)に、反応液(AC
H:アセトン:水のモル比が1:1.5:18)を80ml/hrの流速
で供給した。このとき、ACHの流速は13.7ml/hrで、ACH
基準の平均滞留時間は、14.6時間であった。
Example 1 In a reactor (inner diameter 28 mm, length 400 mm, made of glass) filled with 200 ml of the above-mentioned molded manganese dioxide catalyst, the reaction solution (AC
H: acetone: water molar ratio 1: 1.5: 18) was fed at a flow rate of 80 ml / hr. At this time, the flow rate of ACH is 13.7 ml / hr,
The standard average residence time was 14.6 hours.

反応器は38〜40℃に維持され、50日間、連続運転され
た。
The reactor was maintained at 38-40 ° C and operated continuously for 50 days.

実施例2、3 実施例1と同様の装置を用いて、反応温度を48〜50℃及
び30〜32℃に変えること以外、実施例1と全く同様に反
応を行った。
Examples 2 and 3 Using the same apparatus as in Example 1, the reaction was carried out in exactly the same manner as in Example 1 except that the reaction temperature was changed to 48 to 50 ° C and 30 to 32 ° C.

比較例1、2 実施例1と同様の装置を用いて、反応温度を60℃及び25
℃に変えること以外、実施例1と全く同様に反応を行っ
た。
Comparative Examples 1 and 2 Using the same apparatus as in Example 1, the reaction temperature was 60 ° C. and 25
The reaction was carried out in exactly the same manner as in Example 1 except that the temperature was changed to ° C.

比較例3 実施例1と同様の装置を用いて、アセトンを用いないこ
と以外、全く実施例1と同様に反応を行った。
Comparative Example 3 Using the same apparatus as in Example 1, the reaction was performed in exactly the same manner as in Example 1 except that acetone was not used.

以上の実施例と比較例の結果を第1表に示す。Table 1 shows the results of the above Examples and Comparative Examples.

〔発明の効果〕 本発明によれば、従来、工業的な連続製造法における、
触媒活性の経日的急速な低下という問題点を解決し、工
業的に有利にHAMの連続製造が可能になった。
[Effect of the Invention] According to the present invention, in the conventional industrial continuous manufacturing method,
By solving the problem of rapid decrease in catalytic activity over time, industrially advantageous continuous production of HAM has become possible.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アセトンシアンヒドリンと水とを液相で連
続的に反応させてα−ヒドロキシイソブチルアミドを製
造するに際し、硫酸酸性下で硫酸第一マンガンと過マン
ガン酸カリウムより調製される二酸化マンガン触媒を用
い、アセトンの共存下、30〜55℃の温度範囲で水和反応
させることを特徴とするα−ヒドロキシイソブチルアミ
ドの製造方法。
1. A method for continuously producing a-hydroxyisobutyramide by continuously reacting acetone cyanohydrin and water in a liquid phase, wherein the dioxide prepared from manganese sulfate and potassium permanganate under sulfuric acid acidity. A method for producing α-hydroxyisobutyramide, which comprises subjecting a hydrated reaction to a temperature range of 30 to 55 ° C in the presence of acetone using a manganese catalyst.
【請求項2】反応器として固定床反応器を用い、アセト
ンシアンヒドリン基準の平均滞留時間が、2〜30時間で
ある請求項(1)記載の方法。
2. The method according to claim 1, wherein a fixed bed reactor is used as the reactor, and the average residence time based on acetone cyanohydrin is 2 to 30 hours.
【請求項3】反応器として流通式触媒懸濁床型反応器を
用い、アセトンシアンヒドリン基準の平均滞留時間が、
10〜200時間である請求項(1)記載の方法。
3. A flow catalyst suspension bed type reactor is used as a reactor, and the average residence time based on acetone cyanohydrin is
The method according to claim 1, which is for 10 to 200 hours.
JP2149959A 1990-06-11 1990-06-11 Method for producing α-hydroxyisobutyramide Expired - Lifetime JPH07103081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2149959A JPH07103081B2 (en) 1990-06-11 1990-06-11 Method for producing α-hydroxyisobutyramide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149959A JPH07103081B2 (en) 1990-06-11 1990-06-11 Method for producing α-hydroxyisobutyramide

Publications (2)

Publication Number Publication Date
JPH0446145A JPH0446145A (en) 1992-02-17
JPH07103081B2 true JPH07103081B2 (en) 1995-11-08

Family

ID=15486344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149959A Expired - Lifetime JPH07103081B2 (en) 1990-06-11 1990-06-11 Method for producing α-hydroxyisobutyramide

Country Status (1)

Country Link
JP (1) JPH07103081B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525937B2 (en) * 1992-11-09 2004-05-10 三菱瓦斯化学株式会社 Method for producing α-hydroxyisobutyric acid amide
JP2007120200A (en) * 2005-10-29 2007-05-17 Gaeart Tk:Kk Concrete sound absorbing structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085811B2 (en) * 1986-08-29 1996-01-24 三井東圧化学株式会社 Improved process for producing amide compounds
JP2605388B2 (en) * 1989-01-19 1997-04-30 三菱瓦斯化学株式会社 Method for producing α-hydroxycarboxylic acid amide

Also Published As

Publication number Publication date
JPH0446145A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
KR100516408B1 (en) Monoclinic Zirconium Dioxide having a Large Surface Area
JPS61236753A (en) Production of diethylenetriamine
US5763650A (en) Process for the preparation of a halosubstituted aromatic acid
SU1189327A3 (en) Catalyst for producing 3-cyanpyridine
EP0412310B2 (en) Process for producing Manganese dioxide catalyst for the hydration reaction of cyanohydrins
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
CN111229265A (en) Metal modified hydroxyapatite catalyst and preparation and application thereof
JPH07103081B2 (en) Method for producing α-hydroxyisobutyramide
JPH085811B2 (en) Improved process for producing amide compounds
JPWO2018021010A1 (en) Method for producing glycine
US3459807A (en) Catalyst for preparing formaldehyde from methanol
JP3363577B2 (en) Method for producing α-hydroxyisobutyric acid amide
EP0945429B1 (en) Process for preparing lactamide
WO2007007633A1 (en) Process for producing catalyst for cyanhydrin hydration and product of the process
JPH07116063B2 (en) Method for producing amide compound
JPH08319277A (en) Production of 2,4-diamino-5-formylamino-6-hydroxypyrimidine
JPH07133256A (en) Production of alpha-hydroxyisobutyramide
JPH04149164A (en) Production of alpha-hydroxyisobutylamide
JPH0776563A (en) Production of alpha-hydroxyisobutyric acid amide
JP4113404B2 (en) Method for producing magnesium peroxide
JP4219481B2 (en) Method for producing aliphatic nitrile
JPH0782226A (en) Production of amide compound
US5169823A (en) Method for stabilizing treatment of catalytic activity
JP3901260B2 (en) Method for producing lactamide
JPH04282352A (en) Production of alpha-hydroxyisobutyramide