JP3901260B2 - Method for producing lactamide - Google Patents
Method for producing lactamide Download PDFInfo
- Publication number
- JP3901260B2 JP3901260B2 JP28678596A JP28678596A JP3901260B2 JP 3901260 B2 JP3901260 B2 JP 3901260B2 JP 28678596 A JP28678596 A JP 28678596A JP 28678596 A JP28678596 A JP 28678596A JP 3901260 B2 JP3901260 B2 JP 3901260B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- manganese
- manganese dioxide
- reaction
- lactonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、乳酸アミドの製造方法に関する。更に詳しくは、ラクトニトリルの液相水和反応により乳酸アミドを製造する方法に関するものである。乳酸アミドは、ギ酸エステルとのアミドエステル交換反応により、または加アルコール分解反応により乳酸エステルを製造する際の原料となるものである。この乳酸エステルをさらに加水分解反応することにより乳酸を製造することも可能である。乳酸エステルや、乳酸は有機合成原料や溶剤として有用であることは言うまでもなく、特に乳酸は防かび剤や生分解性ポリマーの原料として有用である。さらに、乳酸エステルは脱水反応によりアクリル酸エステルを製造する際の原料となり工業的に重要且つ大きな用途がある。
【0002】
【従来の技術】
ニトリルの水和反応により、対応するカルボン酸アミドを製造する場合の触媒としては、西ドイツ特許第2131813号において二酸化マンガンを使用することが開示されている。又、米国特許第4018829号には、アセトンシアンヒドリンの水和反応にδ型二酸化マンガンを触媒として使用することを記載している。
【0003】
また更に、アセトンシアンヒドリンと同じシアンヒドリン群に含まれるラクトニトリルの水和反応に二酸化マンガン触媒が使用されることを特公昭61−47822号、US5175366号は示している。特開昭63−57534号および特開昭63−57535号には二酸化マンガン触媒の調製法として、亜鉛を含有させる方法や過マンガン酸カリウムを塩酸で還元する方法が開示されている。
【0004】
しかしながら、上記の方法で調製した二酸化マンガンをそのままラクトニトリルの水和反応の触媒として使用した場合には、触媒活性が充分でなく触媒を大量に使用せざるを得ないこと、目的とする乳酸アミドの収率が低いこと、および触媒活性が比較的短期間で急激に低下すること等の問題があり、未だ実用化されていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明の課題は、以上のような従来技術の有する欠点を解決した工業的に有用な乳酸アミドの製造方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者らは乳酸アミドを製造する方法において、二酸化マンガン触媒の活性が、触媒中に共存させるジルコニウム元素、バナジウム元素および錫元素やアルカリ金属元素に密接に関連していること、また触媒活性の急激な低下もこれらの元素を添加することで抑制されることを見出した。さらに、本反応系で副生する遊離カルボン酸による触媒への毒作用がアンモニアや特定のアミン化合物により抑制されることを見い出した。本発明はかかる知見に基づいて完成するに至った。
即ち、本発明は、ラクトニトリルを、マンガン酸化物を主成分とする触媒、および下記一般式(I)
【0007】
【化2】
(R1 〜R3 はそれぞれ水素または炭素数1〜8の原子団を示す)
で示される含窒素化合物の存在下で水和することを特徴とする乳酸アミドの製造方法である。
【0008】
【発明の実施の形態】
以下に、本発明の方法を詳しく説明する。
本発明に使用されるラクトニトリルは、各種の方法で得たものが充当できるが、例えばアセトアルデヒドとシアン化水素とから塩基性触媒の存在下で容易に製造される。
また、本発明の方法に用いるマンガン酸化物を主成分とする触媒としては、様々なものがあるが、好ましくは▲1▼アルカリ金属元素(特にナトリウム元素やカリウム元素)を含有する変性した二酸化マンガン、または▲2▼ジルコニウム元素、バナジウム元素および錫元素からなる群より選ばれる少なくとも一種の元素とアルカリ金属元素とを含有する変性した二酸化マンガン系触媒が挙げられる。またその際、各元素の含有割合は特に制限はないが、好ましくはジルコニウム元素、バナジウム元素および錫元素からなる群より選ばれる少なくとも一種の元素の含有量をマンガン元素に対する原子比が0.005〜0.1に相当する量とし、アルカリ金属元素の含有量をマンガン元素に対する原子比が0.05〜0.5に相当する量とする。
【0009】
本発明におけるマンガン酸化物を主成分とする触媒としては、二酸化マンガンが使用されるが、二酸化マンガンは一般にMnO1.7 〜MnO2 の間にあるマンガン酸化物であり、結晶構造はα、β、γ、δ、ε等が知られており、又各相間の転移や結晶化度の変化が起こることから、その構造は極めて複雑で多種多様である。二酸化マンガンは天然にも存在するが、触媒として使用する場合には、二価のマンガンを酸化して調製する方法および七価のマンガンを還元して調製する方法のそれぞれを単独または組み合わせて用いることにより得られる二酸化マンガンが適する。例えば、中性ないしアルカリ性の領域で過マンガン酸化合物を20〜100℃で還元する方法(Zeit.Anorg.Allg.Chem.,309,p1〜32およびp121〜150,(1961))、酸性で過マンガン酸カリウムと硫酸マンガンを処理する方法(J.Chem.Soc.,1953,p2189,(1953))、過マンガン酸塩をハロゲン化水素酸で還元する方法(特開昭63−57535号)および硫酸マンガン水溶液を電解酸化する方法が知られているが、結晶型や比表面積の大きさ、ならびにアルカリ金属の種類や量をコントロールできる点では、二価のマンガン及び七価のマンガンを同時に使用することが望ましい。
【0010】
上記触媒調製の為に使用される二価のマンガン源としては、水溶性の塩が選ばれ、その中で硫酸塩が特に好ましい。七価のマンガン源としては水溶性の過マンガン酸カリウム又は過マンガン酸ナトリウムが特に好ましい。本発明の二酸化マンガン触媒としては、前述したようにアルカリ金属元素を含有する変性した二酸化マンガンが好ましく、さらにはジルコニウム元素、バナジウム元素および錫元素からなる群より選ばれる少なくとも一種の元素とアルカリ金属元素とを含有する変性した二酸化マンガンが好ましい。
【0011】
ジルコニウム元素、バナジウム元素、錫元素およびアルカリ金属元素を二酸化マンガンに含有させる方法としては、含浸、吸着、混練または共沈殿等の方法が用いられるが、これらの元素を均一に二酸化マンガンに添加するためには、共沈殿法が特に好ましい。またその液性は酸性下でも塩基性下でも調製できるが、酸性下での調製がより好ましく、塩基性下で調製した場合には、反応前に希硫酸等で二酸化マンガンを洗浄することが望ましい。
【0012】
即ち二価の水溶性マンガン塩と、ジルコニウム、バナジウムおよび錫の水溶性塩からなる群より選ばれる少なくとも一種の化合物とを水に溶解し混合したのち、その液を七価のマンガン(過マンガン酸カリウム又は過マンガン酸ナトリウム)水溶液に注加混合し生成する沈殿物をろ過、洗浄したのち、乾燥することにより調製される。共沈殿法の条件は、常圧又は加圧下において温度は30〜250℃、好ましくは50〜200℃の範囲である。これより低い温度では二価と七価のマンガンの反応性が低いため二酸化マンガンの収量が少なく、アルカリ金属の含有量も少ない。これより高い温度では二酸化マンガンの表面積が減少し好ましくない。二酸化マンガンに含有させる元素の原料としては金属元素の塩、水酸化物、酸化物または単体等が用いられるが、一般には水溶性の塩が選ばれその中でも硫酸塩が特に好ましい。
【0013】
本発明においては、上記の如く調製した変性二酸化マンガンを、成型体は固定床触媒として、或いは粉体、顆粒体または微小球状体はスラリー触媒として、回分式や流通式反応装置でラクトニトリルの水和反応に使用される。本発明の変性二酸化マンガン触媒を用いた水和反応は、通常は水が過剰の系で実施される。即ち、原料液(ラクトニトリルと水を主成分とする)中のラクトニトリルの割合は5〜60重量%、好ましくは10〜50重量%である。反応温度は20〜120℃、好ましくは30〜90℃の範囲である。これより低い温度では反応速度が小さくなり、またこれより高い温度ではラクトニトリルの分解による副生成物が多くなるので好ましくない。
【0014】
さらにラクトニトリルおよび水を主成分とする反応原料中に上記一般式(I)に示した含窒素化合物を、通常は0.0001〜5重量%、好ましくは0.0005〜3重量%共存させることにより、触媒の活性向上と経時的な活性低下を著しく抑制することが可能となり、高い触媒活性を維持しながら高収率で目的の乳酸アミドを得ることが出来る。
この一般式(I)において、R1 〜R3 はそれぞれ水素または炭素数1〜8の原子団を示す。この炭素数1〜8の原子団は、好ましくは炭素数1〜8のアルキル基,炭素数3〜8のシクロアルキル基,炭素数1〜8のヒドロキシアルキル基,炭素数1〜8のアミノアルキル基および炭素数1〜8のハロゲノアルキル基などが挙げられる。また、この一般式(I)で表される含窒素化合物の具体例としては、アンモニア,モノエチルアミン,ジエチルアミン,トリエチルアミン,モノメチルアミン,ジメチルアミン,トリメチルアミン,モノプロピルアミン,ジプロピルアミン,トリプロピルアミン,モノイソプロピルアミン,ジイソプロピルアミン,トリイソプロピルアミン,モノエタノールアミン,ジエタノールアミン,トリエタノールアミン,エチレンジアミンおよびジエチレントリアミンなどを挙げることができ、これらを一種又は二種以上を用いることができる。
本発明の方法によれば、高い触媒活性を長期間維持しながら高収率でラクトニトリルから乳酸アミドを製造することができ、工業的に極めて大きな意義をもつものである。
次に、本発明の方法を実施例および比較例により更に具体的に説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。
【0015】
【実施例】
比較例1
触媒調製 : 過マンガン酸カリウム56.4gを水560gに溶解した液に、硫酸マンガン水溶液(Mn11%含有)178.5gと濃硫酸10.0gと水25gとを混合した液を70℃で撹拌下に、速やかに注加した。さらに撹拌を継続し90℃で3時間熟成の後、得られた沈殿を濾過し、水1000gで4回洗浄し、得られたケーキを110℃で一晩乾燥し、変性二酸化マンガン64.2gを得た。このものの金属成分の含有量を測定した結果、カリウム/マンガン=0.09/1.00(原子比)であった。
【0016】
反応:前記で得た二酸化マンガンを破砕して10〜20メッシュに揃えたもの3.5gをジャケットを備えた内径10mmφのガラス製反応管に充填した。ジャケットには40℃の温水を流した。ラクトニトリル20重量部、水80重量部の割合で混合した原料溶液を流速6.2g/hrで反応管に通した。反応器を出た液は循環ポンプにより31g/hr(循環比=5)の流速で反応器入口へ再フィードした。反応器下部の液留めより溢流する反応液の組成を高速液体クロマトグラフィーで反応開始後24時間および14日後に分析したところ、ラクトニトリルの転化率は、それぞれ81%、71%、乳酸アミドの選択率(ラクトニトリル基準)は共に94%であった。他に、微量の乳酸、アセトアルデヒドおよび酢酸が検出された。
【0017】
実施例1〜2
触媒調製:比較例1と同様に行った。
反応:前記で得た二酸化マンガン3.5gを触媒として用い、比較例1では供給原料中にアンモニア等の添加を行わなかったが、実施例1では添加物としてアンモニアを原料溶液に対し0.2重量%を、また実施例2では添加物としてジエチルアミンを原料溶液に対し0.86重量%を添加してラクトニトリルの水和反応を行った。反応条件は比較例1と同様に行った。表1に24時間後および14日後のラクトニトリルの転化率を記した。また乳酸アミドの選択率は、いずれもそれぞれ95%、95%であった。
【0018】
【表1】
【0019】
比較例2
触媒調製:過マンガン酸カリウム66.4gを水580gに溶解した液に、硫酸マンガン水溶液(Mn11%含有)138.7g、硫酸第一錫2.91g、濃硫酸23.9gおよび水20gを混合した液を70℃で撹拌下に速やかに注加した。更に攪拌を継続し90℃で3時間熟成の後、得られた沈殿を濾過し、水1000gで4回洗浄し、得られたケーキを110℃で一晩乾燥し、変性二酸化マンガン68.2gを得た。このものの金属成分の含有量を測定した結果、錫/カリウム/マンガン=0.02/0.09/1.00(原子比)であった。
【0020】
反応:前記で得た二酸化マンガン3.5gを用い、原料溶液を流速7g/hr、循環比を10にした以外は比較例1と同様に反応させた。その結果、24時間後および14日後のラクトニトリルの転化率はそれぞれ83.4、76.5%、乳酸アミドの選択率は、それぞれ95%、95%であった。
【0021】
実施例3〜4
触媒調製:比較例2と同様に行った。
反応:前記で得た二酸化マンガン3.5gを触媒として用い、実施例3では添加物としてアンモニアを原料溶液に対し0.2重量%を、また実施例4では添加物としてジエチルアミンを原料溶液に対し0.86重量%を添加した以外は比較例2と同様に行った。表2に24時間後および14日後のラクトニトリルの転化率を記した。また乳酸アミドの選択率は、それぞれ95%、95%であった。
【0022】
【表2】
【0023】
実施例5
触媒調製:硫酸マンガン水溶液(Mn11%含有)の重量を117.7g、硫酸第一錫の重量を11.6gとした以外は比較例2と同様に触媒を調製し、変性二酸化マンガン72.2gを得た。このものの金属成分の含有量を測定した結果、錫/カリウム/マンガン=0.078/0.08/1.00(原子比)であった。
反応:前記で得た二酸化マンガン3.5gを用い、添加物としてトリエチルアミンを原料溶液に対し0.86重量%を添加した以外は比較例2と同様に行った。その結果、24時間後及び14日後のラクトニトリルの転化率はそれぞれ91.5、91.3%、乳酸アミドの選択率は、それぞれ95%、95%であった。
【0024】
実施例6
触媒調製:硫酸第一錫に代えて硫酸バナジル2.20gとした以外は比較例2と同様に触媒を調製し、変性二酸化マンガン67.5gを得た。このものの金属成分の含有量を測定した結果、バナジウム/カリウム/マンガン=0.02/0.09/1.00(原子比)であった。
反応:前記で得た二酸化マンガン3.5gを用いた以外は、実施例4と同様に反応させた。その結果、24時間後及び14日後のラクトニトリルの転化率はそれぞれ92.3、92.2%、乳酸アミドの選択率は、それぞれ95%、95%であった。
【0025】
実施例7
触媒調製:硫酸第一錫に代えて硫酸ジルコニウム・4 水和物4.80gとした以外は比較例2と同様に触媒を調製し、変性二酸化マンガン69.8gを得た。このものの金属成分の含有量を測定した結果、ジルコニウム/カリウム/マンガン=0.018/0.10/1.00(原子比)であった。
反応:前記で得た二酸化マンガン3.5gを用いた以外は、実施例4と同様に反応させた。その結果、24時間後及び14日後のラクトニトリルの転化率はそれぞれ91.5、91.3%、乳酸アミドの選択率は、それぞれ95%、94%であった。
【0026】
実施例8
触媒調製:過マンガン酸カリウム66.4gを水580gに溶解した液に、硫酸マンガン水溶液(Mn11%含有)138.7g、硫酸第一錫1.46g、硫酸ジルコニウム・4 水和物2.40g、濃硫酸23.9gおよび水20gを混合した液を70℃で撹拌下に速やかに注加した。更に攪拌を継続し90℃で3時間熟成の後、得られた沈殿を濾過し、水1000gで4回洗浄し、得られたケーキを110℃で一晩乾燥し、変性二酸化マンガン68.9gを得た。このものの金属成分の含有量を測定した結果、錫/ジルコニウム/カリウム/マンガン=0.01/0.008/0.10/1.00(原子比)であった。
反応:前記で得た二酸化マンガン3.5gを用いた以外は、実施例4と同様に反応させた。その結果、24時間後及び14日後のラクトニトリルの転化率はそれぞれ92.0、91.8%、乳酸アミドの選択率は、それぞれ95%、95%であった。
【0027】
実施例9
触媒調製:過マンガン酸カリウムに代えて、過マンガン酸ナトリウム・3水和物70.5gとした以外は比較例2と同様に触媒を調製し、変性二酸化マンガン66.5gを得た。このものの金属成分の含有量を測定した結果、錫/ナトリウム/マンガン=0.02/0.08/1.00(原子比)であった。
反応:前記で得た二酸化マンガン3.5gを用いた以外は、実施例4と同様に反応させた。その結果、24時間後及び14日後のラクトニトリルの転化率はそれぞれ90.5、90.4%、乳酸アミドの選択率は、それぞれ94%、94%であった。
【0028】
【発明の効果】
本発明の方法によれば、高い触媒活性を長期間維持しながら高収率でラクトニトリルから乳酸アミドを製造することができ、工業的に極めて大きな意義をもつものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing lactamide. More specifically, the present invention relates to a method for producing lactamide by a liquid phase hydration reaction of lactonitrile. Lactic acid amide is a raw material for producing lactic acid ester by amide ester exchange reaction with formic acid ester or by alcoholysis reaction. It is also possible to produce lactic acid by further hydrolyzing this lactic acid ester. It goes without saying that lactic acid esters and lactic acid are useful as organic synthetic raw materials and solvents, and lactic acid is particularly useful as a fungicide and a raw material for biodegradable polymers. Furthermore, the lactic acid ester is a raw material for producing an acrylate ester by a dehydration reaction and has industrially important and large uses.
[0002]
[Prior art]
As a catalyst for producing a corresponding carboxylic acid amide by hydration reaction of nitrile, it is disclosed in West German Patent No. 2131813 to use manganese dioxide. US Pat. No. 4,188,829 describes the use of δ-type manganese dioxide as a catalyst for the hydration reaction of acetone cyanohydrin.
[0003]
Furthermore, Japanese Examined Patent Publication No. 61-47822 and US Pat. No. 5,175,366 show that a manganese dioxide catalyst is used for the hydration reaction of lactonitrile contained in the same cyanohydrin group as acetone cyanohydrin. JP-A-63-57534 and JP-A-63-57535 disclose a method for preparing a manganese dioxide catalyst by containing zinc or reducing potassium permanganate with hydrochloric acid.
[0004]
However, when the manganese dioxide prepared by the above method is used as it is as a catalyst for the hydration reaction of lactonitrile, the catalytic activity is not sufficient and a large amount of the catalyst must be used. The yield is low, and the catalyst activity rapidly decreases in a relatively short period of time.
[0005]
[Problems to be solved by the invention]
The subject of this invention is providing the manufacturing method of industrially useful lactamide which solved the fault which the above prior art has.
[0006]
[Means for Solving the Problems]
In the method for producing lactic acid amides, the present inventors have confirmed that the activity of the manganese dioxide catalyst is closely related to the zirconium element, vanadium element, tin element and alkali metal element which coexist in the catalyst. It has been found that the rapid decrease can be suppressed by adding these elements. Furthermore, it has been found that the poisoning action to the catalyst by the free carboxylic acid by-produced in this reaction system is suppressed by ammonia or a specific amine compound. The present invention has been completed based on this finding.
That is, the present invention provides lactonitrile, a catalyst mainly composed of manganese oxide, and the following general formula (I):
[0007]
[Chemical 2]
(R 1 to R 3 each represent hydrogen or an atomic group having 1 to 8 carbon atoms)
A method for producing lactic acid amide, which comprises hydrating in the presence of a nitrogen-containing compound represented by the formula:
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in detail.
As the lactonitrile used in the present invention, those obtained by various methods can be used. For example, it is easily produced from acetaldehyde and hydrogen cyanide in the presence of a basic catalyst.
Further, there are various types of catalysts mainly composed of manganese oxide used in the method of the present invention. Preferably, (1) modified manganese dioxide containing an alkali metal element (particularly sodium element or potassium element) is used. Or (2) a modified manganese dioxide catalyst containing at least one element selected from the group consisting of zirconium element, vanadium element and tin element and an alkali metal element. At that time, the content ratio of each element is not particularly limited, but preferably the content of at least one element selected from the group consisting of zirconium element, vanadium element and tin element is 0.005 to atomic ratio to manganese element. The amount is equivalent to 0.1, and the content of the alkali metal element is such that the atomic ratio to the manganese element is equivalent to 0.05 to 0.5.
[0009]
As the catalyst mainly composed of manganese oxide in the present invention, manganese dioxide is used. Manganese dioxide is generally a manganese oxide between MnO 1.7 and MnO 2 , and the crystal structure is α, β, γ. , Δ, ε, and the like are known, and transition between phases and change in crystallinity occur, so that the structure is extremely complicated and diverse. Manganese dioxide exists in nature, but when it is used as a catalyst, the method of preparing divalent manganese by oxidation and the method of preparing heptavalent manganese by reduction should be used alone or in combination. Manganese dioxide obtained by is suitable. For example, a method of reducing a permanganate compound at 20 to 100 ° C. in a neutral to alkaline region (Zeit. Anorg. Allg. Chem., 309, p1 to 32 and p121 to 150, (1961)), A method of treating potassium manganate and manganese sulfate (J. Chem. Soc., 1953, p2189, (1953)), a method of reducing permanganate with hydrohalic acid (JP-A 63-57535) and The method of electrolytic oxidation of manganese sulfate aqueous solution is known, but divalent manganese and heptavalent manganese are used at the same time in terms of controlling the crystal type, specific surface area, and the type and amount of alkali metal. It is desirable.
[0010]
As the divalent manganese source used for the catalyst preparation, a water-soluble salt is selected, and sulfate is particularly preferable. As the heptavalent manganese source, water-soluble potassium permanganate or sodium permanganate is particularly preferable. As described above, the manganese dioxide catalyst of the present invention is preferably a modified manganese dioxide containing an alkali metal element, and more preferably at least one element selected from the group consisting of a zirconium element, a vanadium element and a tin element, and an alkali metal element. Modified manganese dioxide containing
[0011]
Methods for impregnation of zirconium, vanadium, tin and alkali metal elements in manganese dioxide include impregnation, adsorption, kneading or coprecipitation. In order to uniformly add these elements to manganese dioxide For this, the coprecipitation method is particularly preferred. In addition, the liquidity can be prepared under acidic or basic conditions, but it is preferable to prepare under acidic conditions. When prepared under basic conditions, it is desirable to wash manganese dioxide with dilute sulfuric acid before the reaction. .
[0012]
That is, a divalent water-soluble manganese salt and at least one compound selected from the group consisting of water-soluble salts of zirconium, vanadium and tin are dissolved in water and mixed, and then the solution is mixed with heptavalent manganese (permanganic acid). It is prepared by pouring and mixing the precipitate formed by pouring and mixing with an aqueous solution of potassium or sodium permanganate, followed by drying. The condition of the coprecipitation method is that the temperature is in the range of 30 to 250 ° C., preferably 50 to 200 ° C. under normal pressure or pressure. At temperatures lower than this, the reactivity of divalent and heptavalent manganese is low, so the yield of manganese dioxide is low and the content of alkali metals is also low. A temperature higher than this is not preferable because the surface area of manganese dioxide decreases. As a raw material of the element to be contained in manganese dioxide, a salt, hydroxide, oxide or simple substance of a metal element is used. In general, a water-soluble salt is selected, and sulfate is particularly preferable among them.
[0013]
In the present invention, the modified manganese dioxide prepared as described above is used as a fixed bed catalyst for a molded body, or as a slurry catalyst for a powder, granule or microsphere, and water of lactonitrile in a batch or flow reactor. Used for sum reaction. The hydration reaction using the modified manganese dioxide catalyst of the present invention is usually carried out in a system containing excess water. That is, the ratio of lactonitrile in the raw material liquid (mainly lactonitrile and water) is 5 to 60% by weight, preferably 10 to 50% by weight. The reaction temperature is in the range of 20 to 120 ° C, preferably 30 to 90 ° C. A temperature lower than this is not preferable because the reaction rate is low, and a temperature higher than this is not preferable because a by-product due to decomposition of lactonitrile increases.
[0014]
Further, the nitrogen-containing compound represented by the above general formula (I) is usually present in the reaction raw material mainly containing lactonitrile and water in an amount of 0.0001 to 5% by weight, preferably 0.0005 to 3% by weight. As a result, it is possible to remarkably suppress the improvement in the activity of the catalyst and the decrease in the activity over time, and the desired lactic acid amide can be obtained in a high yield while maintaining a high catalyst activity.
In this general formula (I), R < 1 > -R < 3 > shows hydrogen or a C1-C8 atomic group, respectively. The atomic group having 1 to 8 carbon atoms is preferably an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms, or an aminoalkyl having 1 to 8 carbon atoms. Group and a halogenoalkyl group having 1 to 8 carbon atoms. Specific examples of the nitrogen-containing compound represented by the general formula (I) include ammonia, monoethylamine, diethylamine, triethylamine, monomethylamine, dimethylamine, trimethylamine, monopropylamine, dipropylamine, tripropylamine, Examples thereof include monoisopropylamine, diisopropylamine, triisopropylamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine and diethylenetriamine, and one or more of these can be used.
According to the method of the present invention, lactic acid amide can be produced from lactonitrile in high yield while maintaining high catalytic activity for a long period of time, which is extremely significant industrially.
Next, the method of the present invention will be described more specifically with reference to examples and comparative examples. However, the scope of the present invention is not limited to these examples.
[0015]
【Example】
Comparative Example 1
Catalyst preparation: A solution prepared by mixing 178.5 g of an aqueous manganese sulfate solution (containing 11% of Mn), 10.0 g of concentrated sulfuric acid, and 25 g of water in a solution obtained by dissolving 56.4 g of potassium permanganate in 560 g of water while stirring at 70 ° C. Was added promptly. After further stirring and aging at 90 ° C. for 3 hours, the resulting precipitate was filtered, washed four times with 1000 g of water, and the resulting cake was dried at 110 ° C. overnight to obtain 64.2 g of modified manganese dioxide. Obtained. As a result of measuring the content of the metal component of this product, it was potassium / manganese = 0.09 / 1.00 (atomic ratio).
[0016]
Reaction: A glass reaction tube having an inner diameter of 10 mmφ equipped with a jacket was charged with 3.5 g of the above-obtained manganese dioxide crushed and aligned to 10 to 20 mesh. Warm water of 40 ° C. was passed through the jacket. The raw material solution mixed at a ratio of 20 parts by weight of lactonitrile and 80 parts by weight of water was passed through the reaction tube at a flow rate of 6.2 g / hr. The liquid exiting the reactor was re-fed to the reactor inlet by a circulation pump at a flow rate of 31 g / hr (circulation ratio = 5). When the composition of the reaction liquid overflowing from the liquid stopper at the bottom of the reactor was analyzed by high performance liquid chromatography 24 hours and 14 days after the start of the reaction, the conversion of lactonitrile was 81%, 71%, and lactamide, respectively. The selectivity (based on lactonitrile) was 94%. In addition, trace amounts of lactic acid, acetaldehyde and acetic acid were detected.
[0017]
Examples 1-2
Catalyst preparation: The same procedure as in Comparative Example 1 was performed.
Reaction: 3.5 g of the manganese dioxide obtained above was used as a catalyst. In Comparative Example 1, ammonia or the like was not added to the feedstock, but in Example 1, ammonia was added to the raw material solution as an additive. The nitrile hydration reaction was carried out by adding 0.86% by weight of diethylamine as an additive in Example 2 to the raw material solution in Example 2. The reaction conditions were the same as in Comparative Example 1. Table 1 shows the conversion rate of lactonitrile after 24 hours and 14 days. The selectivity for lactamide was 95% and 95%, respectively.
[0018]
[Table 1]
[0019]
Comparative Example 2
Catalyst preparation: A solution obtained by dissolving 66.4 g of potassium permanganate in 580 g of water was mixed with 138.7 g of an aqueous manganese sulfate solution (containing 11% Mn), 2.91 g of stannous sulfate, 23.9 g of concentrated sulfuric acid, and 20 g of water. The solution was poured rapidly at 70 ° C. with stirring. Further stirring was continued and aging was carried out at 90 ° C. for 3 hours, and then the resulting precipitate was filtered, washed 4 times with 1000 g of water, and the resulting cake was dried at 110 ° C. overnight to obtain 68.2 g of modified manganese dioxide. Obtained. As a result of measuring the content of the metal component of this product, it was found that tin / potassium / manganese = 0.02 / 0.09 / 1.00 (atomic ratio).
[0020]
Reaction: The reaction was performed in the same manner as in Comparative Example 1 except that 3.5 g of the manganese dioxide obtained above was used, the raw material solution was changed to a flow rate of 7 g / hr, and the circulation ratio was changed to 10. As a result, the conversion rate of lactonitrile after 24 hours and 14 days was 83.4 and 76.5%, respectively, and the selectivity of lactamide was 95% and 95%, respectively.
[0021]
Examples 3-4
Catalyst preparation: The same procedure as in Comparative Example 2 was performed.
Reaction: Using 3.5 g of the manganese dioxide obtained above as a catalyst, in Example 3, ammonia was used as an additive in an amount of 0.2% by weight based on the raw material solution, and in Example 4, diethylamine was used as an additive in the raw material solution. It carried out similarly to the comparative example 2 except having added 0.86 weight%. Table 2 shows the conversion of lactonitrile after 24 hours and 14 days. The selectivity for lactamide was 95% and 95%, respectively.
[0022]
[Table 2]
[0023]
Example 5
Catalyst preparation: A catalyst was prepared in the same manner as in Comparative Example 2 except that the weight of the aqueous manganese sulfate solution (containing 11% Mn) was 117.7 g and the weight of stannous sulfate was 11.6 g. Obtained. As a result of measuring the content of the metal component of this product, tin / potassium / manganese = 0.078 / 0.08 / 1.00 (atomic ratio).
Reaction: The same procedure as in Comparative Example 2 was conducted except that 3.5 g of the manganese dioxide obtained above was used and 0.86% by weight of triethylamine as an additive was added to the raw material solution. As a result, the conversion rates of lactonitrile after 24 hours and 14 days were 91.5 and 91.3%, respectively, and the selectivity for lactamide was 95% and 95%, respectively.
[0024]
Example 6
Catalyst preparation: A catalyst was prepared in the same manner as in Comparative Example 2 except that 2.20 g of vanadyl sulfate was used instead of stannous sulfate to obtain 67.5 g of modified manganese dioxide. As a result of measuring the content of the metal component of this product, it was vanadium / potassium / manganese = 0.02 / 0.09 / 1.00 (atomic ratio).
Reaction: The reaction was conducted in the same manner as in Example 4 except that 3.5 g of the manganese dioxide obtained above was used. As a result, the conversion rate of lactonitrile after 24 hours and 14 days was 92.3 and 92.2%, respectively, and the selectivity of lactamide was 95% and 95%, respectively.
[0025]
Example 7
Catalyst preparation: A catalyst was prepared in the same manner as in Comparative Example 2 except that 4.80 g of zirconium sulfate tetrahydrate was used instead of stannous sulfate to obtain 69.8 g of modified manganese dioxide. As a result of measuring the content of the metal component of this product, it was found that zirconium / potassium / manganese = 0.018 / 0.10 / 1.00 (atomic ratio).
Reaction: The reaction was conducted in the same manner as in Example 4 except that 3.5 g of the manganese dioxide obtained above was used. As a result, the conversion rates of lactonitrile after 24 hours and 14 days were 91.5 and 91.3%, respectively, and the selectivity for lactamide was 95% and 94%, respectively.
[0026]
Example 8
Catalyst preparation: In a solution obtained by dissolving 66.4 g of potassium permanganate in 580 g of water, 138.7 g of an aqueous manganese sulfate solution (containing 11% of Mn), 1.46 g of stannous sulfate, 2.40 g of zirconium sulfate tetrahydrate, A solution obtained by mixing 23.9 g of concentrated sulfuric acid and 20 g of water was rapidly poured at 70 ° C. with stirring. After further stirring and aging at 90 ° C. for 3 hours, the resulting precipitate was filtered, washed four times with 1000 g of water, and the resulting cake was dried overnight at 110 ° C. to obtain 68.9 g of modified manganese dioxide. Obtained. As a result of measuring the content of the metal component of this product, it was found that tin / zirconium / potassium / manganese = 0.01 / 0.008 / 0.10 / 1.00 (atomic ratio).
Reaction: The reaction was conducted in the same manner as in Example 4 except that 3.5 g of the manganese dioxide obtained above was used. As a result, the conversion rates of lactonitrile after 24 hours and 14 days were 92.0 and 91.8%, respectively, and the selectivity for lactamide was 95% and 95%, respectively.
[0027]
Example 9
Catalyst preparation: A catalyst was prepared in the same manner as in Comparative Example 2 except that 70.5 g of sodium permanganate trihydrate was used instead of potassium permanganate, to obtain 66.5 g of modified manganese dioxide. As a result of measuring the content of the metal component of this product, it was found that tin / sodium / manganese = 0.02 / 0.08 / 1.00 (atomic ratio).
Reaction: The reaction was conducted in the same manner as in Example 4 except that 3.5 g of the manganese dioxide obtained above was used. As a result, the conversion rate of lactonitrile after 24 hours and 14 days was 90.5 and 90.4%, respectively, and the selectivity for lactamide was 94% and 94%, respectively.
[0028]
【The invention's effect】
According to the method of the present invention, lactic acid amide can be produced from lactonitrile in high yield while maintaining high catalytic activity for a long period of time, which is extremely significant industrially.
Claims (6)
で示される化合物の存在下で行うことを特徴とする乳酸アミドの製造方法。In the production of lactamide by hydration of lactonitrile in the presence of a catalyst mainly composed of manganese oxide, the general formula (I)
A process for producing lactamide, which is carried out in the presence of a compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28678596A JP3901260B2 (en) | 1995-11-07 | 1996-10-29 | Method for producing lactamide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28824495 | 1995-11-07 | ||
JP7-288244 | 1995-11-07 | ||
JP28678596A JP3901260B2 (en) | 1995-11-07 | 1996-10-29 | Method for producing lactamide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09188656A JPH09188656A (en) | 1997-07-22 |
JP3901260B2 true JP3901260B2 (en) | 2007-04-04 |
Family
ID=26556451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28678596A Expired - Fee Related JP3901260B2 (en) | 1995-11-07 | 1996-10-29 | Method for producing lactamide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3901260B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI478766B (en) | 2010-03-04 | 2015-04-01 | Mitsubishi Gas Chemical Co | Production method of amide compound and preparation method of amide compound |
-
1996
- 1996-10-29 JP JP28678596A patent/JP3901260B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09188656A (en) | 1997-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2780373B2 (en) | Method for producing α-hydroxycarboxylic acid amide | |
US4950801A (en) | Process for producing alpha-hydroxycarboxylic acid amide | |
JPH11319558A (en) | Hydration catalyst for cyanhydrin | |
JP5511187B2 (en) | Manganese dioxide catalyst for hydrolysis of carboxylic nitrile | |
AU707177B2 (en) | Process for the preparation of a halosubstituted aromatic acid | |
JP2853190B2 (en) | Method for producing nitrile hydration catalyst | |
JP3901260B2 (en) | Method for producing lactamide | |
US5756842A (en) | Process for preparing lactamide | |
JP3962885B2 (en) | Method for producing lactamide | |
EP0945429B1 (en) | Process for preparing lactamide | |
JP3363577B2 (en) | Method for producing α-hydroxyisobutyric acid amide | |
JP3317737B2 (en) | Method for producing catalyst for cyanhydrin hydration | |
KR101780840B1 (en) | Amide compound production catalyst, and process for production of amide compound | |
JP2605388B2 (en) | Method for producing α-hydroxycarboxylic acid amide | |
CN113200883B (en) | Preparation method of 5-amino-2, 4, 6-triiodo isophthalic acid | |
JPH11152257A (en) | Production of lactamide | |
WO2007037082A1 (en) | Process for producing carnitinamide | |
JP2000007637A (en) | Production of aliphatic nitrile | |
CN118371265A (en) | Catalyst for preparing adipic acid from cyclohexanone and preparation method and application thereof | |
JP3927835B2 (en) | Process for producing iodinated aromatic compound diacetate | |
CN114602453A (en) | Method for preparing amide | |
JPH06340602A (en) | Production of alpha-hydroxyisolactic amide | |
JPH0479694B2 (en) | ||
JP2017214382A (en) | PRODUCTION METHOD OF RACEMIC α-AMINO ACID OR GLYCIN, MIXTURE, COMPOSITION AND PRODUCTION METHOD OF COMPLEX-FORMING AGENT | |
JPH0585965A (en) | Production of methyl chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061226 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |