JP3962885B2 - Method for producing lactamide - Google Patents

Method for producing lactamide Download PDF

Info

Publication number
JP3962885B2
JP3962885B2 JP26314498A JP26314498A JP3962885B2 JP 3962885 B2 JP3962885 B2 JP 3962885B2 JP 26314498 A JP26314498 A JP 26314498A JP 26314498 A JP26314498 A JP 26314498A JP 3962885 B2 JP3962885 B2 JP 3962885B2
Authority
JP
Japan
Prior art keywords
lactonitrile
reaction
catalyst
water
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26314498A
Other languages
Japanese (ja)
Other versions
JPH11335341A (en
Inventor
菅野  裕一
崇文 阿部
里愛子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP26314498A priority Critical patent/JP3962885B2/en
Publication of JPH11335341A publication Critical patent/JPH11335341A/en
Application granted granted Critical
Publication of JP3962885B2 publication Critical patent/JP3962885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乳酸アミドの製造法に関する。更に詳しくは、ラクトニトリルの水和反応により乳酸アミドを製造する方法に関するものである。乳酸アミドは、ギ酸エステルとのアミドエステル交換反応により、または加アルコール分解反応により乳酸エステルを製造する際の原料となるものである。この乳酸エステルをさらに加水分解反応することにより乳酸を製造することも可能である。乳酸エステルや、乳酸は有機合成原料や溶剤として有用であることは言うまでもなく、特に乳酸は防かび剤や生分解性ポリマーの原料として有用である。さらに、乳酸エステルは脱水反応によりアクリル酸エステルを製造する際の原料となり工業的に重要且つ大きな用途がある。
【0002】
【従来の技術】
米国特許第4018829号公報には、アセトンシアンヒドリンの水和反応にδ型二酸化マンガンを触媒として使用することを記載している。アセトンシアンヒドリン用二酸化マンガンの調製法として、特開昭63−57534号公報および特開昭63−57535号公報には亜鉛を含有させる方法や過マンガン酸カリウムを塩酸で還元する方法が、特開平6−269666号公報には過マンガン酸塩をヒドラジン類、ヒドロキシカルボン酸あるいはその塩を用いて還元する方法が開示されている。
一方、アセトンシアンヒドリンと同じシアンヒドリン群に含まれるラクトニトリルの水和反応に二酸化マンガンが使用されることを特公昭61−47822号公報、US5175366号公報は示している。さらに、過マンガン酸塩を多価アルコールにて還元する方法及び多価カルボン酸又はその塩で還元する方法で調製した二酸化マンガンを触媒としたラクトニトリルの水和反応が、特開平9−19637号公報及び特開平9−24275号公報に示されている。
しかしながら、上記の方法で調製した二酸化マンガンをそのままラクトニトリルの水和反応の触媒として使用した場合には、触媒活性が短期間で急激に低下するという問題があり、未だ実用化されていないのが現状である。
【0003】
【発明が解決しようとする課題】
本発明の課題は、以上のような従来技術の欠点を解決した工業的に有用な乳酸アミドの製造方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者は、マンガン酸化物を主成分とする触媒の存在下、ラクトニトリルと水より乳酸アミドを製造する場合、酸化剤を共存させる事で触媒活性の急激な低下が抑制されることを見出した。また酸化剤と含窒素化合物との共存下で反応を行うと、酸化剤のみの共存の場合に比べさらに活性低下が抑制されることを見出した。また酸化剤とシアン化水素との共存下で反応を行うと、酸化剤のみの共存の場合に比べさらに活性低下が抑制され乳酸アミドの選択率も向上する事を見いだした。さらに酸化剤と含窒素化合物およびシアン化水素との共存下で反応を行うと、含窒素化合物およびシアン化水素のそれぞれの効果が相加的に得られることを見出し、本発明を完成させるに至った。
即ち本発明は、マンガン酸化物を主成分とする触媒と、酸化剤との存在下で、ラクトニトリルと水より乳酸アミドを製造する方法、ならびにマンガン酸化物を主成分とする触媒と、酸化剤と、一般式(I)で示される化合物及び/又はシアン化水素との存在下で、ラクトニトリルと水より乳酸アミドを製造する方法である。
【0005】
【化2】

Figure 0003962885
(R1 〜R3 はそれぞれ水素または炭素数1〜8の原子団を示す)
【0006】
【発明の実施の形態】
以下に、本発明の方法を詳しく説明する。本発明に使用するラクトニトリルは、アセトアルデヒドとシアン化水素とから塩基性触媒の存在下で容易に製造される。また、本発明におけるマンガン酸化物を主成分とする触媒としては、主として二酸化マンガンが使用されるが、二酸化マンガンは一般にMnO1.7〜MnO2の間にあるマンガン酸化物であり、結晶構造はα、β、γ、δ、ε等が知られており、又各相間の転移や結晶化度の変化が起こることから、その構造はきわめて複雑で多種多様である。二酸化マンガンは天然にも存在するが、触媒として使用する場合には、二価のマンガンを酸化して調製する方法および七価のマンガンを還元して調製する方法のそれぞれを単独または組み合わせて用いることにより得られる二酸化マンガンが適する。
【0007】
例えば、中性ないしアルカリ性の領域で過マンガン酸化合物を20〜100℃で還元する方法(Zeit. Anorg. Allg. Chem. , 309, p1〜32およびp121〜150. (1961) )、過マンガン酸カリウム水溶液を硫酸マンガン水溶液に加える方法(J. Chem. Soc., 2189, (1953) )、過マンガン酸塩をハロゲン化水素酸で還元する方法(特開昭63−57535号公報)、過マンガン酸塩を多価カルボン酸または多価アルコールで還元する方法(特開平9−24275号公報、特開平9−19637号公報)、過マンガン酸塩をヒドラジン、ヒドロキシカルボン酸あるいはその塩で還元する方法(特開平6−269666号公報)および硫酸マンガン水溶液を電解酸化する方法が知られている。本発明の方法に用いるマンガン酸化物を主成分とする触媒としては、上記した各種の方法で調製されたものが使用できるが、好ましくはアルカリ金属元素を含有する変性二酸化マンガンが好ましい。同触媒の調製法としては、結晶型や比表面積の大きさ、ならびにアルカリ金属の種類や量をコントロールできる点では、二価のマンガンおよび七価のマンガンを同時に使用する方法が望ましい。
【0008】
また、上記の二酸化マンガン触媒やアルカリ金属元素を含有する変性二酸化マンガンに他の元素、例えば周期律表2,3,4,5,6,8,9,10,11,12,13,14,15族の元素を添加する事も可能で、特にアルカリ土類金属、Sc、Zr、V 、Nb、Ta、Cr、Mo、W 、Zn、Ga、In、Ge、Sn、Pbの添加は好ましい。これらの金属を二酸化マンガンに添加する方法としては、含浸、吸着、混練、共沈澱等いずれの方法も用いられるが、共沈澱法が特に好ましくその液性は、酸性下でも塩基性下でも調製できるが、酸性下での調製がより好ましく、塩基性下で調製した場合には、反応前に希硫酸等の酸性溶液で二酸化マンガンを洗浄することが望ましい。
【0009】
以上の触媒調製の為に使用される二価のマンガン源としては水溶性の塩が選ばれ、その中で硫酸塩が特に好ましい。七価のマンガン源としては水溶性の過マンガン酸カリウム又は過マンガン酸ナトリウムが特に好ましく、またこのものはアルカリ金属源としても使用できる。二酸化マンガンに添加するアルカリ土類金属、Sc、Zr、V 、Nb、Ta、Cr、Mo、W 、Zn、Ga、In、Ge、Sn、Pb源としては、水溶性の塩が好ましく、その中でも硫酸塩が特に好ましい。
【0010】
本発明においては、上記の如く調製した触媒は、アルミナ、シリカ、ジルコニア、チタニア等の金属酸化物担体上に担持して使用することも可能であり、成型体は固定床触媒として、或いは粉体、顆粒体または微小球状体はスラリー触媒として、回分式や流通式反応装置でラクトニトリルの水和反応に使用される。本発明の触媒を用いた水和反応は、通常は水が過剰の系で実施される。即ち、原料液中のラクトニトリルの割合は5〜80重量%、好ましくは20〜60重量%である。反応温度は0〜120℃、好ましくは10〜90℃の範囲である。これより低い温度では反応速度が小さくなり、またこれより高い温度ではラクトニトリルの分解による副生成物が多くなるので好ましくない。
【0011】
さらに本発明で用いられる酸化剤としては酸素、オゾン等の酸素類または過酸化水素、過酸化ナトリウム、過酸化マグネシウム、過酸化ベンゾイル、過酸化ジアセチル等の過酸化物または過ギ酸、過酢酸、過硫酸アンモニウム等の過酸及び過酸塩または過沃素酸、過塩素酸、過沃素酸ナトリウム、沃素酸、臭素酸、塩素酸カリウム、次亜塩素酸ナトリウム等の酸素酸及び酸素酸塩であるが、酸素類が好ましく、特に酸素が好ましい。これらの酸化剤は単独でもよいし、2種類以上を混合して用いても良い。またこれらの酸化剤は通常原料液に溶解して供給される。これら酸化剤の添加量は原料ラクトニトリルに対して0.001〜0.15モル比、好ましくは0.005〜0.05モル比である。酸化剤として酸素を用いる場合は純酸素を用いてもよいが、通常は窒素などの不活性ガスで希釈して用いられる。もちろん空気をそのまま、あるいは空気に酸素または不活性ガスを混合し調整して使用してもよい。酸素含有ガスの酸素濃度は任意でよいが、酸素濃度で2〜50%が特に好ましい。また酸素ガスを用いる場合は触媒を固定床として充填し、固相とガス相の間を反応液が流れるいわゆるトリクルベット型の反応器を用いるのが特に好ましく、これにより良好なる反応液とガスとの分散及び反応液と触媒との接触が達成される。当該反応器の反応液とガスの流れは向流または並流のいずれでも可能である。
【0012】
酸化剤に加え上記一般式(I)に示した含窒素化合物を、通常は0.0001〜5重量%、好ましくは0.0005〜3重量%共存させることにより、酸化剤のみを共存させた場合に比べ、触媒の活性向上と経時的な活性低下をさらに抑制することが可能となり、高い触媒活性を維持しながら高収率で目的の乳酸アミドを得ることが出来る。
この一般式(I)において、R1 〜R3 はそれぞれ水素または炭素数1〜8の原子団を示す。この炭素数1〜8の原子団は、好ましくは炭素数1〜8のアルキル基,炭素数3〜8のシクロアルキル基,炭素数1〜8のヒドロキシアルキル基,炭素数1〜8のアミノアルキル基および炭素数1〜8のハロゲノアルキル基などが挙げられる。また、この一般式(I)で表される含窒素化合物の具体例としては、アンモニア,モノエチルアミン,ジエチルアミン,トリエチルアミン,モノメチルアミン,ジメチルアミン,トリメチルアミン,モノプロピルアミン,ジプロピルアミン,トリプロピルアミン,モノイソプロピルアミン,ジイソプロピルアミン,トリイソプロピルアミン,モノエタノールアミン,ジエタノールアミン,トリエタノールアミン,エチレンジアミンおよびジエチレントリアミンなどを挙げることができ、これらを一種又は二種以上を用いることができる。
【0013】
また酸化剤に加えシアン化水素を反応原料中に0.001〜2重量%添加すると、酸化剤のみを共存させた場合に比べ、経時的な活性低下はより一層抑制されると共に乳酸アミドの選択率も向上する。
酸化剤の効果に対し付加的に生ずる含窒素化合物又はシアン化水素の効果は、含窒素化合物とシアン化水素とを共に酸化剤に加えた場合には相加的に効果が発揮される。このことは以下の実施例から明らかである。
次に、本発明の方法を実施例および比較例により更に具体的に説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。
【0014】
【実施例】
比較例1
触媒調製:過マンガン酸カリウム0.398mol を水200mlに溶解した液に、硫酸マンガン一水和物0.316mol 及び硫酸錫0.0137mol を水200mlに溶かし濃硫酸0.968mol と混合した液を70℃撹拌下に、速やかに注下した。さらに撹拌を継続し90℃で2時間熟成の後、得られた沈澱を濾過し、水2000mlで5回洗浄し、得られたケーキを110℃で一晩乾燥し、変性二酸化マンガン64g を得た。このものの金属成分の含有量を測定した結果、錫/カリウム/マンガン=0.02/0.08/1(原子比)であった。
反応:前記で得た二酸化マンガンを破砕して10〜20メッシュに揃えたもの4.5ccをジャケットを備えた内径10mmφのガラス製反応管に充填した。ジャケットには40℃の温水を流した。ラクトニトリル35.000重量部及び水65.000重量部の割合で混合した原料液を流速4.3g/hrで反応管に通した。反応器を出た液は循環ポンプにより43g/hr(循環比10)の流速で反応器入口へ再フィードした。反応器下部の液溜めより溢流する反応液の組成を高速液体クロマトグラフィーで反応開始後24時間および10日後に分析したところ、ラクトニトリルの転化率は、それぞれ80.2%、61.0%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ94.6%、9 5.0%であった。
【0015】
比較例2
窒素を35ml/hr の速度で反応管上部より供給した以外は比較例1と同様に反応を行った。反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ79.7%、58.3%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ94.8%、94.5%であった。
【0016】
実施例1
空気を35ml/hr の速度で反応管上部より供給した以外は比較例1と同様に反応を行った。反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ80.0%、67.3%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.0%、95.0%であった。
【0017】
実施例2
空気を35ml/hr の速度で反応管上部より供給し、ラクトニトリル35.000重量部、水64.490重量部及びトリメチルアミン0.510重量部の割合で混合した原料液を用いた以外は比較例1と同様に反応を行い、反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ85.1%、84.3%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.2%、95.1%であった。
【0018】
実施例3
空気を35ml/hr の速度で反応管上部より供給し、ラクトニトリル35.000重量部、水64.330重量部、トリメチルアミン0.510重量部及び青酸0.160重量部の割合で混合した原料液を用いた以外は比較例1と同様に反応を行い、反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ84.8%、84.1%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ97.0%、97.2%であった。
【0019】
実施例4
過酸化水素0.100重量部、ラクトニトリル35.000重量部及び水64.900重量部の割合で混合した原料液を用いた以外は比較例1と同様に反応を行った。反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ80.5%、69.1%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ94.8%、95.0%であった。
【0020】
実施例5
シアン化水素0.175重量部、ラクトニトリル35.000重量部及び水64.825重量部の割合で混合した原料液を用い、空気を35ml/hr の速度で反応管上部より供給した以外は比較例1と同様に反応を行った。反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ80.3%、73.1%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ97.0%、97.5%であった。
【0021】
比較例3
触媒調製:過マンガン酸カリウム0.398mol を水200mlに溶解した液に、硫酸マンガン一水和物0.316mol を水200mlに溶かし濃硫酸0.968mol と混合した液を70℃撹拌下に、速やかに注下した。さらに撹拌を継続し90℃で2時間熟成の後、得られた沈澱を濾過し、水2000mlで5回洗浄し、得られたケーキを110℃で一晩乾燥し、変性二酸化マンガン64g を得た。このものの金属成分の含有量を測定した結果、カリウム/マンガン=0.09/1(原子比)であった。
反応:前記で得た二酸化マンガンを破砕して10〜20メッシュに揃えたもの4.5ccをジャケットを備えた内径10mmφのガラス製反応管に充填した。ジャケットには40℃の温水を流した。ラクトニトリル35.000重量部及び水65.000重量部の割合で混合した原料液を流速4.3g/hrで反応管に通した。反応器を出た液は循環ポンプにより43g/hr(循環比10)の流速で反応器入口へ再フィードした。反応器下部の液溜めより溢流する反応液の組成を高速液体クロマトグラフィーで反応開始後24時間および10日後に分析したところ、ラクトニトリルの転化率は、それぞれ78.3%、56.5%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.0%、95.3%であった。
【0022】
実施例6
空気を35ml/hr の速度で反応管上部より供給したほかは比較例3と同様に反応を行った。反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ79.2%、68.6%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.0%、94.9%であった。
【0023】
実施例7
空気を35ml/hr の速度で反応管上部より供給し、ラクトニトリル35.000重量部、水64.260重量部及びジエチルアミン0.74重量部の割合で混合した原料液を用いた以外は比較例3と同様に反応を行い、反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ82.3%、81.5%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.0%、95.1%であった。
【0024】
実施例8
空気を35ml/hr の速度で反応管上部より供給し、ラクトニトリル35.000重量部、水64.110重量部、ジエチルアミン0.74重量部及び青酸0.15重量部の割合で混合した原料液を用いた以外は比較例3と同様に反応を行い、反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ82.4%、81.5%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ97.1%、97.3%であった。
【0025】
比較例4
触媒調製:(特開平9−24275号公報)を参考にして下記の方法で調製を行った。
過マンガン酸カリウム0.0625mol を水110mlに溶解した過マンガン酸カリウム水溶液に、濃硫酸0.06mol を徐々に加えた後、30℃に加熱した。この溶液に、シュウ酸0.125mol を水130mlに溶解したシュウ酸水溶液を、撹拌下、反応温度を30〜35℃に調整しながら添加した。添加終了後、加熱し、撹拌下、90℃で3時間熟成した。得られたスラリーを濾過し、沈澱ケーキを純粋で硫酸根が検出されなくなるまで洗浄し、110℃で乾燥し、粉砕することにより黒色の二酸化マンガン触媒を得た。
反応:前記で得た二酸化マンガンを破砕して10〜20メッシュに揃えたもの17ccをジャケットを備えた内径10mmφのガラス製反応管に充填した。ジャケットには40℃の温水を流した。ラクトニトリル35.000重量部及び水65.000重量部の割合で混合した原料液を流速4.3g/hrで反応管に通した。反応器を出た液は循環ポンプにより43g/hr(循環比10)の流速で反応器入口へ再フィードした。反応器下部の液溜めより溢流する反応液の組成を高速液体クロマトグラフィーで反応開始後24時間および10日後に分析したところ、ラクトニトリルの転化率は、それぞれ79.6%、57.0%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.2%、95.4%であった。
【0026】
実施例9
空気を35ml/hr の速度で反応管上部より供給したほかは比較例4と同様に反応を行った。反応開始後24時間および10日後に分析を行ったところ、ラクトニトリルの転化率は、それぞれ80.2%、67.5%、また24時間後および10日後の乳酸アミドの選択率(ラクトニトリル基準)はそれぞれ95.0%、95.4%であった。
【0027】
【発明の効果】
本発明によれば、高い触媒活性を長期間維持しながらラクトニトリルから乳酸アミドを製造することができ、工業的に極めて大きな意義をもつものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing lactamide. More specifically, the present invention relates to a method for producing lactamide by the hydration reaction of lactonitrile. Lactic acid amide is a raw material for producing lactic acid ester by amide ester exchange reaction with formic acid ester or by alcoholysis reaction. It is also possible to produce lactic acid by further hydrolyzing this lactic acid ester. It goes without saying that lactic acid esters and lactic acid are useful as organic synthetic raw materials and solvents, and lactic acid is particularly useful as a fungicide and a raw material for biodegradable polymers. Furthermore, the lactic acid ester is a raw material for producing an acrylate ester by a dehydration reaction and has industrially important and large uses.
[0002]
[Prior art]
US Pat. No. 4,188,829 describes the use of δ-type manganese dioxide as a catalyst in the hydration reaction of acetone cyanohydrin. As preparation methods of manganese dioxide for acetone cyanohydrin, JP-A-63-57534 and JP-A-63-57535 disclose a method of containing zinc and a method of reducing potassium permanganate with hydrochloric acid. Kaihei 6-269666 discloses a method for reducing permanganate using hydrazines, hydroxycarboxylic acids or salts thereof.
On the other hand, Japanese Examined Patent Publication No. 61-47822 and US Pat. No. 5,175,366 show that manganese dioxide is used for the hydration reaction of lactonitrile contained in the same cyanohydrin group as acetone cyanohydrin. Furthermore, hydration reaction of lactonitrile using manganese dioxide as a catalyst prepared by a method of reducing permanganate with a polyhydric alcohol and a method of reducing with a polyvalent carboxylic acid or a salt thereof is disclosed in JP-A-9-19637. It is shown in the gazette and Unexamined-Japanese-Patent No. 9-24275.
However, when manganese dioxide prepared by the above method is used as a catalyst for lactonitrile hydration reaction as it is, there is a problem that the catalytic activity rapidly decreases in a short period of time, and it has not been put into practical use yet. Currently.
[0003]
[Problems to be solved by the invention]
The subject of this invention is providing the manufacturing method of industrially useful lactamide which solved the fault of the above prior arts.
[0004]
[Means for Solving the Problems]
The present inventor has found that when lactate amide is produced from lactonitrile and water in the presence of a catalyst mainly composed of manganese oxide, a rapid decrease in catalytic activity is suppressed by the coexistence of an oxidizing agent. It was. Further, it has been found that when the reaction is carried out in the coexistence of an oxidizing agent and a nitrogen-containing compound, the activity decrease is further suppressed as compared with the case of coexisting only the oxidizing agent. It was also found that when the reaction was carried out in the coexistence of an oxidant and hydrogen cyanide, the decrease in activity was further suppressed and the selectivity for lactamide was improved as compared with the case of coexistence of only the oxidant. Furthermore, when the reaction was carried out in the coexistence of an oxidizing agent with a nitrogen-containing compound and hydrogen cyanide, it was found that the respective effects of the nitrogen-containing compound and hydrogen cyanide were obtained additively, and the present invention was completed.
That is, the present invention relates to a method for producing lactic acid amide from lactonitrile and water in the presence of a catalyst mainly composed of manganese oxide and an oxidizing agent, as well as a catalyst mainly composed of manganese oxide, and an oxidizing agent. And lactic acid amide from lactonitrile and water in the presence of the compound represented by formula (I) and / or hydrogen cyanide.
[0005]
[Chemical 2]
Figure 0003962885
(R 1 to R 3 each represent hydrogen or an atomic group having 1 to 8 carbon atoms)
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in detail. The lactonitrile used in the present invention is easily produced from acetaldehyde and hydrogen cyanide in the presence of a basic catalyst. Further, as a catalyst mainly composed of manganese oxide in the present invention, manganese dioxide is mainly used, but manganese dioxide is generally a manganese oxide between MnO 1.7 and MnO 2 , and the crystal structure is α, Since β, γ, δ, ε, and the like are known, and transition between phases and change in crystallinity occur, the structures are extremely complicated and diverse. Manganese dioxide exists in nature, but when it is used as a catalyst, the method of preparing divalent manganese by oxidation and the method of preparing heptavalent manganese by reduction should be used alone or in combination. Manganese dioxide obtained by is suitable.
[0007]
For example, a method of reducing a permanganate compound at 20 to 100 ° C. in a neutral to alkaline region (Zeit. Anorg. Allg. Chem., 309, p1-32 and p121-150. (1961)), permanganate A method of adding an aqueous potassium solution to an aqueous manganese sulfate solution (J. Chem. Soc., 2189, (1953)), a method of reducing permanganate with hydrohalic acid (Japanese Patent Laid-Open No. 63-57535), permanganese Method of reducing acid salt with polycarboxylic acid or polyhydric alcohol (Japanese Patent Laid-Open Nos. 9-24275 and 9-19637), Method of reducing permanganate with hydrazine, hydroxycarboxylic acid or salt thereof (Japanese Patent Laid-Open No. 6-269666) and a method for electrolytically oxidizing a manganese sulfate aqueous solution are known. As the catalyst mainly composed of manganese oxide used in the method of the present invention, those prepared by the various methods described above can be used, but preferably modified manganese dioxide containing an alkali metal element is preferable. As a method for preparing the catalyst, a method in which divalent manganese and heptavalent manganese are simultaneously used is desirable in that the crystal type, the specific surface area, and the type and amount of alkali metal can be controlled.
[0008]
In addition, the manganese dioxide catalyst and the modified manganese dioxide containing an alkali metal element may contain other elements such as the periodic table 2,3,4,5,6,8,9,10,11,12,13,14, It is also possible to add an element of group 15, and addition of alkaline earth metals, Sc, Zr, V, Nb, Ta, Cr, Mo, W, Zn, Ga, In, Ge, Sn, Pb is particularly preferable. As a method for adding these metals to manganese dioxide, any method such as impregnation, adsorption, kneading, and coprecipitation can be used, but the coprecipitation method is particularly preferable, and the liquidity thereof can be prepared under acidic or basic conditions. However, preparation under acidic conditions is more preferable, and when prepared under basic conditions, it is desirable to wash manganese dioxide with an acidic solution such as dilute sulfuric acid before the reaction.
[0009]
A water-soluble salt is selected as the divalent manganese source used for the above catalyst preparation, and sulfate is particularly preferable among them. As the heptavalent manganese source, water-soluble potassium permanganate or sodium permanganate is particularly preferable, and this can also be used as an alkali metal source. As an alkaline earth metal, Sc, Zr, V, Nb, Ta, Cr, Mo, W, Zn, Ga, In, Ge, Sn, Pb source added to manganese dioxide, a water-soluble salt is preferable, among them. Sulfate is particularly preferred.
[0010]
In the present invention, the catalyst prepared as described above can be used by being supported on a metal oxide carrier such as alumina, silica, zirconia, titania and the like, and the molded body is used as a fixed bed catalyst or a powder. The granules or microspheres are used as a slurry catalyst for lactonitrile hydration in batch or flow reactors. The hydration reaction using the catalyst of the present invention is usually carried out in a system containing excess water. That is, the ratio of lactonitrile in the raw material liquid is 5 to 80% by weight, preferably 20 to 60% by weight. The reaction temperature is in the range of 0 to 120 ° C, preferably 10 to 90 ° C. A temperature lower than this is not preferable because the reaction rate is low, and a temperature higher than this is not preferable because a by-product due to decomposition of lactonitrile increases.
[0011]
Further, the oxidizing agent used in the present invention includes oxygens such as oxygen and ozone, or peroxides such as hydrogen peroxide, sodium peroxide, magnesium peroxide, benzoyl peroxide, and diacetyl peroxide, performic acid, peracetic acid, peroxygen. Peracids and persalts such as ammonium sulfate or periodic acids, oxygen acids and oxyacid salts such as perchloric acid, sodium periodate, iodic acid, bromic acid, potassium chlorate, sodium hypochlorite, Oxygen is preferable, and oxygen is particularly preferable. These oxidizing agents may be used alone or in combination of two or more. These oxidizing agents are usually supplied after being dissolved in the raw material liquid. The addition amount of these oxidizing agents is 0.001 to 0.15 molar ratio, preferably 0.005 to 0.05 molar ratio with respect to the raw material lactonitrile. When oxygen is used as the oxidant, pure oxygen may be used, but it is usually diluted with an inert gas such as nitrogen. Of course, the air may be used as it is or after being mixed with oxygen or an inert gas. The oxygen concentration of the oxygen-containing gas may be arbitrary, but 2 to 50% is particularly preferable in terms of oxygen concentration. In the case of using oxygen gas, it is particularly preferable to use a so-called trickle bed type reactor in which the catalyst is packed as a fixed bed and the reaction solution flows between the solid phase and the gas phase. Dispersion and contact of the reaction solution with the catalyst is achieved. The reaction solution and gas flow in the reactor can be either counter-current or co-current.
[0012]
When the nitrogen-containing compound represented by the above general formula (I) in addition to the oxidizing agent is usually 0.0001 to 5% by weight, preferably 0.0005 to 3% by weight, so that only the oxidizing agent is present. In comparison with the above, improvement in the activity of the catalyst and reduction in the activity over time can be further suppressed, and the desired lactic acid amide can be obtained in high yield while maintaining high catalyst activity.
In this general formula (I), R < 1 > -R < 3 > shows hydrogen or a C1-C8 atomic group, respectively. The atomic group having 1 to 8 carbon atoms is preferably an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms, or an aminoalkyl having 1 to 8 carbon atoms. Group and a halogenoalkyl group having 1 to 8 carbon atoms. Specific examples of the nitrogen-containing compound represented by the general formula (I) include ammonia, monoethylamine, diethylamine, triethylamine, monomethylamine, dimethylamine, trimethylamine, monopropylamine, dipropylamine, tripropylamine, Examples thereof include monoisopropylamine, diisopropylamine, triisopropylamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine and diethylenetriamine, and one or more of these can be used.
[0013]
Moreover, when 0.001 to 2% by weight of hydrogen cyanide is added to the reaction raw material in addition to the oxidizing agent, the decrease in activity over time is further suppressed and the selectivity for lactamide is also reduced compared to the case where only the oxidizing agent is present. improves.
The effect of the nitrogen-containing compound or hydrogen cyanide generated in addition to the effect of the oxidizing agent is exhibited additively when both the nitrogen-containing compound and hydrogen cyanide are added to the oxidizing agent. This is clear from the following examples.
Next, the method of the present invention will be described more specifically with reference to examples and comparative examples. However, the scope of the present invention is not limited to these examples.
[0014]
【Example】
Comparative Example 1
Catalyst preparation: A solution prepared by dissolving 0.398 mol of potassium permanganate in 200 ml of water, dissolving 0.316 mol of manganese sulfate monohydrate and 0.0137 mol of tin sulfate in 200 ml of water, and mixing with 0.968 mol of concentrated sulfuric acid is 70. The mixture was poured quickly with stirring at ° C. Further stirring was continued and the mixture was aged at 90 ° C. for 2 hours. The resulting precipitate was filtered, washed 5 times with 2000 ml of water, and the resulting cake was dried at 110 ° C. overnight to obtain 64 g of modified manganese dioxide. . As a result of measuring the content of the metal component of this product, it was found that tin / potassium / manganese = 0.02 / 0.08 / 1 (atomic ratio).
Reaction: Manganese dioxide obtained above was crushed and aligned to 10 to 20 mesh, and 4.5 cc was charged into a glass reaction tube having an inner diameter of 10 mmφ equipped with a jacket. Warm water of 40 ° C. was passed through the jacket. The raw material liquid mixed at a ratio of 35.000 parts by weight of lactonitrile and 65.000 parts by weight of water was passed through the reaction tube at a flow rate of 4.3 g / hr. The liquid exiting the reactor was re-feeded to the reactor inlet at a flow rate of 43 g / hr (circulation ratio 10) by a circulation pump. The composition of the reaction liquid overflowing from the bottom of the reactor was analyzed by high performance liquid chromatography 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 80.2% and 61.0%, respectively. The selectivity for lactamide after 24 hours and 10 days (based on lactonitrile) was 94.6% and 95.0%, respectively.
[0015]
Comparative Example 2
The reaction was performed in the same manner as in Comparative Example 1 except that nitrogen was supplied from the upper part of the reaction tube at a rate of 35 ml / hr. The analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 79.7% and 58.3%, respectively, and the selectivity for lactamide after 24 hours and 10 days (based on lactonitrile). ) Were 94.8% and 94.5%, respectively.
[0016]
Example 1
The reaction was performed in the same manner as in Comparative Example 1 except that air was supplied from the upper part of the reaction tube at a rate of 35 ml / hr. Analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 80.0% and 67.3%, respectively, and the selectivity for lactamide after 24 hours and 10 days (based on lactonitrile). ) Were 95.0% and 95.0%, respectively.
[0017]
Example 2
Comparative example except that air was supplied from the upper part of the reaction tube at a rate of 35 ml / hr and a raw material liquid mixed with 35.000 parts by weight of lactonitrile, 64.490 parts by weight of water and 0.510 parts by weight of trimethylamine was used. The reaction was carried out in the same manner as in No. 1, and the analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 85.1% and 84.3%, and the lactic acid after 24 hours and 10 days, respectively. The selectivity of amide (based on lactonitrile) was 95.2% and 95.1%, respectively.
[0018]
Example 3
Air is supplied from the top of the reaction tube at a rate of 35 ml / hr and mixed at a ratio of 35.000 parts by weight of lactonitrile, 64.330 parts by weight of water, 0.510 parts by weight of trimethylamine and 0.160 parts by weight of hydrocyanic acid. The reaction was conducted in the same manner as in Comparative Example 1 except that was used, and analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 84.8%, 84.1%, and 24, respectively. The selectivity of lactamide after 10 hours and after 10 days (based on lactonitrile) was 97.0% and 97.2%, respectively.
[0019]
Example 4
The reaction was performed in the same manner as in Comparative Example 1 except that the raw material liquid mixed at a ratio of 0.100 parts by weight of hydrogen peroxide, 35.000 parts by weight of lactonitrile and 64.900 parts by weight of water was used. Analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 80.5% and 69.1%, respectively, and the selectivity of lactamide after 24 hours and 10 days (based on lactonitrile). ) Were 94.8% and 95.0%, respectively.
[0020]
Example 5
Comparative Example 1 except that raw material liquid mixed at a ratio of 0.175 parts by weight of hydrogen cyanide, 35.000 parts by weight of lactonitrile and 64.825 parts by weight of water was used, and air was supplied from the upper part of the reaction tube at a rate of 35 ml / hr. The reaction was carried out in the same manner as above. Analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 80.3% and 73.1%, respectively, and the selectivity for lactamide after 24 hours and 10 days (based on lactonitrile). ) Were 97.0% and 97.5%, respectively.
[0021]
Comparative Example 3
Preparation of catalyst: A solution prepared by dissolving 0.398 mol of potassium permanganate in 200 ml of water, dissolving 0.316 mol of manganese sulfate monohydrate in 200 ml of water and mixing with 0.968 mol of concentrated sulfuric acid was rapidly stirred at 70 ° C. Was dropped. Further stirring was continued and the mixture was aged at 90 ° C. for 2 hours. The resulting precipitate was filtered, washed 5 times with 2000 ml of water, and the resulting cake was dried at 110 ° C. overnight to obtain 64 g of modified manganese dioxide. . As a result of measuring the content of the metal component of this product, it was potassium / manganese = 0.09 / 1 (atomic ratio).
Reaction: Manganese dioxide obtained above was crushed and aligned to 10 to 20 mesh, and 4.5 cc was charged into a glass reaction tube having an inner diameter of 10 mmφ equipped with a jacket. Warm water of 40 ° C. was passed through the jacket. The raw material liquid mixed at a ratio of 35.000 parts by weight of lactonitrile and 65.000 parts by weight of water was passed through the reaction tube at a flow rate of 4.3 g / hr. The liquid exiting the reactor was re-feeded to the reactor inlet at a flow rate of 43 g / hr (circulation ratio 10) by a circulation pump. The composition of the reaction liquid overflowing from the bottom of the reactor was analyzed by high performance liquid chromatography 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 78.3% and 56.5%, respectively. The selectivity for lactamide after 24 hours and 10 days (based on lactonitrile) was 95.0% and 95.3%, respectively.
[0022]
Example 6
The reaction was performed in the same manner as in Comparative Example 3 except that air was supplied from the upper part of the reaction tube at a rate of 35 ml / hr. Analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 79.2% and 68.6%, respectively, and the selectivity for lactamide after 24 hours and 10 days (based on lactonitrile). ) Were 95.0% and 94.9%, respectively.
[0023]
Example 7
Comparative example except that air was supplied from the upper part of the reaction tube at a rate of 35 ml / hr and a raw material liquid mixed at a ratio of 35.000 parts by weight of lactonitrile, 64.260 parts by weight of water and 0.74 parts by weight of diethylamine was used. The reaction was carried out in the same manner as in No. 3, and the analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion rates of lactonitrile were 82.3% and 81.5%, and the lactic acid after 24 hours and 10 days, respectively. The selectivity of amide (based on lactonitrile) was 95.0% and 95.1%, respectively.
[0024]
Example 8
Air is supplied from the top of the reaction tube at a rate of 35 ml / hr and mixed at a ratio of 35.000 parts by weight of lactonitrile, 64.110 parts by weight of water, 0.74 parts by weight of diethylamine and 0.15 parts by weight of hydrocyanic acid. The reaction was conducted in the same manner as in Comparative Example 3 except that was used, and the analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 82.4%, 81.5% and 24%, respectively. The selectivity of lactamide after 10 hours and after 10 days (based on lactonitrile) was 97.1% and 97.3%, respectively.
[0025]
Comparative Example 4
Catalyst preparation: Preparation was carried out by the following method with reference to (Japanese Patent Laid-Open No. 9-24275).
Concentrated sulfuric acid 0.06 mol was gradually added to an aqueous potassium permanganate solution in which 0.0625 mol of potassium permanganate was dissolved in 110 ml of water, and then heated to 30 ° C. To this solution, an oxalic acid aqueous solution in which 0.125 mol of oxalic acid was dissolved in 130 ml of water was added with stirring while adjusting the reaction temperature to 30 to 35 ° C. After completion of the addition, the mixture was heated and aged at 90 ° C. for 3 hours with stirring. The obtained slurry was filtered, and the precipitate cake was washed until pure sulfate was not detected, dried at 110 ° C., and pulverized to obtain a black manganese dioxide catalyst.
Reaction: 17 cc of the above-obtained manganese dioxide crushed and aligned to 10 to 20 mesh was packed into a glass reaction tube having an inner diameter of 10 mmφ equipped with a jacket. Warm water of 40 ° C. was passed through the jacket. The raw material liquid mixed at a ratio of 35.000 parts by weight of lactonitrile and 65.000 parts by weight of water was passed through the reaction tube at a flow rate of 4.3 g / hr. The liquid exiting the reactor was re-feeded to the reactor inlet at a flow rate of 43 g / hr (circulation ratio 10) by a circulation pump. The composition of the reaction liquid overflowing from the bottom of the reactor was analyzed by high performance liquid chromatography 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 79.6% and 57.0%, respectively. The selectivity for lactamide after 24 hours and 10 days (based on lactonitrile) was 95.2% and 95.4%, respectively.
[0026]
Example 9
The reaction was performed in the same manner as in Comparative Example 4 except that air was supplied from the upper part of the reaction tube at a rate of 35 ml / hr. Analysis was conducted 24 hours and 10 days after the start of the reaction. The conversion of lactonitrile was 80.2% and 67.5%, respectively, and the selectivity for lactamide after 24 hours and 10 days (based on lactonitrile). ) Were 95.0% and 95.4%, respectively.
[0027]
【The invention's effect】
According to the present invention, lactic acid amide can be produced from lactonitrile while maintaining high catalytic activity for a long period of time, which is extremely significant industrially.

Claims (4)

マンガン酸化物を主成分とする触媒と、酸化剤及びシアン化水素との存在下で、ラクトニトリルと水を反応させることを特徴とする乳酸アミドの製造法。A process for producing lactamide, comprising reacting lactonitrile and water in the presence of a catalyst comprising manganese oxide as a main component, an oxidizing agent and hydrogen cyanide . マンガン酸化物を主成分とする触媒がアルカリ金属元素を含有する変性二酸化マンガンである請求項1記載の乳酸アミドの製造法。2. The method for producing a lactic acid amide according to claim 1, wherein the catalyst containing manganese oxide as a main component is modified manganese dioxide containing an alkali metal element. 酸化剤が酸素類、過酸化物、酸素酸及び酸素酸塩からなる群より選ばれた少なくとも1種である請求項1記載の乳酸アミドの製造法。The method for producing a lactic acid amide according to claim 1, wherein the oxidizing agent is at least one selected from the group consisting of oxygens, peroxides, oxygen acids and oxyacid salts. マンガン酸化物を主成分とする触媒と、酸化剤及びシアン化水素と、一般式(I)で示される化合物との存在下で、ラクトニトリルと水を反応させる請求項1記載の乳酸アミドの製造法。
Figure 0003962885
(R〜Rはそれぞれ水素又は炭素数1〜8の原子団を示す)
The method for producing a lactic acid amide according to claim 1, wherein lactonitrile and water are reacted in the presence of a catalyst comprising manganese oxide as a main component, an oxidizing agent and hydrogen cyanide, and a compound represented by the general formula (I).
Figure 0003962885
(R 1 to R 3 each represent hydrogen or an atomic group having 1 to 8 carbon atoms)
JP26314498A 1998-03-24 1998-09-17 Method for producing lactamide Expired - Fee Related JP3962885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26314498A JP3962885B2 (en) 1998-03-24 1998-09-17 Method for producing lactamide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7578898 1998-03-24
JP10-75788 1998-03-24
JP26314498A JP3962885B2 (en) 1998-03-24 1998-09-17 Method for producing lactamide

Publications (2)

Publication Number Publication Date
JPH11335341A JPH11335341A (en) 1999-12-07
JP3962885B2 true JP3962885B2 (en) 2007-08-22

Family

ID=26416941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26314498A Expired - Fee Related JP3962885B2 (en) 1998-03-24 1998-09-17 Method for producing lactamide

Country Status (1)

Country Link
JP (1) JP3962885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047597A1 (en) * 2005-10-05 2007-04-12 Degussa Ag Manganese dioxide catalyst for the hydrolysis of carbonitriles
DE102006055430A1 (en) * 2006-11-22 2008-05-29 Evonik Röhm Gmbh Process for the preparation of carboxylic acid amides by hydrolysis of carbonitriles in the presence of a catalyst comprising manganese dioxide
CN105377810B (en) 2013-07-16 2018-10-19 三菱瓦斯化学株式会社 The manufacturing method and reaction unit of α-hydroxyisobutyric acid amide

Also Published As

Publication number Publication date
JPH11335341A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
EP0418512B1 (en) Process for production of alpha-hydroxycarboxylic acid amide
JPH11319558A (en) Hydration catalyst for cyanhydrin
JP5511187B2 (en) Manganese dioxide catalyst for hydrolysis of carboxylic nitrile
JP4012568B2 (en) Method for producing halo-substituted aromatic acid
US4374758A (en) Preparation of stable tellurium-containing solution from metallic tellurium and process for producing tellurium-antimony containing oxide catalyst using said solution
JP2827368B2 (en) Method for producing α-hydroxyisobutyric acid amide
JP3962885B2 (en) Method for producing lactamide
US6124501A (en) Process for preparing lactamide
US5756842A (en) Process for preparing lactamide
JP3901260B2 (en) Method for producing lactamide
JP5704359B2 (en) Catalyst for producing amide compound and method for producing amide compound
WO2007037082A1 (en) Process for producing carnitinamide
RU2234495C2 (en) Method for preparing betaine
JP3712008B2 (en) Method for producing silica-titania catalyst for carboxylic acid ester production
JPH06145124A (en) Production of alpha-hydroxyisobutyric acid amide
CN113351255B (en) Co complex catalyst for preparing isobutyric acid by oxidizing isobutyraldehyde and application thereof
JP4014863B2 (en) Method for producing oxidation or ammoxidation catalyst
JPH06269666A (en) Production of catalyst for hydrating cyanohydrin
JPH05147948A (en) Production of manganese sulfate
JP3927835B2 (en) Process for producing iodinated aromatic compound diacetate
JP4418104B2 (en) Formylimidazole production process
CN118371265A (en) Catalyst for preparing adipic acid from cyclohexanone and preparation method and application thereof
JPS6097945A (en) Production of nitrilotriacetic acid salt
JPH11279110A (en) Production of 2-substituted carboxylic acid
JPH11180932A (en) Production of alpha-ketocarboxylic ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees