JPH07103077A - Exhaust reflux controller for internal combustion engine - Google Patents

Exhaust reflux controller for internal combustion engine

Info

Publication number
JPH07103077A
JPH07103077A JP5251787A JP25178793A JPH07103077A JP H07103077 A JPH07103077 A JP H07103077A JP 5251787 A JP5251787 A JP 5251787A JP 25178793 A JP25178793 A JP 25178793A JP H07103077 A JPH07103077 A JP H07103077A
Authority
JP
Japan
Prior art keywords
engine
exhaust gas
gas recirculation
time
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5251787A
Other languages
Japanese (ja)
Inventor
Masanobu Osaki
正信 大崎
Shoichi Sakai
祥一 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP5251787A priority Critical patent/JPH07103077A/en
Publication of JPH07103077A publication Critical patent/JPH07103077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To avoid that moisture in an intake system increases to make a large quantity of moisture freeze to a fuel injection valve by forcedly stopping the reflux of exhaust until a fixed time elapses from a start-up time in the case where engine temperature at the start-up time is lower than a fixed temperature in carrying out the reflux of exhaust. CONSTITUTION:In an internal combustion engine 1, both an exhaust and an intake manifold 2, 3 are made to communicate mutually through an exhaust reflux passage 4, which is arrangedly provided with a control valve 5. A negative pressure introducing passage 7 to make the pressure chamber of the control valve 5 communicate with the intake manifold 3 on the downstream side of a throttle valve 6 is opened and closed by a solenoid 9 arrangedly provided in the passage 7 to open and close the control valve 5. In this case, the solenoid 9 is controlled on engine temperature, for instance a detection signal issued from a water temperature sensor 11, by a control unit 8. Namely, the exhaust reflux passage 4 is forcedly kept in a blocked up state for a fixed time corresponding to the engine temperature detected at the time of starting the engine from the start-up time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機関排気の一部を吸気系
に還流させる内燃機関の排気還流制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation control device for an internal combustion engine, which recirculates a part of engine exhaust gas to an intake system.

【0002】[0002]

【従来の技術】従来から、自動車用内燃機関において、
機関排気中のNOxを低減するための装置として、機関
排気の一部を吸気マニホールドへ還流させることによ
り、最高燃焼温度を下げて、NOxの生成を減少させる
排気還流装置(EGR)が知られている。
2. Description of the Related Art Conventionally, in an internal combustion engine for automobiles,
As a device for reducing NOx in engine exhaust, an exhaust gas recirculation device (EGR) is known that lowers the maximum combustion temperature by recirculating a part of engine exhaust to an intake manifold to reduce NOx production. There is.

【0003】[0003]

【発明が解決しようとする課題】ところで、機関排気中
には比較的多くの水分が存在するため、排気還流を実行
すると、機関吸気系における水分量を増大させることに
なってしまう。尚、吸気系における水分量は、上記の排
気還流によるものの他、オイル中の水分がブローバイガ
スで運ばれて発生するもの等があるが、これに比べて排
気還流で運ばれる水分量が多いという特性を有する。
By the way, since a relatively large amount of water is present in the engine exhaust, if the exhaust gas recirculation is executed, the amount of water in the engine intake system will be increased. The amount of water in the intake system includes not only the amount due to the exhaust gas recirculation, but also the amount due to the water in the oil being carried by the blow-by gas, but the amount of water carried in the exhaust gas recirculation is larger than this. Have characteristics.

【0004】ここで、排気還流によって多くの水分が吸
気系に運ばれると、以下のような過程によって燃料噴射
弁の噴孔周辺の金属部に氷結が発生し、噴射特性の変
動,始動不良等を招く惧れがあった。即ち、外気温度の
低い状態(0℃以下)での機関運転中においては燃料の
気化潜熱によって燃料噴射弁の噴孔付近が冷やされるた
め、吸気中の水分が前記冷やされた噴孔付近に付着して
霜状に氷結する。かかる状態で、機関を停止させると、
吸気系の雰囲気温度の上昇に伴って燃料噴射弁の温度が
上昇し、前記霜状に付着した氷が溶けて水滴になると共
に、燃料噴射弁の温度と雰囲気温度との差で結露が発生
し、燃料噴射弁に付着する水分量が増大する。このよう
にして多量の水滴が付着した状態で、外気温度の影響で
燃料噴射弁の温度が下がると、前記付着していた水滴が
氷結することになる。そして、前記氷結が噴射弁の噴孔
部に生じると、再始動時の燃料噴射に悪影響を与え、最
悪は始動不良を発生させてしまう惧れがあった。
Here, when a large amount of water is carried to the intake system by exhaust gas recirculation, icing occurs in the metal portion around the injection hole of the fuel injection valve due to the following process, fluctuations in injection characteristics, start failure, etc. There was a fear of inviting. That is, during engine operation in a state where the outside air temperature is low (0 ° C. or less), the vicinity of the injection hole of the fuel injection valve is cooled by the latent heat of vaporization of the fuel, so that the water content in the intake air adheres to the vicinity of the cooled injection hole. And it freezes like frost. If the engine is stopped in this state,
As the atmospheric temperature of the intake system rises, the temperature of the fuel injection valve rises, the frost-like ice melts into water droplets, and dew condensation occurs due to the difference between the temperature of the fuel injection valve and the atmospheric temperature. The amount of water adhering to the fuel injection valve increases. In this way, when a large amount of water droplets are attached and the temperature of the fuel injection valve is lowered due to the influence of the outside air temperature, the attached water droplets are frozen. If the above-mentioned frost formation occurs in the injection hole portion of the injection valve, the fuel injection at the time of restart may be adversely affected, and in the worst case, a start failure may occur.

【0005】かかる不具合は、温度環境と吸気系におけ
る水分量とを要因として発生するものであり、特に、吸
気系における水分量は前述のように排気還流の影響を最
も大きく受けて増大するものである。本発明は上記問題
点に鑑みなされたものであり、燃料噴射弁の噴孔付近に
おける氷結が発生する環境条件(温度条件)にあるとき
に、排気還流によって吸気系における水分量が増大する
ことを回避し、以て、前記氷結の発生を未然に防止でき
るようにすることを目的とする。
Such a problem is caused by the temperature environment and the amount of water in the intake system, and in particular, the amount of water in the intake system is greatly affected by exhaust gas recirculation as described above and increases. is there. The present invention has been made in view of the above problems, and it is possible to increase the amount of water in the intake system by exhaust gas recirculation under the environmental condition (temperature condition) in which icing occurs near the injection hole of the fuel injection valve. It is an object of the present invention to avoid the occurrence of freezing and prevent the occurrence of freezing.

【0006】[0006]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の排気還流制御装置は、図1に示すように構成
れる。図1において、排気還流制御手段は、機関排気の
一部を吸気系に還流させる排気還流通路を機関運転条件
に応じて開閉する。
Therefore, an exhaust gas recirculation control system for an internal combustion engine according to the present invention is constructed as shown in FIG. In FIG. 1, the exhaust gas recirculation control means opens and closes an exhaust gas recirculation passage for recirculating a part of the engine exhaust gas to the intake system according to engine operating conditions.

【0007】また、始動時排気還流停止手段は、機関始
動から機関温度検出手段で検出された機関始動時の機関
温度に応じた所定期間だけ、前記排気還流制御手段に優
先して前記排気還流通路を強制的に閉状態に保持させ
る。
Further, the exhaust gas recirculation stop means at the time of starting has priority over the exhaust gas recirculation control means for a predetermined period corresponding to the engine temperature at the engine start detected by the engine temperature detecting means from the engine start, and the exhaust gas recirculation passage is prioritized. Forcibly held in the closed state.

【0008】[0008]

【作用】かかる構成によると、機関が始動されてから始
動時の機関温度に応じた期間だけ排気還流が強制的に停
止される。従って、冷機始動時で噴射弁における氷結発
生の温度条件が成立しているときに排気還流を強制的に
停止させて、吸気系における水分量の大幅な増大を回避
することが可能となり、以て、たとえ氷結発生の温度条
件が成立していても、吸気系の水分量を低く抑えること
で、燃料噴射弁の噴孔付近に氷結が発生することを回避
し得る。
With this structure, the exhaust gas recirculation is forcibly stopped for a period corresponding to the engine temperature at the time of starting after the engine is started. Therefore, it is possible to forcibly stop the exhaust gas recirculation when the temperature condition for ice formation in the injection valve is satisfied at the time of cold engine start, and to avoid a large increase in the amount of water in the intake system. Even if the temperature condition for the formation of ice is satisfied, the amount of water in the intake system can be suppressed to be low, so that the formation of ice in the vicinity of the injection hole of the fuel injection valve can be avoided.

【0009】[0009]

【実施例】以下に本発明の実施例を説明する。一実施例
のシステム構成を示す図2において、機関1の排気マニ
ホールド2と吸気マニホールド3とを連通させる排気還
流通路4が設けられており、この排気還流通路4は、E
GRコントロールバルブ5によって開閉されるようにな
っている。
EXAMPLES Examples of the present invention will be described below. In FIG. 2 showing the system configuration of one embodiment, an exhaust gas recirculation passage 4 that connects the exhaust manifold 2 and the intake manifold 3 of the engine 1 is provided.
The GR control valve 5 opens and closes.

【0010】前記EGRコントロールバルブ5は、コイ
ルスプリングによる閉弁方向の付勢力に抗して機関の吸
入負圧を作用させることで開弁されるダイヤフラム式の
バルブであり、その圧力室とスロットル弁6下流側の吸
気マニホールド3とを連通させる負圧導入通路7が設け
られており、該負圧導入通路7を介して前記圧力室に機
関1の吸入負圧を導くことで開弁される。
The EGR control valve 5 is a diaphragm type valve which is opened by applying a suction negative pressure of the engine against the biasing force of the coil spring in the valve closing direction. 6 is provided with a negative pressure introducing passage 7 that communicates with the intake manifold 3 on the downstream side, and the valve is opened by introducing the negative suction pressure of the engine 1 into the pressure chamber through the negative pressure introducing passage 7.

【0011】前記負圧導入通路7には、コントロールユ
ニット8によってオン・オフ制御されるEGRコントロ
ールソレノイド9が介装されており、該EGRコントロ
ールソレノイド9の開閉制御を介して前記EGRコント
ロールバルブ5の開閉、即ち、排気還流をオン・オフ的
に制御できるようになっている。尚、10は排気圧力とマ
ニホールド負圧によりダイヤフラムが作動し、前記EG
Rコントロールバルブ5を制御する負圧を決定するダイ
ヤフラム式のBPTバルブであり、上記EGRコントロ
ールバルブ5,EGRコントロールソレノイド9,BP
Tバルブ10及びコントロールユニット8によって本実施
例における排気還流制御手段が構成される。
An EGR control solenoid 9 which is on / off controlled by a control unit 8 is interposed in the negative pressure introduction passage 7. The opening / closing control of the EGR control solenoid 9 controls the EGR control valve 5 to operate. Opening / closing, that is, exhaust gas recirculation can be controlled on / off. In addition, 10 is the diaphragm operated by the exhaust pressure and the manifold negative pressure,
A diaphragm-type BPT valve that determines a negative pressure for controlling the R control valve 5, and includes the EGR control valve 5, the EGR control solenoid 9, and the BP.
The T valve 10 and the control unit 8 constitute exhaust gas recirculation control means in this embodiment.

【0012】前記コントロールユニット8には、水温セ
ンサ11(機関温度検出手段)から出力される冷却水温度
信号Twの他、機関回転数Ne,機関吸入空気量Qなど
の検出信号が各センサから入力されると共に、図示しな
いイグニッションスイッチのオン・オフ信号が入力さ
れ、これらから判別される機関運転条件に基づいて排気
中のNOxを有効に低減させるべく前記EGRコントロ
ールソレノイド9をオン・オフ制御する。
In addition to the cooling water temperature signal Tw output from the water temperature sensor 11 (engine temperature detecting means), the control unit 8 receives detection signals such as the engine speed Ne and the engine intake air amount Q from each sensor. At the same time, an ON / OFF signal of an ignition switch (not shown) is input, and the EGR control solenoid 9 is ON / OFF controlled in order to effectively reduce NOx in the exhaust gas based on the engine operating conditions determined from these signals.

【0013】また、吸気マニホールド3の各ブランチ部
には、電磁式の燃料噴射弁12が設けられており、前記コ
ントロールユニット8は、前述の各検出信号に基づいて
前記噴射弁12に送る噴射パルス信号のパルス幅を演算
し、機関回転に同期したタイミングで前記噴射パルス信
号を出力する。ここで、前記コントロールユニット8に
よる排気還流制御を、図3のフローチャートに従って詳
細に説明する。
An electromagnetic fuel injection valve 12 is provided at each branch of the intake manifold 3, and the control unit 8 sends an injection pulse to the injection valve 12 on the basis of each detection signal described above. The pulse width of the signal is calculated, and the injection pulse signal is output at the timing synchronized with the engine rotation. Here, the exhaust gas recirculation control by the control unit 8 will be described in detail with reference to the flowchart of FIG.

【0014】尚、本実施例において、始動時排気還流停
止手段としての機能は、前記図3のフローチャートに示
すようにコントロールユニット8がソフトウェア的に備
えている。図3のフローチャートにおいて、まず、ステ
ップ1(図中ではS1としてある。以下同様)では、冷
却水温度Tw,機関吸入空気量Q,機関回転数Neなど
の機関運転条件を示す各種パラメータを入力する。
In this embodiment, the function of the exhaust gas recirculation stopping means at the time of starting is provided by software in the control unit 8 as shown in the flow chart of FIG. In the flowchart of FIG. 3, first, in step 1 (denoted as S1 in the figure. The same applies hereinafter), various parameters indicating engine operating conditions such as the cooling water temperature Tw, the engine intake air amount Q, and the engine speed Ne are input. .

【0015】そして、次のステップ2では、例えば機関
負荷と回転数とに応じて予め設定されている排気還流領
域を参照することで、現在の運転条件が排気還流の実行
領域に該当するか否かを判別する。ここで、排気還流の
実行が予定されている運転条件であると判別されたとき
には、ステップ3へ進んで、機関を始動したときに水温
センサ11で検出された冷却水温度(始動時の機関温度)
が予め設定された所定温度未満であったか否かを判別さ
せる。
In the next step 2, for example, by referring to an exhaust gas recirculation region which is preset according to the engine load and the engine speed, it is determined whether or not the current operating condition corresponds to the exhaust gas recirculation execution region. Determine whether. Here, when it is determined that the operating condition is such that the exhaust gas recirculation is scheduled to be executed, the routine proceeds to step 3, where the cooling water temperature detected by the water temperature sensor 11 when the engine is started (the engine temperature at the time of starting) )
Is determined to be below a preset predetermined temperature.

【0016】そして、始動時の冷却水温度Twが所定温
度未満であったと判別されたときには、更にステップ4
へ進み、機関が始動されてからの経過時間が予め設定さ
れた所定時間(固定値)を越えているか否かを判別させ
る。ステップ4で、機関始動後の経過時間が所定時間を
越えていないと判別されたときには、ステップ2で排気
還流の実行領域であると判別されているにも関わらず、
ステップ5へ進んで、EGRコントロールソレノイド9
をオフ制御することで、排気還流の停止状態を強制的に
保持させる。
When it is determined that the cooling water temperature Tw at the time of starting is lower than the predetermined temperature, step 4 is further executed.
Then, it is determined whether or not the elapsed time since the engine is started exceeds a preset predetermined time (fixed value). When it is determined in step 4 that the elapsed time after the engine has started does not exceed the predetermined time, even though it is determined in step 2 that the exhaust gas recirculation is in the execution region,
Proceed to step 5, and EGR control solenoid 9
Is controlled to be turned off, so that the stopped state of the exhaust gas recirculation is forcibly held.

【0017】一方、ステップ3で始動時の冷却水温度T
wが所定温度以上であったと判別されたとき、又は、ス
テップ4で始動からの経過時間が所定時間を越えたと判
別されたときには、ステップ6へ進み、ステップ2にお
ける判別に従って排気還流を実行させるべくEGRコン
トロールソレノイド9をオン制御する。即ち、本来的に
は排気還流を行なわせるべき運転条件であっても、始動
時の冷却水温度Twが所定以下であったときには、始動
から所定時間が経過するまで(所定期間)は、排気還流
の実行を強制的に停止させるものである。
On the other hand, in step 3, the temperature T of the cooling water at the time of starting is increased.
When it is determined that w is equal to or higher than the predetermined temperature, or when it is determined in step 4 that the elapsed time from the start exceeds the predetermined time, the process proceeds to step 6 and the exhaust gas recirculation is executed according to the determination in step 2. The EGR control solenoid 9 is turned on. That is, even if the operating condition is such that the exhaust gas recirculation is originally performed, when the cooling water temperature Tw at the time of starting is below a predetermined value, the exhaust gas recirculating time is maintained until a predetermined time elapses from the start (a predetermined period). Is forcibly stopped from executing.

【0018】これにより、冷機始動であって然も始動か
らの経過時間が短いために、温度条件としては、噴射弁
の噴孔付近に吸気中の水分が霜状に氷結するような条件
であったとしても、多量の水分を吸気系にもたらすこと
になる排気還流が強制的に停止されるから、吸気中の水
分量を低レベルに維持させることができ、以て、前記噴
孔部における氷結の発生を抑制し得る。
As a result, since the elapsed time from startup is short even when the engine is cold started, the temperature condition is such that the water in the intake air is frozen in the form of frost near the injection hole of the injection valve. Even so, since the exhaust gas recirculation that would bring a large amount of water to the intake system is forcibly stopped, the amount of water in the intake air can be maintained at a low level, and thus, the icing in the injection hole portion can be prevented. Can be suppressed.

【0019】上記のようにして機関運転中における噴射
弁に対する氷結量を抑制できれば、機関の停止中に一旦
溶けた水分が噴孔部に氷結して再始動時の噴射特性に悪
影響を及ぼすことを未然に回避でき、以て、低温環境に
おける再始動性を確保できる。ところで、上記図3のフ
ローチャートに示した実施例では、冷機始動時であって
然も始動からの経過時間が予め設定された所定時間内で
あるときに、排気還流を強制的に停止させるようにした
が、NOx排出量を低く抑えるためにはなるべく早く排
気還流を実行できるようにすることが望まれる。
If the amount of icing on the injection valve during engine operation can be suppressed as described above, it is possible that the water once melted during engine stoppage will freeze on the injection holes and adversely affect the injection characteristics at restart. This can be avoided in advance, so that restartability in a low temperature environment can be secured. By the way, in the embodiment shown in the flowchart of FIG. 3, the exhaust gas recirculation is forcibly stopped at the time of cold start and even when the elapsed time from the start is within the predetermined time set in advance. However, in order to suppress the NOx emission amount to a low level, it is desired that exhaust gas recirculation can be executed as soon as possible.

【0020】そこで、図4のフローチャートに示すよう
に、始動時水温に従って排気還流の強制停止を行なわせ
る時間を可変設定することが好ましい。図4のフローチ
ャートにおいては、まず、ステップ11で、機関運転条件
を示す各種パラメータを入力し、次のステップ12では、
現在の運転条件が排気還流の実行領域に該当するか否か
を判別する。
Therefore, as shown in the flow chart of FIG. 4, it is preferable to variably set the time for forcibly stopping the exhaust gas recirculation according to the water temperature at the time of starting. In the flowchart of FIG. 4, first, in step 11, various parameters indicating engine operating conditions are input, and in next step 12,
It is determined whether or not the current operating conditions correspond to the exhaust gas recirculation execution region.

【0021】そして、ステップ12で排気還流の実行領域
であることが判別されたときには、ステップ13へ進み、
機関始動時に水温センサ11で検出された冷却水温度Tw
に基づいて始動から排気還流を強制停止させる時間Ts
を可変設定する。ここで、始動時の冷却水温度Tw(機
関温度)が低いときほど、吸気中の水分の噴射弁に対す
る氷結が発生する温度条件が長く続くことになるので、
始動時水温が低いときほど前記強制停止時間Tsが長く
設定されるようにしてある。
When it is determined in step 12 that the exhaust gas recirculation is in the execution region, the process proceeds to step 13,
Cooling water temperature Tw detected by the water temperature sensor 11 when the engine is started
Time Ts for forcibly stopping exhaust gas recirculation from startup based on
Variably set. Here, the lower the cooling water temperature Tw (engine temperature) at the time of starting, the longer the temperature condition in which the water in the intake air freezes with respect to the injection valve.
The lower the starting water temperature, the longer the forced stop time Ts is set.

【0022】ステップ13で停止時間Tsを設定すると、
次のステップ14では、実際の始動からの経過時間が前記
ステップ13で設定された停止時間を越えたか否かを判別
する。そして、ステップ13で設定された停止時間を越え
るまでは、たとえ排気還流の実行条件であっても、ステ
ップ15へ進んで、EGRコントロールソレノイド9をオ
フ制御して、排気還流の停止状態を保持させる。
When the stop time Ts is set in step 13,
In the next step 14, it is judged whether or not the elapsed time from the actual start exceeds the stop time set in the step 13. Until the stop time set in step 13 is exceeded, the process proceeds to step 15 to turn off the EGR control solenoid 9 to keep the exhaust gas recirculation stopped state even under the exhaust gas recirculation execution condition. .

【0023】一方、ステップ14で始動からの経過時間
が、始動時水温に応じて設定された停止時間を越えたと
きには、ステップ16へ進み、ステップ12における実行領
域判別に従ってEGRコントロールソレノイド9をオン
制御して排気還流を実行させる。上記図4のフローチャ
ートに示す実施例では、始動時水温に応じて排気還流を
強制的に停止させる時間を可変設定するから、無用に排
気還流が強制停止されることを回避でき、噴射弁に対す
る氷結を回避しつつ、排気還流を有効に働かせてNOx
排出量を抑制できる。
On the other hand, when the elapsed time from the start exceeds the stop time set in accordance with the water temperature at the start in step 14, the process proceeds to step 16, and the EGR control solenoid 9 is turned on according to the execution region determination in step 12. Then, the exhaust gas recirculation is executed. In the embodiment shown in the flow chart of FIG. 4, the time during which exhaust gas recirculation is forcibly stopped is variably set according to the water temperature at the start, so that it is possible to avoid unnecessary compulsory stop of exhaust gas recirculation, and to prevent icing on the injection valve. While avoiding NOx and effectively recirculating exhaust gas to NOx
The amount of emissions can be suppressed.

【0024】[0024]

【発明の効果】以上説明したように本発明によると、排
気還流によって吸気系の水分量が増大すると噴射弁に対
する水分の氷結が発生する温度条件下においては、排気
還流を強制的に停止させることができ、以て、前記氷結
を未然に防止して噴射弁の良好な噴射特性を維持させる
ことができるという効果がある。
As described above, according to the present invention, the exhaust gas recirculation is forcibly stopped under the temperature condition where the water content of the intake system increases due to the exhaust gas recirculation and the water content of the injection valve freezes. Therefore, there is an effect that the freezing can be prevented in advance and good injection characteristics of the injection valve can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing an embodiment of the present invention.

【図3】第1実施例の排気還流制御を示すフローチャー
ト。
FIG. 3 is a flowchart showing exhaust gas recirculation control according to the first embodiment.

【図4】第2実施例の排気還流制御を示すフローチャー
ト。
FIG. 4 is a flowchart showing exhaust gas recirculation control according to the second embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 排気マニホールド 3 吸気マニホールド 4 排気還流通路 5 EGRコントロールバルブ 6 スロットル弁 7 負圧導入通路 8 コントロールユニット 9 EGRコントロールソレノイド 10 BPTバルブ 11 水温センサ 12 燃料噴射弁 1 Internal Combustion Engine 2 Exhaust Manifold 3 Intake Manifold 4 Exhaust Gas Recirculation Passage 5 EGR Control Valve 6 Throttle Valve 7 Negative Pressure Introduction Passage 8 Control Unit 9 EGR Control Solenoid 10 BPT Valve 11 Water Temperature Sensor 12 Fuel Injection Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機関排気の一部を吸気系に還流させる排気
還流通路を機関運転条件に応じて開閉する排気還流制御
手段を備えた内燃機関の排気還流制御装置において、 機関温度を検出する機関温度検出手段と、 機関始動から前記機関温度検出手段により機関始動時に
検出された機関温度に応じた所定期間だけ、前記排気還
流制御手段に優先して前記排気還流通路を強制的に閉状
態に保持させる始動時排気還流停止手段と、 を備えたことを特徴とする内燃機関の排気還流制御装
置。
1. An exhaust gas recirculation control device for an internal combustion engine, comprising: an exhaust gas recirculation control means for opening and closing an exhaust gas recirculation passage for recirculating a part of the engine exhaust gas to an intake system in accordance with engine operating conditions. Temperature detection means and forcibly holding the exhaust gas recirculation passage in a closed state prior to the exhaust gas recirculation control means for a predetermined period according to the engine temperature detected by the engine temperature detection means when the engine is started from the engine start time. An exhaust gas recirculation control device for an internal combustion engine, comprising: an exhaust gas recirculation stop means for starting.
JP5251787A 1993-10-07 1993-10-07 Exhaust reflux controller for internal combustion engine Pending JPH07103077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5251787A JPH07103077A (en) 1993-10-07 1993-10-07 Exhaust reflux controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5251787A JPH07103077A (en) 1993-10-07 1993-10-07 Exhaust reflux controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07103077A true JPH07103077A (en) 1995-04-18

Family

ID=17227932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5251787A Pending JPH07103077A (en) 1993-10-07 1993-10-07 Exhaust reflux controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07103077A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063762A (en) * 2001-01-30 2002-08-05 한국기계연구원 Method for preventing ice formation in fuel injector and intake port using exhaust gas
KR20030048749A (en) * 2001-12-13 2003-06-25 현대자동차주식회사 Exhaust gas recirculation system and it's control method for rising defrosting efficiency of automobile
GB2385094A (en) * 2002-01-18 2003-08-13 Detroit Diesel Corp Condensation reduction in the exhaust gas recirculation (EGR) system of a compression ignition i.c. engine based on humidity
JP2007146724A (en) * 2005-11-25 2007-06-14 Yanmar Co Ltd Exhaust gas recirculation control device for engine
JP2009114861A (en) * 2007-11-01 2009-05-28 Toyota Motor Corp Control device for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063762A (en) * 2001-01-30 2002-08-05 한국기계연구원 Method for preventing ice formation in fuel injector and intake port using exhaust gas
KR20030048749A (en) * 2001-12-13 2003-06-25 현대자동차주식회사 Exhaust gas recirculation system and it's control method for rising defrosting efficiency of automobile
GB2385094A (en) * 2002-01-18 2003-08-13 Detroit Diesel Corp Condensation reduction in the exhaust gas recirculation (EGR) system of a compression ignition i.c. engine based on humidity
US6725848B2 (en) 2002-01-18 2004-04-27 Detroit Diesel Corporation Method of controlling exhaust gas recirculation system based upon humidity
GB2385094B (en) * 2002-01-18 2006-08-30 Detroit Diesel Corp Method of controlling exhaust gas recirculation system based upon humidity
JP2007146724A (en) * 2005-11-25 2007-06-14 Yanmar Co Ltd Exhaust gas recirculation control device for engine
JP2009114861A (en) * 2007-11-01 2009-05-28 Toyota Motor Corp Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US5845486A (en) Internal combustion engine exhaust gas purifier apparatus
US6781098B2 (en) Heater controller for an oxygen sensor
JP2002322934A (en) Intake air control device for internal combustion engine
JP2001159348A (en) Intake control device for engine
US8474310B2 (en) Valve freeze control apparatus and sensor element breakage control apparatus for internal combustion engine
JP4094195B2 (en) Engine intake air amount control device
US6173694B1 (en) Method and apparatus for controlling fuel injection in an in-cylinder type internal combustion engine
JPS6143543B2 (en)
JP3427612B2 (en) An intake flow control device for an internal combustion engine
JPH07103077A (en) Exhaust reflux controller for internal combustion engine
US6640763B2 (en) Apparatus for controlling starting of internal combustion engine
JP2001152971A (en) Exhaust reflux control device for internal combustion engine
US4195602A (en) Intake control means for internal combustion engines
US4561394A (en) Air intake side secondary air supply system for an internal combustion engine
JP2008063956A (en) Control device of internal combustion engine
JPH10141149A (en) Engine exhaust circulation controlling device
JPH0411741B2 (en)
JPH07253052A (en) Exhaust gas recirculation controller of engine
CA2185173C (en) Acceleration time controller for internal combustion engine
JPH09324704A (en) Exuast reflux device of internal combustion engine
JP3438638B2 (en) Fuel injection control device for diesel engine
JP2987675B2 (en) Intake control device for internal combustion engine
JPH0223700B2 (en)
JP3630034B2 (en) Engine start control device
JP2785590B2 (en) Air flow control device for internal combustion engine