JPH0223700B2 - - Google Patents

Info

Publication number
JPH0223700B2
JPH0223700B2 JP57100581A JP10058182A JPH0223700B2 JP H0223700 B2 JPH0223700 B2 JP H0223700B2 JP 57100581 A JP57100581 A JP 57100581A JP 10058182 A JP10058182 A JP 10058182A JP H0223700 B2 JPH0223700 B2 JP H0223700B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust sensor
engine
ratio control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57100581A
Other languages
Japanese (ja)
Other versions
JPS58217750A (en
Inventor
Sadayuki Hirano
Yuzuru Nanba
Itsuzo Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP10058182A priority Critical patent/JPS58217750A/en
Publication of JPS58217750A publication Critical patent/JPS58217750A/en
Publication of JPH0223700B2 publication Critical patent/JPH0223700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0023Controlling air supply
    • F02D35/003Controlling air supply by means of by-pass passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は、排気センサを使用した空燃比制御装
置を備ええたエンジンに於て、排気センサが低温
時で空燃比制御開始までの間、機関アイドリング
回転数をアツプさせると共に、空燃比制御開始直
後の所定時間、機関の回転数をアツプさせるアイ
ドルアツプ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an engine equipped with an air-fuel ratio control device using an exhaust sensor, which increases the engine idling speed until the air-fuel ratio control starts when the exhaust sensor is at a low temperature. , relates to an idle-up device that increases the rotational speed of an engine for a predetermined period of time immediately after the start of air-fuel ratio control.

エンジンの始動直後はもとより、エンジン回転
状態でも寒冷条件で放置された場合等において
は、排気センサ温度は低い状態となり、排気セン
サの低温度特性は空燃比制御を行うに十分な安定
域にはない。つまり、排気センサ温度とその出力
電圧との関係を示す第1図に示すように、排気セ
ンサ温度が低温度の場合には、出力電圧Vが基準
電圧Vsに対して小さい側(第1図において下側)
に偏よつており(破線、一点鎖線、二点鎖線
)、その出力電圧及び変曲点の空燃比が共に不
安定であり、且つ、低温度になる程変曲点の空燃
比がリーン側へ移行する(リーン化現象)。
Not only immediately after the engine is started, but also when the engine is left running in cold conditions, the exhaust sensor temperature will be low, and the low temperature characteristics of the exhaust sensor will not be in a stable enough range to control the air-fuel ratio. . In other words, as shown in Figure 1, which shows the relationship between the exhaust sensor temperature and its output voltage, when the exhaust sensor temperature is low, the output voltage V is on the smaller side (in Figure 1) than the reference voltage Vs. Lower)
(broken line, one-dot chain line, two-dot chain line), both the output voltage and the air-fuel ratio at the inflection point are unstable, and the lower the temperature, the leaner the air-fuel ratio at the inflection point. transition (lean phenomenon).

空燃比制御装置は、設定された基準電圧Vs(ス
ライスレベル)と排気センサの出力電圧Vとを比
較することにより、理論空燃比を目標値としてフ
イードバツク制御を行う。第2図、第3図に示す
如く、例えばエンジンの運転開始後排気センサ温
度が低く出力電圧Vが基準電圧Vsに達するA点
までの間たるt1は空燃比制御を行わず、排気セン
サ温度が基準電圧Vsに達した時点Aから前記空
燃比制御が可能となる。
The air-fuel ratio control device performs feedback control using the stoichiometric air-fuel ratio as a target value by comparing the set reference voltage Vs (slice level) and the output voltage V of the exhaust sensor. As shown in FIGS. 2 and 3, for example, during t1 , which is the period from the start of engine operation until point A when the exhaust sensor temperature is low and the output voltage V reaches the reference voltage Vs, air-fuel ratio control is not performed, and the exhaust sensor temperature is low. The air-fuel ratio control becomes possible from time A when the voltage reaches the reference voltage Vs.

従来、前記A時点から空燃比制御を行う場合に
おいて、制御開始後排気センサ温度が第1図の実
線Iに達するまでのしばらくは、第4図に示す如
く前記リーン化現象に起因するエンジンの不調C
が生じる不都合があつた。
Conventionally, when air-fuel ratio control is performed from point A, for a while after the start of control until the exhaust sensor temperature reaches solid line I in FIG. 1, the engine malfunctions due to the lean phenomenon, as shown in FIG. C
There was an inconvenience caused.

このような場合に、従来エンジン始動時に空燃
比をリツチ化して暖機運転している際に、排気セ
ンサ出力が活性化相当の温度に達した後に所定時
間を経過するまで空燃比制御を停止するものや、
あるいは空燃比をリツチ化している間の空燃比制
御を停止するものがある。
In such cases, conventionally, when the engine is started by enriching the air-fuel ratio to warm up the engine, air-fuel ratio control is stopped until a predetermined period of time elapses after the exhaust sensor output reaches a temperature equivalent to activation. things,
Alternatively, there is a method that stops air-fuel ratio control while enriching the air-fuel ratio.

ところが、このように空燃比をリツチ化してい
る間の空燃比制御を停止することにより、空燃比
制御の開始時期が遅れる問題があり、また、混合
気の空燃比をリツチ化しているので、空燃比制御
の開始時期が遅れている間の排気有害成分を低減
し得ないことより排気有害成分値が悪化する不都
合があつた。
However, by stopping the air-fuel ratio control while enriching the air-fuel ratio in this way, there is a problem that the start timing of the air-fuel ratio control is delayed. Since the harmful exhaust gas components cannot be reduced while the start time of fuel ratio control is delayed, there is a problem in that the value of the harmful exhaust gas components deteriorates.

そこでこの発明の目的は、機関始動開始直後等
において、排気センサが低温度で排気センサ出力
電圧が基準電圧よりも小さい空燃比制御を開始す
るまでの間t1にて、機関のアイドリング回転数を
アツプすることにより、空燃比制御が可能となる
温度まで短時間で排気センサを暖機させると共
に、更に排気センサ出力電圧が基準電圧に達して
空燃比制御を開始した直後の一定時間たるt2にお
いても、アイドリング回転数をアツプした状態を
維持することによつて、空燃比制御開始直後に発
生するエンジンの不調を防止し得て、従来の空燃
比をリツチ化することによる空燃比制御開始時期
の遅れを解消し得て空燃比制御開始時期を早め得
て、これにより空燃比制御開始が遅れている間の
排気有害成分値の悪化を解消し得るエンジンのア
イドルアツプ装置を極めて簡単な構成によつて実
現することにある。
Therefore, an object of the present invention is to reduce the idling speed of the engine at t1, immediately after starting the engine, until the exhaust sensor starts air-fuel ratio control when the exhaust sensor is at a low temperature and the exhaust sensor output voltage is lower than the reference voltage. By increasing the voltage, the exhaust sensor is warmed up in a short time to a temperature that enables air-fuel ratio control, and furthermore, at a fixed time t 2 immediately after the exhaust sensor output voltage reaches the reference voltage and air-fuel ratio control is started. By maintaining a high idling speed, it is possible to prevent engine malfunctions that occur immediately after starting air-fuel ratio control, and to improve the starting timing of air-fuel ratio control by enriching the air-fuel ratio. An engine idle up device having an extremely simple configuration that can eliminate the delay and advance the start time of air-fuel ratio control, thereby eliminating the deterioration in exhaust harmful component values during the delay in the start of air-fuel ratio control. The goal is to realize it.

以下図面に基づいて本発明の実施例を詳細に説
明する。気化器2内に配設されたスロツトル弁4
はレバー6に固設されている。スロツトル弁操作
手段8のダイヤフラム10は前記レバー6に連結
されたロツド12に固着されており、スプリング
14によつて押圧されている。負圧室16内に吸
気管負圧が、第1負圧通路18及び第2負圧通路
20を経て導入させると、ダイヤフラム10はス
プリング14に抗して引き寄せられ、レバー22
に調節可能に螺着されたピン24に前記レバー6
が当接するまで前記ロツド12を牽引する。
Embodiments of the present invention will be described in detail below based on the drawings. Throttle valve 4 disposed within the carburetor 2
is fixed to the lever 6. A diaphragm 10 of the throttle valve operating means 8 is fixed to a rod 12 connected to the lever 6, and is pressed by a spring 14. When intake pipe negative pressure is introduced into the negative pressure chamber 16 via the first negative pressure passage 18 and the second negative pressure passage 20, the diaphragm 10 is pulled against the spring 14, and the lever 22
The lever 6 is attached to a pin 24 that is adjustable and screwed to the
Pull the rod 12 until it comes into contact with the rod 12.

26は電磁弁で、その作動状態において前記第
1及び第2負圧通路18,20を連通し、不作動
状態において第1及び第2負圧通路18,20の
連通を断つ。28は排気センサで、吸入混合気の
燃焼ガス中の特定成分、例えば酸素(O2)の濃
度に対応した出力電圧を制御装置30に送る。制
御装置30は、基準電圧Vsと排気センサ28の
出力電圧Vを比較し、VsがVより大なる時、前
記電磁弁を作動状態に保持する信号を出力すると
共に、VがVsより大になつた時にタイマ32を
作動状態にする信号を出力する。タイマ32は作
動状態にて前記電磁弁26を一定時作動状態に保
持する。34はイグニツシヨンキーである。
Reference numeral 26 designates a solenoid valve that communicates the first and second negative pressure passages 18, 20 in its activated state, and disconnects the first and second negative pressure passages 18, 20 in its inactive state. An exhaust sensor 28 sends to the control device 30 an output voltage corresponding to the concentration of a specific component, such as oxygen (O 2 ), in the combustion gas of the intake air-fuel mixture. The control device 30 compares the reference voltage Vs with the output voltage V of the exhaust sensor 28, and when Vs is greater than V, it outputs a signal to keep the solenoid valve in operation, and when V becomes greater than Vs. It outputs a signal that activates the timer 32 when the timer 32 is activated. The timer 32 maintains the solenoid valve 26 in an operating state for a certain period of time. 34 is an ignition key.

前記電磁弁26、第1、第2負圧通路18,2
0、スロツトル弁操作手段8、ロツド12、レバ
ー6、スロツトル弁4、レバー22、ピン24に
よつて、作動状態にて機関に供給される混合気を
増量する混合気量調節手段が構成されている。
The electromagnetic valve 26, the first and second negative pressure passages 18, 2
0. The throttle valve operation means 8, the rod 12, the lever 6, the throttle valve 4, the lever 22, and the pin 24 constitute a mixture amount adjusting means for increasing the amount of mixture supplied to the engine in the operating state. There is.

排気センサ28が低温でセンサ出力電圧Vが基
準電圧Vsよりも小さい空燃比制御を開始するま
での間、前記排気センサ28の検出信号に基づき
前記調節手段を作動状態に保持する第1アツプ手
段は、前記制御装置30内に設けられる。
The first up means maintains the adjustment means in an operating state based on the detection signal of the exhaust sensor 28 until the exhaust sensor 28 starts air-fuel ratio control when the temperature is low and the sensor output voltage V is lower than the reference voltage Vs. , provided in the control device 30.

排気センサ28の出力電圧Vが基準電圧Vsに
達して空燃比制御を開始した直後の所定時間、排
気センサ28の検出信号に基づき前記調節手段を
作動状態に保持する第2アツプ手段は、タイマ3
2によつて構成される。
A second up means for maintaining the adjustment means in an operating state based on a detection signal from the exhaust sensor 28 for a predetermined period of time immediately after the output voltage V of the exhaust sensor 28 reaches the reference voltage Vs and starts air-fuel ratio control is a timer 3.
Consisting of 2.

以下に本発明の作用を説明する。 The operation of the present invention will be explained below.

エンジン水温の低い低温始動時や、一旦停止後
の再始動時(水温は高いが排気温度は低い)、あ
るいはまた機関駆動放置時における外部冷却(雨
や雪など)により排気温度が低下した際などにお
いては、第3図に示す如く排気センサ温度は低い
ものである。従つて排気センサ28の出力電圧V
は制御装置30の基準電圧Vsより小さいので、
制御装置30からの出力信号により電磁弁26は
作動状態になる。それによつて第1負圧通路18
と第2負圧通路20が連通し、該第1及び第2負
圧通路を通して吸気管負圧が負圧室16に導入さ
れる。それによつてダイヤフラム10はスプリン
グ14に抗して引き寄せられ、前記レバー6がピ
ン24に当接するまでロツド12を牽引し、スロ
ツトル弁4を所定角度だけ開く。スロツトル弁4
が開くことにより、吸気量が増量し、第4図に示
す如くエンジンの回転数が高く保持されると共
に、排出ガス量が増すことにより排気センサ28
の暖機が促進される。
When the engine is started at a low temperature, when the engine is restarted after a stop (the water temperature is high but the exhaust temperature is low), or when the exhaust temperature drops due to external cooling (rain, snow, etc.) when the engine is left running. As shown in FIG. 3, the exhaust sensor temperature is low. Therefore, the output voltage V of the exhaust sensor 28
is smaller than the reference voltage Vs of the control device 30, so
The solenoid valve 26 is activated by the output signal from the control device 30. Thereby, the first negative pressure passage 18
and a second negative pressure passage 20 are in communication with each other, and intake pipe negative pressure is introduced into the negative pressure chamber 16 through the first and second negative pressure passages. Thereby, the diaphragm 10 is drawn against the spring 14, pulling the rod 12 until the lever 6 abuts the pin 24, opening the throttle valve 4 by a predetermined angle. Throttle valve 4
By opening, the amount of intake air increases, and as shown in FIG. 4, the engine speed is kept high, and the amount of exhaust gas increases.
warm-up is promoted.

第2図、第3図に示す如く、エンジンの運転開
始等から排気センサ28の出力電圧Vが基準電圧
Vsに達する(A点)までの間は第1アツプ手段
によりアイドルアツプされ、排気センサ28が十
分暖機された時点(B点)から排気センサ28の
検出信号にる空燃比制御が開始される。つまり、
排気センサ28の出力電圧Vが基準電圧Vsに達
した時点(A点)で、空燃比制御の開始とともに
制御装置30は前記タイマ32を作動状態にす
る。それによつてタイマ32は、電磁弁26を前
記A時点から一定時間(t2)の間作動状態に保持
する。従つてスロツトル弁4は、前記A時点から
一定時間(t2)の間、所定角度開かれた状態に保
持される、これによつて第4図に示す如く。空燃
比制御が開始されたA点から空燃比制御が行われ
ているB点までの時間t2の間、エンジンの回転数
をアツプした状態が維持されるので、従来生じた
空燃比制御開始直後のエンジンの不調Cは発生し
ない。
As shown in FIGS. 2 and 3, the output voltage V of the exhaust sensor 28 is set to the reference voltage from the start of engine operation, etc.
Until reaching Vs (point A), the idle is increased by the first upping means, and air-fuel ratio control based on the detection signal of the exhaust sensor 28 is started from the time when the exhaust sensor 28 is sufficiently warmed up (point B). . In other words,
When the output voltage V of the exhaust sensor 28 reaches the reference voltage Vs (point A), the control device 30 activates the timer 32 at the same time as the air-fuel ratio control starts. Thereby, the timer 32 maintains the solenoid valve 26 in the operating state for a certain period of time (t 2 ) from the point A. Therefore, the throttle valve 4 is held open at a predetermined angle for a predetermined time (t 2 ) from the point A, as shown in FIG. 4. During the time t2 from point A, where air-fuel ratio control is started, to point B, where air-fuel ratio control is performed, the engine speed is maintained at an increased speed, so that the engine speed is maintained at an increased speed, so that the air-fuel ratio control that normally occurs immediately after the start of air-fuel ratio control is avoided. Engine malfunction C does not occur.

以上述べた如く本発明によれば、エンジンの運
転開始後等において排気センサの温度が低温で、
排気センサ出力電圧が基準電圧より小さい空燃比
制御開始までの間(t1)において、混合気の空燃
比をリツチ化することなく増量してエンジンのア
イドリング回転数を高く保持することにより排気
センサの暖機を促進するとともに、排気センサ出
力電圧が基準電圧に達した空燃比制御開始直後の
所定時間(t2)の間も混合気の空燃比をリツチ化
することなく増量してエンジンのアイドリング回
転数を高く保持することにより排気センサの暖機
をさらに促進することによつて、従来、空燃比フ
イードバツク制御装置による空燃比制御開始直後
に生じていたエンジンの不調を防止することがで
き、エンジンの早期安定性と早期暖機を果すこと
ができる。
As described above, according to the present invention, the temperature of the exhaust sensor is low after the engine starts operating, etc.
During the period (t 1 ) until the start of air-fuel ratio control when the exhaust sensor output voltage is lower than the reference voltage, the exhaust sensor is In addition to promoting warm-up, the engine idling speed is maintained by increasing the air-fuel ratio of the air-fuel mixture without enriching it for a predetermined period of time ( t2 ) immediately after the start of air-fuel ratio control when the exhaust sensor output voltage reaches the reference voltage. By keeping the number high and further promoting the warm-up of the exhaust sensor, it is possible to prevent engine malfunctions that conventionally occur immediately after starting air-fuel ratio control by the air-fuel ratio feedback control device, and improve engine performance. It can achieve early stability and early warm-up.

また、排気センサ出力電圧が基準電圧に達する
と空燃比制御を開始するとともに混合気の空燃比
をリツチ化することなく増量してエンジンのアイ
ドリン回転数を高く保持しているので、従来の混
合気の空燃比をリツチ化している間の空燃比制御
を停止することによる空燃比制御の開始時期の遅
れを解消し得て、開始時期を早めることができ、
これにより、空燃比制御の開始時期が遅れている
間の排気有害成分を低減し得ないことによる排気
有害成分値の悪化を回避し得て、向上することが
できる。
In addition, when the exhaust sensor output voltage reaches the reference voltage, air-fuel ratio control is started and the air-fuel ratio is increased without enriching the air-fuel ratio to maintain the engine's idling speed at a high level. It is possible to eliminate the delay in the start time of the air-fuel ratio control due to stopping the air-fuel ratio control while enriching the air-fuel ratio of the air-fuel ratio, and the start time can be brought forward.
Thereby, it is possible to avoid deterioration of the exhaust harmful component value due to the inability to reduce the exhaust harmful component while the start time of air-fuel ratio control is delayed, and it is possible to improve the value.

しかも、この発明によれば、複雑な制御回路を
必要とすることなく、極めて簡単な構成によつて
上述効果を果し得て、装置の故障も少なく保守点
検が容易で、使用寿命が長いという効果を得る。
Moreover, according to the present invention, the above-mentioned effects can be achieved with an extremely simple configuration without the need for a complicated control circuit, and the device has fewer breakdowns, is easy to maintain and inspect, and has a long service life. Get the effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気センサの低温度特性を示すグラ
フ、第2図はエンジンの運転時間の経過に伴う排
気センサの出力電圧変化を示すグラフ、第3図は
エンジンの運転時間の経過に伴う排気センサの温
度変化を示すグラフ、第4図はエンジンの回転数
を示すグラフ、第5図は本発明の実施例を示す系
統図である。 8はスロツトル弁操作手段、18,20は負圧
通路、26は電磁弁、28は排気センサ、30は
制御装置、32はタイマである。
Fig. 1 is a graph showing the low temperature characteristics of the exhaust sensor, Fig. 2 is a graph showing the change in output voltage of the exhaust sensor as the engine operating time elapses, and Fig. 3 is a graph showing the exhaust sensor output voltage change as the engine operating time elapses. FIG. 4 is a graph showing the engine rotational speed, and FIG. 5 is a system diagram showing an embodiment of the present invention. 8 is a throttle valve operation means, 18 and 20 are negative pressure passages, 26 is a solenoid valve, 28 is an exhaust sensor, 30 is a control device, and 32 is a timer.

Claims (1)

【特許請求の範囲】[Claims] 1 排気通路中に設けた排気センサの検出信号に
基づき混合気の空燃比を制御する装置にあつて、
作動状態にて機関に供給される混合気を増量する
混合気量調節手段、排気センサが低温で排気セン
サ出力電圧が基準電圧よりも小さい空燃比制御開
始までの間において前記排気センサの検出信号に
基づき前記調節手段を作動状態に保持して混合気
を増量しアイドルアツプする第1アツプ手段、前
記排気センサ出力電圧が基準電圧に達した空燃比
制御開始直後の所定時間において前記調節手段を
排気センサの検出信号に基づき作動状態に保持し
て混合気を増量しアイドルアツプする第2アツプ
手段とを有することを特徴とする空燃比制御エン
ジンにおけるアイドルアツプ装置。
1. Regarding a device that controls the air-fuel ratio of the air-fuel mixture based on the detection signal of an exhaust sensor installed in the exhaust passage,
The air-fuel mixture amount adjusting means increases the amount of air-fuel mixture supplied to the engine in an operating state, and the detection signal of the exhaust sensor is controlled until the air-fuel ratio control starts when the exhaust sensor is at a low temperature and the exhaust sensor output voltage is lower than the reference voltage. a first up means for increasing the idle by increasing the amount of the air-fuel mixture by keeping the adjusting means in an operating state based on the exhaust sensor; An idle up device for an air-fuel ratio controlled engine, comprising a second up means for increasing the idle by increasing the amount of the air-fuel mixture while maintaining the idle state in an activated state based on the detection signal.
JP10058182A 1982-06-14 1982-06-14 Idle-up device in air-fuel ratio control engine Granted JPS58217750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10058182A JPS58217750A (en) 1982-06-14 1982-06-14 Idle-up device in air-fuel ratio control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10058182A JPS58217750A (en) 1982-06-14 1982-06-14 Idle-up device in air-fuel ratio control engine

Publications (2)

Publication Number Publication Date
JPS58217750A JPS58217750A (en) 1983-12-17
JPH0223700B2 true JPH0223700B2 (en) 1990-05-25

Family

ID=14277851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10058182A Granted JPS58217750A (en) 1982-06-14 1982-06-14 Idle-up device in air-fuel ratio control engine

Country Status (1)

Country Link
JP (1) JPS58217750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427100U (en) * 1990-06-26 1992-03-04

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490792B2 (en) * 2004-11-08 2010-06-30 ヤンマー株式会社 Air-fuel ratio control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535378B2 (en) * 1973-02-14 1980-09-12
JPS5726236A (en) * 1980-07-23 1982-02-12 Honda Motor Co Ltd Warming up detector for air to fuel ratio controller of internal combustion engine
JPS5770932A (en) * 1980-10-07 1982-05-01 Honda Motor Co Ltd Warming-up detector for air fuel ratio controller of internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388624U (en) * 1976-12-23 1978-07-20
JPS5535378U (en) * 1978-08-28 1980-03-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535378B2 (en) * 1973-02-14 1980-09-12
JPS5726236A (en) * 1980-07-23 1982-02-12 Honda Motor Co Ltd Warming up detector for air to fuel ratio controller of internal combustion engine
JPS5770932A (en) * 1980-10-07 1982-05-01 Honda Motor Co Ltd Warming-up detector for air fuel ratio controller of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427100U (en) * 1990-06-26 1992-03-04

Also Published As

Publication number Publication date
JPS58217750A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
US4117813A (en) Internal combustion engine and method of operating it
US6966299B2 (en) Start control device and start control method for internal combustion engine
JPS6120285Y2 (en)
US4111010A (en) Automotive internal combustion engine
JPS61192826A (en) Fuel feed control method on fuel cut restoration in internal-combustion engine
JPH0472059B2 (en)
US6997160B2 (en) Control device for an internal combustion engine
JPH0223700B2 (en)
JPH0232853Y2 (en)
JPH07103077A (en) Exhaust reflux controller for internal combustion engine
JPS62345B2 (en)
JPH0626432A (en) Ignition timing control device of internal combustion engine
FR2507686A1 (en) METHOD FOR CONTROLLING EXHAUST GAS RECYCLING FOR INTERNAL COMBUSTION ENGINES
JP2866468B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6145305Y2 (en)
JP3088539B2 (en) Engine control device
JPH06229336A (en) Intake air heater of engine
JP3630034B2 (en) Engine start control device
JPH06108908A (en) Fuel injection device of engine
JPH0458029A (en) Fuel used discriminating device for internal combustion engine
JPH0643823B2 (en) Fuel pressure control device
JP2719934B2 (en) Idle speed control device
JPS58158358A (en) Carburetor for internal-combustion engine
JPH0610774A (en) Egr control device for cylinder injection type engine
JPH0238042Y2 (en)