JPH07102400A - Plating device and current value deciding method - Google Patents

Plating device and current value deciding method

Info

Publication number
JPH07102400A
JPH07102400A JP24963493A JP24963493A JPH07102400A JP H07102400 A JPH07102400 A JP H07102400A JP 24963493 A JP24963493 A JP 24963493A JP 24963493 A JP24963493 A JP 24963493A JP H07102400 A JPH07102400 A JP H07102400A
Authority
JP
Japan
Prior art keywords
plating
current value
plated
divided
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24963493A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hirayama
靖博 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24963493A priority Critical patent/JPH07102400A/en
Publication of JPH07102400A publication Critical patent/JPH07102400A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Abstract

PURPOSE:To provide a plating device in which the thickness and dispersion of plating can be controlled and uniformized even in the case the shape and area of the object to be plated in accordance with divided anodes are different and to provide a method for deciding current value. CONSTITUTION:An anode by which the object 4 to be plated is applied with plating in a plating tank 3 is divided, they are partitioned by bulkheads 5 to form into divided anodes 6 respectively, the surface of the object 4 to be plated is subdivided into small sections in accordance with the divided anodes 6, the area to be plated in practice is found per small section, the relationship between the size of the area to be plated and the current value is represented by a fuzzy rule in accordance with a rule of thumb, and the membership function of the position of each small section to the area to be plated and the membership function of the plating current value per small section are found. By practicing fazzy inference in accordance with fazzy knowredge contg. the same all membership functions, the plating current value for applying electric current to the divided anode per small section is decided, and a current value setting command 8 is given to plural current sources 1 in a power source part 2 from a control part 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はめっき装置および電流値
決定方法に関し、特に多層セラミック基板に対してめっ
きするめっき装置および電流値決定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plating apparatus and a current value determining method, and more particularly to a plating apparatus and a current value determining method for plating a multilayer ceramic substrate.

【0002】[0002]

【従来の技術】従来のめっき装置としては、例えば、特
開昭61−281894号公報に示される発明の場合に
は、図5の回路図に示すように、分割アノード41をめ
っき対象物であるプリント基板端子に対応に設け、直列
に電流検知器42と切替スイッチ43とを設け、給電回
路44と抵抗回路45とを切替えることにより、1つの
アノードでめっきする場合であれば、どうしても避けら
れなかった端子の場所によるめっきの厚さのばらつき
を、個々の端子ごとに(ピンごとに)制御できるように
して均一化しているので、より最大電流密度を高くとる
ことができ、これに応じてめっき処理時間を短縮できる
等の効果を持たせている。
2. Description of the Related Art As a conventional plating apparatus, for example, in the case of the invention disclosed in Japanese Patent Laid-Open No. 61-281894, a split anode 41 is an object to be plated as shown in the circuit diagram of FIG. It is unavoidable in the case of plating with one anode by providing corresponding to a printed circuit board terminal, providing a current detector 42 and a changeover switch 43 in series, and switching between a power feeding circuit 44 and a resistance circuit 45. The unevenness of the plating thickness depending on the location of the terminal is made uniform by controlling it for each terminal (for each pin), so that the maximum current density can be increased and the plating can be performed accordingly. It has the effect of shortening the processing time.

【0003】[0003]

【発明が解決しようとする課題】上述した従来のめっき
装置は、分割アノードごとに電流値を制御することが可
能ではあるが、この場合の電流値の調整は、あくまでも
同一の形状のめっき対象物に対するめっきの厚さのばら
つきを制御することを目的とし、分割アノードに対応す
るめっき対象物の形状や面積が異なる場合には、実験
(試行錯誤)をくり返し段々と目標に近付けていく以外
にはなく、簡単には対応できないという問題点がある。
Although the conventional plating apparatus described above can control the current value for each divided anode, the adjustment of the current value in this case is only for the plating object having the same shape. With the aim of controlling the variation in the plating thickness with respect to the target, if the shape and area of the plating target corresponding to the split anodes are different, then the experiment (trial and error) must be repeated to get closer to the target. However, there is a problem that it cannot be easily handled.

【0004】本発明の目的は、分割アノードに対応する
めっき対象物の形状や面積が異なる場合であっても、め
っきの厚さのばらつきを制御し均一化することができる
めっき装置および電流値決定方法を提供することにあ
る。
The object of the present invention is to determine a plating apparatus and a current value which can control and make uniform the thickness variation of the plating even when the shape and area of the plating object corresponding to the divided anodes are different. To provide a method.

【0005】[0005]

【課題を解決するための手段】本発明のめっき装置は、
それぞれが個別に電流値設定機能を持つ複数の電流源を
含む電源部と、めっき槽内でめっき対象物にめっきを行
うアノードを分割し隔壁で区切りそれぞれを分割アノー
ドとして使用する電極部と、前記電源部が含む複数の電
流源のそれぞれに設定すべき電流値を決定し電流値設定
指令を出す制御部とを有する構成である。
The plating apparatus of the present invention comprises:
A power supply unit including a plurality of current sources each having a current value setting function, an electrode unit that divides an anode for plating an object to be plated in a plating tank and separates each with partition walls, and uses each as a divided anode, The control unit determines a current value to be set for each of the plurality of current sources included in the power supply unit and issues a current value setting command.

【0006】本発明のめっき電流値決定方法は、めっき
槽内でめっき対象物にめっきを行うアノードを分割し隔
壁で区切りそれぞれを分割アノードとし、前記めっき対
象物の表面を前記分割アノードに対応させて小区画に区
分けし、前記小区画ごとに実際にめっきする面積を求
め、前記めっき対象物の表面上の各小区画の位置および
これのめっきする面積に対応して前記各小区画ごとの分
割アノードに通電するめっき電流値を決定する構成であ
る。
In the method for determining the plating current value of the present invention, the anode for plating the object to be plated in the plating tank is divided into partition anodes, and the surfaces of the object to be plated correspond to the divided anodes. Into small sections, determine the area to be actually plated for each small section, and divide each small section according to the position of each small section on the surface of the object to be plated and the area to be plated. This is a configuration for determining the plating current value applied to the anode.

【0007】[0007]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0008】図1は本発明の一実施例のブロック図であ
る。
FIG. 1 is a block diagram of an embodiment of the present invention.

【0009】図1に示すめっき装置10は、電流値を個
別に設定できる電流源1を複数個備えた電源部2と、電
源部2が供給する電流を流してめっき槽3内でめっき対
象物4にめっきを行う隔壁5によって区切られた複数の
分割アノード6を備える電極部7と、電流源1に設定す
る電流値を決定するための電流値設定指令8を出す制御
部9とを含んでいる。
The plating apparatus 10 shown in FIG. 1 has a power source unit 2 having a plurality of current sources 1 each of which can individually set a current value, and an electric current supplied from the power source unit 2 to be flowed so that an object to be plated in a plating tank 3 is supplied. 4 includes an electrode section 7 having a plurality of divided anodes 6 separated by partition walls 5 for plating, and a control section 9 for issuing a current value setting command 8 for determining a current value to be set in the current source 1. There is.

【0010】図2は電流源に設定するめっき電流値決定
手順を示す流れ図である。
FIG. 2 is a flow chart showing the procedure for determining the plating current value set in the current source.

【0011】図2に示すめっき電流値決定手順は、ステ
ップ(以下Sと記す)11でめっき対象物4を分割アノ
ード6にあわせて分割した部分のめっきすべき面積を算
出し、S12で分割アノード6の分割状態とS11で求
めためっき対象物4のめっきすべき面積の分布とを考慮
して各分割アノード6にどれだけ電流を流したらよいか
という関係を定義するファジー知識を構築し、S13で
先に構築したファジー知識をもとにファジー推論を実行
し、S14で先にファジー推論を実行することで出した
結論から各分割アノード6の電流値を決定するようにな
っている。
In the procedure for determining the plating current value shown in FIG. 2, in step (hereinafter referred to as S) 11, the area to be plated of the portion of the object 4 to be plated divided into the divided anodes 6 is calculated, and in step S12, the divided anodes are calculated. The fuzzy knowledge defining the relationship of how much current should be applied to each split anode 6 is constructed by considering the split state of 6 and the distribution of the area to be plated of the plating object 4 obtained in S11, and S13 In step S14, fuzzy inference is executed based on the fuzzy knowledge previously constructed, and in step S14, the current value of each divided anode 6 is determined from the conclusion obtained by executing the fuzzy inference first.

【0012】本発明の一実施例のめっき装置10では、
めっき対象物4にめっきを施す場合、まず、めっき対象
物4のめっきすべき総面積と、目標めっき膜厚と、めっ
き時間と、めっき効率と、めっきする金属の種別等を考
慮して、電源部2が電極部7に流さなければならない総
電流値を算出する。
In the plating apparatus 10 of one embodiment of the present invention,
When plating the object 4 to be plated, first, consider the total area to be plated of the object 4 to be plated, the target plating film thickness, the plating time, the plating efficiency, the type of metal to be plated, etc. The total current value that the part 2 must flow to the electrode part 7 is calculated.

【0013】ここで、図3はめっき対象物と分割アノー
ドとの相対関係を説明するための斜視図である。
FIG. 3 is a perspective view for explaining the relative relationship between the object to be plated and the split anode.

【0014】分割アノード6は、隔壁5によって、縦3
横3の合計9分割され、それぞれ、A1〜A9までの名
称を付してある。またこれに対応して、めっき対象物4
の表面の想像上の小区画にもP1〜P9までの名称を付
してある。
The divided anode 6 is vertically divided into 3 by the partition wall 5.
It is divided into a total of 9 parts in the horizontal direction 3, and the names A1 to A9 are given to each. Corresponding to this, the plating target 4
Imaginary subdivisions on the surface of are also labeled P1 to P9.

【0015】電極部7が、図3に示す形状である場合を
例にとり、各分割アノード6に流す電流値を決定する手
順を以下に説明する。
Taking the case where the electrode portion 7 has the shape shown in FIG. 3 as an example, the procedure for determining the value of the current flowing through each split anode 6 will be described below.

【0016】まず、S11でめっき対象物4も分割アノ
ード6のA1〜A9に合わせて9分割にしたものを考
え、各範囲を分割アノード6に合わせてP1〜P9と
し、それぞれの範囲内のめっきすべき面積を求める。め
っきすべき面積は、多層セラミック基板の場合は、配線
パターンの面積なので、多層セラミック基板の設計時の
CADデータを用いて求めことができる。CADデータ
には配線パターンの始点と終点の座標や配線パターンの
幅の情報をが入力されており、この情報を用いてP1〜
P9の各範囲内のめっきすべき面積が求められる。めっ
きすべき総面積はP1〜P9の面積を加えたものとすれ
ば良い。
First, in S11, the plating object 4 is also divided into 9 parts according to A1 to A9 of the divided anode 6, and each range is set to P1 to P9 according to the divided anode 6, and plating within each range is performed. Find the area that should be. Since the area to be plated is the area of the wiring pattern in the case of the multilayer ceramic substrate, it can be obtained by using the CAD data when designing the multilayer ceramic substrate. The CAD data is input with information on the coordinates of the start and end points of the wiring pattern and the width of the wiring pattern.
The area to be plated within each range of P9 is obtained. The total area to be plated may be the sum of the areas P1 to P9.

【0017】次にS12で経験則からめっきすべき面積
と電流値の関係を、「めっきすべき面積が大きいならば
電流は大きくする」といったファジールールで表現し、
このルールの条件部にあたるめっきすべき面積や、ファ
ジールールの結論部にあたる電流値は、これの大きさを
メンバシップ関数で表現し、ファジー知識を構築する。
経験則としては、以前に、めっき対象物4にめっきを行
ったときのめっき膜厚の分布を参考にする。例えば、 ・めっき対象物の中央部分(範囲P5)よりも周辺部分
(範囲P1〜P4、P6〜P9)の方がめっき膜厚が厚
くなる。
Next, in S12, the relationship between the area to be plated and the current value is expressed by a fuzzy rule such as "if the area to be plated is large, the current is increased" from the empirical rule.
The area to be plated, which is the condition part of this rule, and the current value, which is the conclusion part of the fuzzy rule, are expressed by membership functions to build fuzzy knowledge.
As an empirical rule, the distribution of the plating film thickness when the plating object 4 is plated before is referred to. For example, the plating film thickness is larger in the peripheral portion (ranges P1 to P4, P6 to P9) than in the central portion (range P5) of the object to be plated.

【0018】・周辺に比べてその範囲のめっき面積が大
きいときはその部分のめっき膜厚は薄くなる。 といったものがある。この経験則を用いてファジールー
ルを考える。
When the plating area in that range is large as compared with the surrounding area, the plating film thickness in that area becomes thin. There is such a thing. Consider fuzzy rules using this rule of thumb.

【0019】ファジールールは以下ようなものが考えら
れる。図3におけるめっき対象物4の各範囲Pnのめっ
きすべき面積を面積Mn、アノードAnに流す電流値を
電流値Cnと表現した場合に、アノードA5に流す電流
値C5を決めるルールは、 ・面積M5が大きく面積M2が大きいならば、電流値C
5は非常に大きくする ・面積M5がふつうで面積M2が大きいならば、電流値
C5は大きくする ・面積M5が小さく面積M2が大きいならば、電流値C
5は中くらいにする といったものが考えられる。また、電極の対称性を考え
て、電極A1、A3、A7、A9や、電極A2、A4,
A6,A8に対しては同じルールを適用することによっ
てルールを減らすことができる。
The following fuzzy rules are considered. When the area to be plated in each range Pn of the object 4 to be plated in FIG. 3 is expressed as an area Mn and the current value flowing through the anode An is expressed as a current value Cn, the rule for determining the current value C5 flowing through the anode A5 is: If M5 is large and area M2 is large, current value C
5 is very large. If the area M5 is normal and the area M2 is large, the current value C5 is increased. If the area M5 is small and the area M2 is large, the current value C is large.
5 can be medium. Considering the symmetry of the electrodes, the electrodes A1, A3, A7, A9 and the electrodes A2, A4,
By applying the same rule to A6 and A8, the number of rules can be reduced.

【0020】これらのルールを用いてファジー推論をさ
せるためには“大きい”や“小さい”といったものを表
現するファジーメンバシップ関数が必要である。
In order to perform fuzzy inference using these rules, a fuzzy membership function expressing "large" or "small" is necessary.

【0021】図4はファジーメンバシップ関数の一例を
説明する説明図である。
FIG. 4 is an explanatory diagram for explaining an example of the fuzzy membership function.

【0022】図4分図(a)は条件部として面積M5に
対するファジーメンバシップ関数を示し、例えば、面積
M5が大きい、ふつう、小さいと入った表現は、横軸を
面積とし、縦軸は“0”から“1.0”までのグレード
という相対値で示している。
FIG. 4 (a) shows a fuzzy membership function for the area M5 as a condition part. For example, in the expression that the area M5 is large, normal or small, the horizontal axis is the area and the vertical axis is " It is indicated by a relative value of a grade from 0 ”to“ 1.0 ”.

【0023】また、図4分図(b)は結論部として電流
値C5に対するファジーメンバシップ関数を示し、横軸
は相対電流値指数とし“0”から“1.0”の値をと
り、縦軸は“0”から“1.0”のグレードとする。結
論部のファジーメンバシップ関数の横軸を相対電流値指
数とするのは、めっき対象物4の、めっきすべき総面積
に比例させて決定する総電流値とファジー推論させた結
果の各分割アノードの電流値の総和が一致しなくなるの
を防ぐためで、結論の相対電流値にある定数をそれぞれ
に掛けて、めっきすべき総面積に比例させて決定する総
電流値と一致させるためである。
Further, FIG. 4 (b) shows the fuzzy membership function with respect to the current value C5 as the conclusion part, and the horizontal axis represents the relative current value index, which takes a value from "0" to "1.0" and the vertical axis. The axis is graded from "0" to "1.0". The abscissa of the fuzzy membership function in the conclusion part is the relative current value index, that is, the total current value determined in proportion to the total area of the object to be plated 4 and each split anode of the result of fuzzy inference. This is because it is necessary to prevent the total sum of the current values of the above from being inconsistent with each other, and in order to make them coincide with the total current value which is determined in proportion to the total area to be plated by multiplying the relative current values by a constant.

【0024】また、電極A1と電極A5では周囲の電極
に与える影響が異なるために“大きくする”といった表
現のメンバシップ関数は各電極によって異なるものとし
ても良い。
Further, since the influences on the surrounding electrodes are different between the electrodes A1 and A5, the membership function of the expression "increasing" may be different for each electrode.

【0025】このようにS12ではこれらのファジール
ールとファジーメンバシップ関数によって、ファジー知
識を構築する。
As described above, in S12, fuzzy knowledge is constructed by these fuzzy rules and fuzzy membership functions.

【0026】続いてS13では先にS12で得られたフ
ァジー知識をもとに、ファジー推論で一般に用いられて
いるMin−Max法によって推論を行い、各分割アノ
ード6の電流値がどうであれば良いかという結論のメン
バシップ関数を導く。
Then, in S13, based on the fuzzy knowledge obtained in S12, an inference is performed by the Min-Max method which is generally used in the fuzzy inference, and what is the current value of each divided anode 6? The membership function of the conclusion of goodness is derived.

【0027】最後にS14で先にS13で得られた結論
のメンバシップ関数から重心を求め、この値を該当する
分割アノード6の相対電流値とし、同様にしてすべての
分割アノード6の相対電流値を求め、続けて各分割アノ
ード6の相対電流値にある定数をそれぞれに掛けて各分
割アノード6に流す電流値の和が、めっきすべき総面積
に比例させて決定した総電流値と一致するようにする。
このようにして各分割アノード6の電流値を決定する。
Finally, in S14, the center of gravity is calculated from the membership function of the conclusion obtained in S13, and this value is set as the relative current value of the corresponding divided anode 6, and similarly, the relative current values of all the divided anodes 6 are obtained. Then, the sum of the current values flowing through the divided anodes 6 by multiplying the relative current values of the divided anodes 6 by a certain constant is equal to the total current value determined in proportion to the total area to be plated. To do so.
In this way, the current value of each split anode 6 is determined.

【0028】次にめっきを行う場合の動作について説明
する。
Next, the operation for plating will be described.

【0029】予め図2に示すめっき電流値決定手順によ
って各分割アノード6に流す電流値を決定済であると
し、まず、めっき槽3内にめっき対象物4と電極部7と
をセットする。次に、制御部9において各分割アノード
6に流す電流値設定指令8を電源部2に送り各電流源1
が各分割アノード6に電流値設定指令8で与えられた電
流値の電流を流す。決められためっき時間だけ電流を流
したら、制御部9は電流値設定指令8をすべて“0”と
し、めっきを終了する。このようにしてめっき対象物4
をめっきする。
It is assumed that the current value to be applied to each split anode 6 has been determined in advance by the procedure for determining the plating current value shown in FIG. 2. First, the plating target 4 and the electrode portion 7 are set in the plating tank 3. Next, the control unit 9 sends a current value setting command 8 to be supplied to each split anode 6 to the power supply unit 2 for each current source 1.
Applies a current having a current value given by the current value setting command 8 to each split anode 6. When the current is supplied for the determined plating time, the control unit 9 sets all the current value setting commands 8 to "0" and finishes the plating. In this way, the plating target 4
To plate.

【0030】このようなめっき装置10および電流値決
定手法を用いることにより、めっき対象物4の配線パタ
ーンに面積および分布上のばらつきがある場合において
も、分割アノード6に対応した各小区画内の配線パター
ンの面積を算出し、経験的なファジー知識を用いて電流
値を求めることにより、良好な膜厚分布となるめっきを
行うことができる。
By using the plating apparatus 10 and the current value determination method as described above, even when the wiring pattern of the plating object 4 has variations in area and distribution, the inside of each small section corresponding to the divided anode 6 is divided. By calculating the area of the wiring pattern and obtaining the current value using empirical fuzzy knowledge, it is possible to perform plating with a good film thickness distribution.

【0031】[0031]

【発明の効果】以上説明したように、本発明は、めっき
槽内でめっき対象物にめっきを行うアノードを分割し隔
壁で区切りそれぞれを分割アノードとし、めっき対象物
の表面を分割アノードに対応させて小区画に区分けし、
小区画ごとに実際にめっきする面積を求め、めっき対象
物の表面上の各小区画の位置およびこれのめっきする面
積に対応して各小区画ごとの分割アノードに通電するめ
っき電流値を決定することにより、分割アノードに対応
するめっき対象物の形状や面積が異なる場合であって
も、めっきの厚さのばらつきを制御し均一化することが
できるという効果が有る。
As described above, according to the present invention, the anode for plating the object to be plated in the plating tank is divided into partition anodes, and each of the divided anodes is made to correspond to the divided anode. Into small sections,
Obtain the actual plating area for each small section, and determine the plating current value to be applied to the split anode for each small section, corresponding to the position of each small section on the surface of the object to be plated and the area to be plated. As a result, even if the shape or area of the object to be plated corresponding to the divided anodes is different, it is possible to control and make uniform the variation in the plating thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】電流源に設定するめっき電流値決定手順を示す
流れ図である。
FIG. 2 is a flowchart showing a procedure for determining a plating current value set in a current source.

【図3】めっき対象物と分割アノードとの相対関係を説
明するための斜視図である。
FIG. 3 is a perspective view for explaining a relative relationship between an object to be plated and a split anode.

【図4】ファジーメンバシップ関数の一例を説明する説
明図である。
FIG. 4 is an explanatory diagram illustrating an example of a fuzzy membership function.

【図5】従来のめっき装置の回路図である。FIG. 5 is a circuit diagram of a conventional plating apparatus.

【符号の説明】[Explanation of symbols]

1 電流源 2 電源部 3 めっき槽 4 めっき対象物 5 隔壁 6 分割アノード 7 電極部 8 電流値設定指令 9 制御部 10 めっき装置 DESCRIPTION OF SYMBOLS 1 current source 2 power supply section 3 plating tank 4 plating object 5 partition wall 6 split anode 7 electrode section 8 current value setting command 9 control section 10 plating device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 それぞれが個別に電流値設定機能を持つ
複数の電流源を含む電源部と、めっき槽内でめっき対象
物にめっきを行うアノードを分割し隔壁で区切りそれぞ
れを分割アノードとして使用する電極部と、前記電源部
が含む複数の電流源のそれぞれに設定すべき電流値を決
定し電流値設定指令を出す制御部とを有することを特徴
とするめっき装置。
1. A power supply unit including a plurality of current sources each having a current value setting function, and an anode for plating an object to be plated in a plating tank are divided into partition walls, and each partition is used as a divided anode. A plating apparatus comprising: an electrode unit; and a control unit that determines a current value to be set for each of a plurality of current sources included in the power supply unit and issues a current value setting command.
【請求項2】 前記複数の電流源と前記複数の分割アノ
ードとが相互に対応関係を定めて接続することを特徴と
する請求項1記載のめっき装置。
2. The plating apparatus according to claim 1, wherein the plurality of current sources and the plurality of divided anodes are connected in a mutually corresponding relationship.
【請求項3】 めっき槽内でめっき対象物にめっきを行
うアノードを分割し隔壁で区切りそれぞれを分割アノー
ドとし、前記めっき対象物の表面を前記分割アノードに
対応させて小区画に区分けし、前記小区画ごとに実際に
めっきする面積を求め、前記めっき対象物の表面上の各
小区画の位置およびこれのめっきする面積に対応して前
記各小区画ごとの分割アノードに通電するめっき電流値
を決定することを特徴とするめっき電流値決定方法。
3. An anode for plating an object to be plated in a plating tank is divided into partition anodes, and the surfaces of the object to be plated are divided into small sections corresponding to the divided anodes. Obtain the area to be actually plated for each small section, and set the plating current value to be applied to the divided anode for each small section in correspondence with the position of each small section on the surface of the object to be plated and the area to be plated. A method for determining a plating current value, characterized by determining.
【請求項4】 前記めっき対象物の表面上の各小区画の
位置およびこれのめっきする面積に対応して前記各小区
画ごとの分割アノードに通電するめっき電流値を決定す
るには、経験則に従いめっきする面積の大小と電流値と
の関係をファジールールで表現し、前記各小区画の位置
のめっきする面積に対するメンバシップ関数と前記各小
区画ごとのめっき電流値に対するメンバシップ関数とを
求め、これらすべてのメンバシップ関数を含むファジー
知識をもとにファジー推論を実行することにより、前記
各小区画ごとの分割アノードに通電するめっき電流値を
決定することを特徴とする請求項3記載のめっき電流値
決定方法。
4. An empirical rule is used to determine the plating current value to be applied to the divided anodes for each of the small sections in correspondence with the position of each of the small sections on the surface of the object to be plated and the area to be plated. The relationship between the size of the plated area and the current value is expressed by a fuzzy rule in accordance with the above, and a membership function for the plated area at the position of each small section and a membership function for the plating current value for each small section are obtained. 4. The plating current value to be applied to the divided anode for each of the small sections is determined by executing fuzzy inference based on fuzzy knowledge including all of these membership functions. Plating current value determination method.
JP24963493A 1993-10-06 1993-10-06 Plating device and current value deciding method Pending JPH07102400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24963493A JPH07102400A (en) 1993-10-06 1993-10-06 Plating device and current value deciding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24963493A JPH07102400A (en) 1993-10-06 1993-10-06 Plating device and current value deciding method

Publications (1)

Publication Number Publication Date
JPH07102400A true JPH07102400A (en) 1995-04-18

Family

ID=17195945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24963493A Pending JPH07102400A (en) 1993-10-06 1993-10-06 Plating device and current value deciding method

Country Status (1)

Country Link
JP (1) JPH07102400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534460A (en) * 2000-05-24 2003-11-18 セミトゥール・インコーポレイテッド Tuning electrode used in a reactor for electrochemically processing microelectronic workpieces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243797A (en) * 1990-02-20 1991-10-30 Fujitsu Ltd Electroplating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243797A (en) * 1990-02-20 1991-10-30 Fujitsu Ltd Electroplating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534460A (en) * 2000-05-24 2003-11-18 セミトゥール・インコーポレイテッド Tuning electrode used in a reactor for electrochemically processing microelectronic workpieces

Similar Documents

Publication Publication Date Title
US6674086B2 (en) Electron beam lithography system, electron beam lithography apparatus, and method of lithography
US4100036A (en) Method of regulating cathode current density in an electroplating process
JPH056212A (en) Data preparing method for equipment loading machine
JPH07102400A (en) Plating device and current value deciding method
WO1994018786A1 (en) High quality matrix printing process and system using electrophotographic printing equipment
Brown et al. Application of artificial intelligence techniques to resistance spot welding
JPH09326589A (en) System operating method
KR20210093168A (en) Plating support system, plating support device, and recording medium
JP2697582B2 (en) Split electrode plating apparatus and current value determination method
KR100339149B1 (en) Method of generating data on component arrangement
JP2020172682A (en) Shape setting method, shape setting device, and computer program
US20220115207A1 (en) Method of adjusting the output power of a power supply supplying electrical power to a plasma, plasma apparatus and power supply
JP3566785B2 (en) Component layout optimization method
JPH0946094A (en) Component mounting method
Sadeghian et al. Application of adaptive fuzzy logic systems to model electric arc furnaces
KR0140653B1 (en) Control system of cethrate for reactive ion apparatus
US20230229843A1 (en) Pcb metal balancing
EP0392494A2 (en) Fuzzy processor
JPH0567176A (en) Automatic wiring method for cad for wiring board
JP2828870B2 (en) How to adjust the characteristics of assemblies
JP3102422B2 (en) Production planning system, production planning method, and recording medium recording production planning program
JPH08272076A (en) Production of printed wiring board
JPH0737883A (en) Method of determining optimum manufacturing conditions for integrated circuit, and support system therefor
Smeltzer et al. Current Distribution in a Parallel‐Plate Reactor: A Comparison of Steady and Sinusoidal Cell‐Voltage Control
Barajas et al. Process control in a high-noise environment using a limited number of measurements

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970520