JPH07102323B2 - Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas - Google Patents

Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas

Info

Publication number
JPH07102323B2
JPH07102323B2 JP60253976A JP25397685A JPH07102323B2 JP H07102323 B2 JPH07102323 B2 JP H07102323B2 JP 60253976 A JP60253976 A JP 60253976A JP 25397685 A JP25397685 A JP 25397685A JP H07102323 B2 JPH07102323 B2 JP H07102323B2
Authority
JP
Japan
Prior art keywords
catalyst
mordenite
exhaust gas
carbon monoxide
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60253976A
Other languages
Japanese (ja)
Other versions
JPS62114657A (en
Inventor
邦彦 小西
泰良 加藤
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP60253976A priority Critical patent/JPH07102323B2/en
Publication of JPS62114657A publication Critical patent/JPS62114657A/en
Publication of JPH07102323B2 publication Critical patent/JPH07102323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、排ガス中の一酸化炭素(CO)又は一酸化炭素
(CO)及び窒素酸化物(NOx)を除去するための触媒に
係り、特に酸素を含有する排ガス中のCOの低減又はCO及
びNOxを同時に低減するのに好適な触媒に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a catalyst for removing carbon monoxide (CO) or carbon monoxide (CO) and nitrogen oxides (NOx) in exhaust gas, and in particular, The present invention relates to a catalyst suitable for reducing CO in an exhaust gas containing oxygen or simultaneously reducing CO and NOx.

〔発明の背景〕[Background of the Invention]

ボイラ及びガスタービンから排出される燃焼排ガス中に
はNOx及びCOが多量に含有され大気汚染の原因となって
おり、環境保全上重大な問題となっている。
The combustion exhaust gas discharged from the boiler and the gas turbine contains a large amount of NOx and CO, which causes air pollution, which is a serious problem for environmental protection.

排ガス中のNOxを除去する方法としては、炭化水素、一
酸化炭素あるいは水素を還元剤として使用する比選択的
接触還元法が知られているが、この方法は酸素を含有す
る排ガスの場合、酸素がCOの酸化に消費されるまではNO
xの還元反応が進行しないため、含酸素排ガスへの適用
は実用上不可能となっている。一方、NH3を還元剤とし
て使用する選択的接触還元法は、NH3がNOxと選択的に反
応するため、排ガス中のNOx除去には最も有効な方法で
ある。その反応に高活性を示す触媒が種々検討され、Ti
O2/V2O5、TiO2/M0O3等のTi系触媒、あるいは、モルデナ
イトを金属置換させたモルデナイト系触媒(特開昭51−
69476)等が開発され実用化されている。
As a method for removing NOx in exhaust gas, a specific selective catalytic reduction method using hydrocarbon, carbon monoxide or hydrogen as a reducing agent is known, but in the case of exhaust gas containing oxygen, this method is used. Until NO is consumed for CO oxidation
Since the reduction reaction of x does not proceed, application to oxygen-containing exhaust gas is practically impossible. On the other hand, the selective catalytic reduction method using NH 3 as a reducing agent is the most effective method for removing NOx in exhaust gas because NH 3 selectively reacts with NOx. Various catalysts showing high activity for the reaction have been studied, and Ti
Ti-based catalysts such as O 2 / V 2 O 5 and TiO 2 / M 0 O 3 , or mordenite-based catalysts obtained by substituting mordenite with a metal (JP-A-51-
69476) has been developed and put into practical use.

排ガス中のCO除去については、自動車排ガスの浄化触媒
として、Pt等の貴金属触媒が高活性を示すことが知られ
ている。ところが、CO及びNOxを同時に除去する触媒は
実用化されておらず、Pt系触媒と上記脱硝触媒とを組み
合わせることにより、排ガス中のCOとNOxを同時に除去
することが行われている。この方法は触媒のコストが高
く、ボイラ排ガスのように大容量の排ガス処理には実用
上適用できない。
Regarding removal of CO in exhaust gas, it is known that a noble metal catalyst such as Pt exhibits high activity as a catalyst for purifying automobile exhaust gas. However, a catalyst that removes CO and NOx at the same time has not been put into practical use, and by combining a Pt-based catalyst with the above denitration catalyst, CO and NOx in exhaust gas are removed at the same time. This method has a high catalyst cost and cannot be practically applied to the treatment of a large amount of exhaust gas such as boiler exhaust gas.

そこで、ボイラのような多量の排ガス発生源に対して、
COの除去とNOxの除去が同時に行える低コストな触媒が
切望されている。
Therefore, for a large amount of exhaust gas sources such as boilers,
A low-cost catalyst that can simultaneously remove CO and NOx is desired.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記した従来技術の欠点をなくし、排
ガス中のCOおよびNOxを同時に効率よく除去できる低コ
ストな触媒を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a low-cost catalyst that can efficiently remove CO and NOx in exhaust gas at the same time.

〔発明の概要〕[Outline of Invention]

COを還元剤としてNOxを還元する方法は酸素が共存しな
い場合にはその反応が進み、COが無害なCO2になり、NOx
がN2になるが、酸素の共存下では前記したように、COが
O2と反応し、NOxの還元は進行しないことがわかってい
る。
In the method of reducing NOx using CO as a reducing agent, the reaction proceeds when oxygen does not coexist, and CO becomes harmless CO 2 and NOx
Becomes N 2 , but in the coexistence of oxygen, CO
It is known that NOx reduction does not proceed by reacting with O 2 .

そこで、本発明者等は、COとNOxを同時に除去する方法
として、NOxの除去については、NOxと選択的に反応する
NH3を還元剤として注入添加し、NOxを無害なN2にする。
一方、COの除去についてはCOと排ガス中に含有されるO2
を反応させることにより無害なCO2とする方法を考え、
それらの両反応に高活性を示す触媒の探索を行った。そ
の結果、モルデナイトの水素置換体で、かつSiO2/Al2O3
モル比が10以上のモルデナイトに対し、その中の水素の
一部若しくは全部を銅で置換又は銅を担持させた触媒
は、COの除去とNOxの除去の両反応に活性を示すととも
に特にCO除去率に関しては注入するNH3量と排ガス中のN
Oとの比(NH3/NO)に関係なく高い値を示すことを見出
し、本発明に到達したものである。
Therefore, as a method for simultaneously removing CO and NOx, the present inventors selectively react with NOx for removal of NOx.
NH 3 is injected and added as a reducing agent to make NOx harmless N 2 .
On the other hand, for removal of CO, CO and O 2 contained in exhaust gas
Consider a method of making harmless CO 2 by reacting
We searched for a catalyst with high activity in both of these reactions. As a result, it is a hydrogen substitution product of mordenite, and is SiO 2 / Al 2 O 3
With respect to mordenite having a molar ratio of 10 or more, a catalyst in which a part or all of hydrogen in the mordenite is replaced with copper or copper is carried is active in both CO removal and NOx removal reactions and particularly CO removal. Regarding the rate, the amount of injected NH 3 and the N in the exhaust gas
The present invention has been achieved by finding that a high value is exhibited regardless of the ratio with O (NH 3 / NO).

本発明においては、モルデナイトの水素置換体は、合成
モルデナイト又は天然に産出するモルデナイト鉱石から
公知の方法で得られる。このモルデナイトの水素置換体
は、H2・Al2O3・nSiO2−xH2Oで表される組成を有してお
り、この組成中のnは純粋なモルデナイトでは10のもの
が多く、SiO2分が多い。SiO2分が比較的少ないモルデナ
イトの場合には、天然に産出するモルデナイト鉱石又は
合成モルデナイトを塩酸、硫酸、硝酸等の鉱酸、又はシ
ュウ酸、酢酸、エチレンジアミン四酢酸等の有機酸によ
り処理してモルデナイト中のAl2O3を適量除去すること
によってSiO2/Al2O3モル比を調整することができる。
In the present invention, the hydrogen substitution product of mordenite is obtained by a known method from synthetic mordenite or naturally occurring mordenite ore. This hydrogen substitution product of mordenite has a composition represented by H 2 · Al 2 O 3 · nSiO 2 —xH 2 O, and n in this composition is often 10 in pure mordenite. 2 minutes a lot. In the case of mordenite having a relatively low SiO 2 content, naturally occurring mordenite ore or synthetic mordenite is treated with a mineral acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as oxalic acid, acetic acid or ethylenediaminetetraacetic acid. The SiO 2 / Al 2 O 3 molar ratio can be adjusted by removing an appropriate amount of Al 2 O 3 in mordenite.

本発明において、SiO2/Al2O3モル比は10以上であること
が必要である。このモル比が10以上の場合、排ガス中の
SOxが含有されていてもCO及びNOxの除去率が高いが、モ
ル比が10よりも小さい場合、排ガス中のSOxにより触媒
が劣化し、触媒活性を長期間にわたり高度に維持するこ
とが困難となる。
In the present invention, the SiO 2 / Al 2 O 3 molar ratio needs to be 10 or more. If this molar ratio is 10 or more,
Even if SOx is contained, the removal rate of CO and NOx is high, but if the molar ratio is smaller than 10, the catalyst deteriorates due to SOx in the exhaust gas, making it difficult to maintain the catalyst activity at a high level for a long period of time. Become.

次に本発明はSio2/Al2O3モル比が所定のモルデナイト中
の水素の一部又は全部をCuで置換又はモルデナイトにCu
を担持させたものである。Fe、Co、Niで置換したモルデ
ナイト触媒では脱硝反応に活性を示すが、COの酸化反応
には活性を示さない。Cuを置換又は担持させたモルデナ
イト触媒は脱硝反応とCO酸化反応が同時に進行し、COと
NOx除去の両方に高活性を示す。モルデナイトに対しCu
を置換又はCuを担持させるにはイオン交換法、含浸法、
混練法等の方法を採用することができる。このとき使用
される化合物としては、銅の硝酸塩、硫酸塩、塩化物、
シュウ酸塩等を挙げることができる。
Next, the present invention is a Sio 2 / Al 2 O 3 molar ratio is a certain mordenite hydrogen part or all of the hydrogen is replaced with Cu or mordenite Cu
Is carried. Mordenite catalysts substituted with Fe, Co, and Ni are active in the denitration reaction, but not in the CO oxidation reaction. In the mordenite catalyst with Cu substituted or supported, the denitration reaction and CO oxidation reaction proceed simultaneously,
High activity for both NOx removal. Cu for mordenite
To replace or carry Cu, ion exchange method, impregnation method,
A method such as a kneading method can be adopted. Compounds used at this time include copper nitrate, sulfate, chloride,
Examples thereof include oxalate.

本発明において、モルデナイト中に置換または担持され
るCuの量はモルデナイトのSi原子に対し0.1原子〜10原
子とすることが望ましい。この範囲内のCuの量であれ
ば、排ガス中のCO除去率及びNOx除去率をいずれも高く
することができる。
In the present invention, the amount of Cu substituted or supported in the mordenite is preferably 0.1 atom to 10 atoms with respect to the Si atom of the mordenite. If the amount of Cu is within this range, both the CO removal rate and the NOx removal rate in the exhaust gas can be increased.

本発明の触媒を用いて排ガス処理するに際して、反応温
度は、350〜450℃とすることが望ましい。排ガス中から
COのみを除去する場合、反応温度が350℃から高くなる
程CO除去率が高くなるので350℃以上が望ましいが、CO
と同時にNOxを除去する場合にはNO除去率は450℃付近か
ら低下するので350〜450℃とすることが望ましい。
When treating the exhaust gas using the catalyst of the present invention, the reaction temperature is preferably 350 to 450 ° C. From the exhaust gas
When removing only CO, the higher the reaction temperature from 350 ℃, the higher the CO removal rate.
At the same time, when removing NOx, the NO removal rate decreases from around 450 ° C, so 350 to 450 ° C is desirable.

排ガス中に注入されるNH3の量は、排ガス中のNOに対し
てNH3/NOのモル比が1.0以下とすることが望ましい。NH3
/NOのモル比が1.0を超えると、反応温度が高くなるにつ
れてN2O生成率が高くなる傾向にある。
The amount of NH 3 injected into the exhaust gas is preferably such that the molar ratio of NH 3 / NO to NO in the exhaust gas is 1.0 or less. NH 3
If the molar ratio of / NO exceeds 1.0, the N 2 O production rate tends to increase as the reaction temperature increases.

〔発明の実施例〕Example of Invention

実施例1 モルデナイトとして水素置換型モルデナイトのSiO2/Al2
O3のモル比が30のものを用い、 3%硝酸銅溶液中に約5時間撹拌懸濁させ、モルデナイ
ト中のHをCuと置換させたその後、イオン交換水により
洗浄し、Cu置換モルデナイト粉末を得た。この粉末に成
形助剤と水とを添加混練し、6φ丸棒を押出成形した。
この成形品を500℃で2時間焼成後10〜20メッシュに整
粒し、供試触媒とした。この触媒の銅担持量は、モルデ
ナイト中のSi原子1に対し、0.2原子であった。この触
媒を下記に示す反応条件により、CO除去率を測定した。
Example 1 Hydrogen-substituted mordenite SiO 2 / Al 2 as mordenite
Using O 3 having a molar ratio of 30, stir-suspend in a 3% copper nitrate solution for about 5 hours to replace H in mordenite with Cu, and then wash with ion-exchanged water, Cu-substituted mordenite powder Got A molding aid and water were added to this powder and kneaded, and a 6φ round bar was extruded.
This molded product was calcined at 500 ° C. for 2 hours and then sized to 10 to 20 mesh to obtain a test catalyst. The amount of copper supported on this catalyst was 0.2 atom based on 1 Si atom in mordenite. The CO removal rate of this catalyst was measured under the reaction conditions shown below.

SV:80,000h-1 温度:250〜400℃ ガス組成: CO :1 % CO2:10% O2 :10% N2 :残り CO除去率の温度特性を第1図に示す。本条件下ではCO除
去率は350℃以上で高い値を示し、本実施例になる触媒
は、COの酸化反応に対して非常に高い活性を示した。
SV: 80,000 -1 Temperature: 250 to 400 ° C. Gas composition: CO: 1% CO 2: 10% O 2: 10% N 2: shows the temperature characteristics of the remaining CO removal rate in the first FIG. Under this condition, the CO removal rate showed a high value at 350 ° C. or higher, and the catalyst according to this example exhibited a very high activity for the CO oxidation reaction.

実施例2 供試触媒は実施例1と同一のものを使用し、下記に示す
反応条件によりCO除去率とNOx除去率を測定した。
Example 2 The same test catalyst as in Example 1 was used, and the CO removal rate and NOx removal rate were measured under the reaction conditions shown below.

SV:150,000h-1 温度:200〜500℃ ガス組成: NO:200ppm CO:12% CO:500ppm H2O:12% O2:10% NH3: 240ppm N2:残り CO除去率と、NO除去率及びN2O生成率を第2図に示す。N
O除去率は反応温度が200℃から450℃程度まで高い値を
示すが、NH3/NOモル比が1.2の条件では、350℃以上の温
度域でN2Oの生成が認められた。又、450℃以上になると
NO除去率は低下してくることがわかった。一方、CO除去
率は反応温度が350℃程度から高くなり温度が高いほどC
Oの酸化反応が進むことが明らかになった。上記温度特
性の結果から、COの除去とNOx除去を同時に行うために
は反応温度が350℃から450℃の間が最も有効であること
がわかった。
SV: 150,000h -1 Temperature: 200 to 500 ° C. Gas composition: NO: 200ppm CO: 12% CO: 500ppm H 2 O: 12% O 2: 10% NH 3: 240ppm N 2: the remaining CO removal rate, NO The removal rate and the N 2 O production rate are shown in FIG. N
The O 2 removal rate showed a high value from the reaction temperature of 200 ℃ to 450 ℃, but under the condition of NH 3 / NO molar ratio of 1.2, the formation of N 2 O was observed in the temperature range above 350 ℃. Also, when the temperature rises above 450 ° C
It was found that the NO removal rate was decreasing. On the other hand, the CO removal rate increases from a reaction temperature of about 350 ° C,
It became clear that the oxidation reaction of O proceeded. From the results of the above temperature characteristics, it was found that the reaction temperature between 350 ° C. and 450 ° C. is most effective for simultaneously removing CO and NOx.

実施例3 供試触媒は実施例1の場合と同一のものを使用し、反応
条件はNH3の濃度を200ppmとしNH3/NOのモル比を1.0とし
た以外は実施例1の条件と同一として、COとNOの除去率
を測定した。その結果を第3図に示す。CO及びNO除去率
は実施例2の場合と同様であり、良い結果が得られたの
に加え、本実施例の場合NH3/NOのモル比が1、2の場合
に比べ、N2Oの生成量が減少した。したがってNH3の注入
量はNH3/NOのモル比が1.0以下で適用することが必要で
ある。
Example 3 test catalyst using the same as in Example 1, the same except that the reaction conditions were 1.0 mole ratio of NH 3 / NO and the concentration of NH 3 and 200ppm and conditions of Example 1 As a result, the removal rates of CO and NO were measured. The results are shown in FIG. The CO and NO removal rates were the same as in Example 2, and good results were obtained. In addition, in the case of this Example, the NH 2 / NO molar ratio was 1 or 2, compared to the case of N 2 O. The production amount of was decreased. Thus injection of NH 3 is required to be a molar ratio of NH 3 / NO is applied at 1.0 or less.

実施例4 実施例1におけるSiO2/Al2O3モル比30を10とした他は実
施例1と同様にして触媒を調製した。この触媒の銅担持
量は、モルデナイト中のSi原子1に対し、1.2原子であ
った。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that the SiO 2 / Al 2 O 3 molar ratio of 30 in Example 1 was changed to 10. The amount of copper supported on this catalyst was 1.2 atoms with respect to 1 Si atom in mordenite.

実施例5 実施例1におけるSiO2/Al2O3モル比30を20とした他は実
施例1と同様にして触媒を調製した。この触媒の銅担持
量は、モルデナイト中のSi原子に対し、0.8原子であっ
た。
Example 5 A catalyst was prepared in the same manner as in Example 1 except that the SiO 2 / Al 2 O 3 molar ratio of 30 in Example 1 was changed to 20. The amount of copper supported on this catalyst was 0.8 atom with respect to the Si atom in mordenite.

比較例1 実施例1におけるSiO2/Al2O3モル比30を5とした他は実
施例1と同様にして触媒を調製した。この触媒の銅担持
量は、モルデナイト中のSi原子1に対し、1.5原子であ
った。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that the SiO 2 / Al 2 O 3 molar ratio of 30 in Example 1 was changed to 5. The amount of copper supported on this catalyst was 1.5 atoms with respect to 1 Si atom in mordenite.

実施例1及び4.5、比較例1の各触媒について実施例1
の活性測定条件中のガス中にSO2500ppmを注入し、触媒
の活性の経時変化を測定した。その結果を第4図に示
す。第4図からSiO2/Al2O3モル比が10以上のものがSOx
による活性低下が少ないことが明らかとなった。
Regarding each catalyst of Examples 1 and 4.5 and Comparative Example 1, Example 1
500 ppm of SO 2 was injected into the gas under the activity measurement conditions, and the change in the activity of the catalyst with time was measured. The results are shown in FIG. As shown in Fig. 4, SOx has a SiO 2 / Al 2 O 3 molar ratio of 10 or more.
It was clarified that the decrease in activity due to

比較例2 TiO2粉末にメタバナジン酸アンモンを混練法によりTiと
Vの原子比が3%になるように触媒を調製し、実施例1
と同一の反応条件でCO及びNO除去率を測定した。その結
果を第5図に示す。この触媒の場合、第5図から明らか
なようにNO除去率は高い値を示すがCO除去反応に対して
はほとんど活性を示さなかった。
Comparative Example 2 A catalyst was prepared by kneading TiO 2 powder with ammonium metavanadate so that the atomic ratio of Ti and V would be 3%.
CO and NO removal rates were measured under the same reaction conditions as above. The result is shown in FIG. In the case of this catalyst, as is clear from FIG. 5, the NO removal rate showed a high value, but it showed almost no activity against the CO removal reaction.

比較例3 TiO2粉末に硝酸銅を混練法によりTiとCuの原子比が3%
になるように触媒を調製し、実施例1と同一の反応条件
でCOおよびNO除去率を測定した。その結果を第5図に示
す。この触媒は、第5図から明らかなようにCO除去反応
には高活性を示したが、NO除去反応に対する活性は非常
に小さかった。
Comparative Example 3 TiO 2 powder was mixed with copper nitrate to obtain an atomic ratio of Ti and Cu of 3%.
A catalyst was prepared so as to obtain, and CO and NO removal rates were measured under the same reaction conditions as in Example 1. The result is shown in FIG. As is clear from FIG. 5, this catalyst showed a high activity for the CO removal reaction, but had a very low activity for the NO removal reaction.

比較例4 実施例1で使用した水素置換モルデナイトの水素をFeで
置換し、Fe−モルデナイト触媒を調製し、実施例1と同
一の反応条件でCO及びNO除去率を測定した。その結果を
第5図に示す。この触媒は第5図から明らかなように高
温側(400℃以上)におけるNO除去反応には高活性を示
したが、CO除去反応にはほとんど活性を示さなかった。
Comparative Example 4 The hydrogen of the hydrogen-substituted mordenite used in Example 1 was replaced with Fe to prepare an Fe-mordenite catalyst, and the CO and NO removal rates were measured under the same reaction conditions as in Example 1. The result is shown in FIG. As is clear from FIG. 5, this catalyst showed high activity for the NO removal reaction on the high temperature side (400 ° C. or higher), but showed almost no activity for the CO removal reaction.

比較例5 実施例1で使用した水素置換モルデナイトの水素をCoで
置換させたCo−モルデナイト触媒を調製し、CO及びNO除
去率を測定した。その結果を第5図に示す。この触媒
は、第5図から明らかなようにCO除去反応及びNO除去反
応に対し共に実施例1に示す触媒の活性よりも非常に低
い活性しか示さなかった。
Comparative Example 5 A Co-mordenite catalyst in which hydrogen in the hydrogen-substituted mordenite used in Example 1 was replaced with Co was prepared, and CO and NO removal rates were measured. The result is shown in FIG. As is clear from FIG. 5, this catalyst exhibited much lower activity than the catalyst shown in Example 1 for CO removal reaction and NO removal reaction.

比較例6 実施例1で使用した水素置換モルデナイトの水素をNiで
置換させたNi−モルデナイト触媒を調製し、CO及びNO除
去率を測定した。その結果を第5図に示す。この触媒
は、第5図から明らかなように比較例5に示すCo−モル
デナイト触媒とほぼ同程度の低い活性しか示さなかっ
た。
Comparative Example 6 A Ni-mordenite catalyst in which hydrogen in the hydrogen-substituted mordenite used in Example 1 was replaced with Ni was prepared, and CO and NO removal rates were measured. The result is shown in FIG. As is clear from FIG. 5, this catalyst showed almost the same low activity as the Co-mordenite catalyst shown in Comparative Example 5.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、Pt等の貴金属を用いるこ
となく、Cu−モルデナイト触媒からなる安価な触媒によ
ってNOxを含まない排ガス中のCO、又は排ガス中にNOx、
COの両方を含む場合であってもCOおよびNOxを効率よく
除去でき、ボイラ排ガスのように大容量のガスを処理す
るための触媒として実用性の高いものである。またモル
デナイトのSiO2/Al2O3モル比を10以上に選定しているこ
とよりSOx含有排ガスに対して触媒を劣化させることな
く、CO又はCOおよびNOxを効率よく除去することができ
る。
As described above, according to the present invention, without using a noble metal such as Pt, CO in exhaust gas that does not contain NOx by an inexpensive catalyst composed of Cu-mordenite catalyst, or NOx in exhaust gas,
Even if it contains both CO, CO and NOx can be removed efficiently, and it is highly practical as a catalyst for treating a large volume of gas such as boiler exhaust gas. Further, since the SiO 2 / Al 2 O 3 molar ratio of mordenite is selected to be 10 or more, CO or CO and NOx can be efficiently removed without degrading the catalyst for SOx-containing exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1の触媒の反応温度とCO除去率の関係を
示す図、第2図は実施例1の触媒におけるNH3/NO=1.2
のときの反応温度とCO及びNO除去率、N2O生成率との関
係を示す図、第3図は実施例1と同じ触媒におけるNH3/
NO=1.0のときの反応温度とCO及びNO除去率、N2O生成率
との関係を示す図、第4図はCu−モルデナイト中のSiO2
/Al2O3比を変化させた各触媒の反応時間と脱硝率との関
係を示す図、第5図はCu−モルデナイト以外の触媒にお
ける反応温度とNO除去率、CO除去率との関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the reaction temperature and the CO removal rate of the catalyst of Example 1, and FIG. 2 is the NH 3 /NO=1.2 in the catalyst of Example 1.
NH at the reaction temperature and the CO and NO removal rate, shows the relationship between the N 2 O formation rate, FIG. 3 is the same catalyst as in Example 1 when the 3 /
FIG. 4 is a diagram showing the relationship between the reaction temperature and the removal rates of CO and NO, and the production rate of N 2 O when NO = 1.0. FIG. 4 shows SiO 2 in Cu-mordenite.
Fig. 5 is a diagram showing the relationship between the reaction time and the denitration rate of each catalyst with varying the / Al 2 O 3 ratio, and Fig. 5 shows the relationship between the reaction temperature, the NO removal rate, and the CO removal rate in catalysts other than Cu-mordenite. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モルデナイトの水素置換体で、かつSiO2/A
l2O3モル比が10以上のモルデナイトに対し、その水素の
一部若しくは全部を銅で置換又は銅を担持させたことを
特徴とする排ガス中の一酸化炭素又は一酸化炭素及び窒
素酸化物除去触媒。
1. A hydrogen-substituted form of mordenite and having SiO 2 / A
Carbon monoxide in exhaust gas, or carbon monoxide and nitrogen oxides in which a part or all of the hydrogen thereof is replaced with copper or supported on mordenite having a molar ratio of l 2 O 3 of 10 or more. Removal catalyst.
【請求項2】前記モルデナイト中のSi原子に対し、銅を
0.1原子〜10原子添加してなる特許請求の範囲第1項記
載の排ガス中の一酸化炭素又は一酸化炭素及び窒素酸化
物除去触媒。
2. Copper is added to Si atoms in the mordenite.
The catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas according to claim 1, wherein 0.1 to 10 atoms are added.
JP60253976A 1985-11-13 1985-11-13 Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas Expired - Fee Related JPH07102323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253976A JPH07102323B2 (en) 1985-11-13 1985-11-13 Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253976A JPH07102323B2 (en) 1985-11-13 1985-11-13 Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas

Publications (2)

Publication Number Publication Date
JPS62114657A JPS62114657A (en) 1987-05-26
JPH07102323B2 true JPH07102323B2 (en) 1995-11-08

Family

ID=17258542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253976A Expired - Fee Related JPH07102323B2 (en) 1985-11-13 1985-11-13 Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JPH07102323B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714460B2 (en) * 1986-01-16 1995-02-22 三菱重工業株式会社 Simultaneous treatment of nitrogen oxides and carbon monoxide in exhaust gas
FR2622474B2 (en) * 1987-04-03 1990-01-26 Azote & Prod Chim CATALYTIC COMPOSITION FOR THE SELECTIVE REDUCTION OF NITROGEN OXIDES CONTAINED IN OXYGENOUS GAS EFFLUENTS AND METHOD FOR THE PURIFICATION OF SUCH EFFLUENTS
JP2732614B2 (en) * 1988-10-18 1998-03-30 バブコツク日立株式会社 Exhaust gas purification catalyst and exhaust gas purification method
CA2024154C (en) * 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
JP4355003B2 (en) 2007-03-08 2009-10-28 本田技研工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JPS62114657A (en) 1987-05-26

Similar Documents

Publication Publication Date Title
US4351811A (en) Process for reducing an eliminating nitrogen oxides in an exhaust gas
US5612010A (en) Selective catalytic reduction of nitrogen oxides
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPS61291026A (en) Method for simultaneously removing nitrogen oxide and carbon monoxide
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
JPH07102323B2 (en) Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxides in exhaust gas
JPH0587291B2 (en)
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JPH054046A (en) Low-temp. working ternary catalyst for purification of exhaust gas
JPH0417083B2 (en)
JP3246757B2 (en) Nitrogen oxide removal catalyst
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JP3502966B2 (en) Nitrogen dioxide removal method
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JPH0751577A (en) Catalyst for purification of exhaust gas
AU698950B2 (en) Selective catalytic reduction of nitrogen oxides
JP3234237B2 (en) Catalyst for removing nitrous oxide in exhaust gas and method for producing the same
KR930004501B1 (en) Catalyst for removing nitrogen dioxide and nitric oxide
JPH0563222B2 (en)
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
KR100408503B1 (en) Catalyst for purifying exhaus gas of vehicle
JPS593219B2 (en) High-gastric Unochitsuso Sankabutsu Omugai Kasurutexita

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees