JPH07101819B2 - Distortion compensation circuit in multi-frequency simultaneous amplifier - Google Patents

Distortion compensation circuit in multi-frequency simultaneous amplifier

Info

Publication number
JPH07101819B2
JPH07101819B2 JP63133160A JP13316088A JPH07101819B2 JP H07101819 B2 JPH07101819 B2 JP H07101819B2 JP 63133160 A JP63133160 A JP 63133160A JP 13316088 A JP13316088 A JP 13316088A JP H07101819 B2 JPH07101819 B2 JP H07101819B2
Authority
JP
Japan
Prior art keywords
distortion
frequency
signal
amplifier
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63133160A
Other languages
Japanese (ja)
Other versions
JPH01302901A (en
Inventor
廣徳 坂本
章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP63133160A priority Critical patent/JPH07101819B2/en
Publication of JPH01302901A publication Critical patent/JPH01302901A/en
Publication of JPH07101819B2 publication Critical patent/JPH07101819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は多周波同時増幅器における歪補償回路に関し、
一層詳細には、周波数の異なる多数の無線周波の信号を
同時増幅する際に発生する非直線歪成分をフィードバッ
ク制御により自動的に補償して低歪で効率のよい信号増
幅を行なえる多周波増幅器における歪補償回路に関す
る。
The present invention relates to a distortion compensation circuit in a multi-frequency simultaneous amplifier,
More specifically, a multi-frequency amplifier capable of performing low-distortion and efficient signal amplification by automatically compensating for non-linear distortion components generated when a large number of radio frequency signals having different frequencies are simultaneously amplified by feedback control. Distortion compensation circuit in.

[発明の背景] 近時、無線通信の発展に伴い使用周波数の多周波化が促
進され、これに伴い広帯域多周波同時電力増幅器(以
下、多周波同時増幅器という)の需要が増加している。
[Background of the Invention] Recently, the use of multiple frequencies has been promoted along with the development of wireless communication, and the demand for wideband multifrequency simultaneous power amplifiers (hereinafter referred to as multifrequency simultaneous amplifiers) has increased accordingly.

このような多周波同時増幅器により、例えば、自動車電
話の基地局の送信信号、テレビ放送波の信号等、多数の
無線周波数からなる信号を同時に増幅する場合、当該増
幅器の入出力特性に起因する非直線性のために複数の信
号同士の相互干渉による混変調成分が発生し、この混変
調成分が前記多周波同時増幅器の特性に悪影響を与えて
いる。
When such a multi-frequency simultaneous amplifier simultaneously amplifies a signal composed of a large number of radio frequencies, such as a transmission signal of a base station of a car telephone or a signal of a television broadcast wave, a non-input / output characteristic of the amplifier is used. Due to the linearity, a cross-modulation component is generated due to mutual interference between a plurality of signals, and this cross-modulation component adversely affects the characteristics of the multi-frequency simultaneous amplifier.

この混変調等の非直線性歪の影響を少なくするためには
その飽和出力が大きく且つ直線性のよい多周波同時増幅
器が必要となる。そして、このような多周波同時増幅器
には大出力電力を取り出せるトランジスタ等の増幅素子
が必須であるが、単一のトランジスタにより効率よく大
出力電力を取り出すことは極めて困難である。そこで、
通常、以下に述べるような3通りの歪低減方式を採用す
る多周波同時増幅器が提案されている。
In order to reduce the influence of non-linear distortion such as cross-modulation, a multi-frequency simultaneous amplifier having a large saturation output and good linearity is required. An amplifying element such as a transistor capable of extracting a large output power is indispensable for such a multi-frequency simultaneous amplifier, but it is extremely difficult to efficiently extract a large output power by a single transistor. Therefore,
Usually, multi-frequency simultaneous amplifiers that employ the following three types of distortion reduction methods have been proposed.

第1の方式は、第1図に示すように、異なる周波数f1
至fnを担持する信号S1(f1)乃至Sn(fn)の夫々の信号
毎に増幅器a1乃至anを別個に使用し、夫々の出力信号を
空中線共用器2で合成する方式であり、現在の自動車電
話基地局の送信機や大電力のテレビ放送機で用いられて
いる方式である。この方式は増幅器a1乃至anが周波数f1
乃至fn毎に1台ずつ必要であり、さらにそれらの増幅器
a1乃至anの出力信号を合成する空中線共用器2も必要で
あることから当該装置が大型化し、しかも、使用する周
波数が空中線共用器2で限定されるため周波数の変更が
容易に出来ないという欠点を露呈している。
The first method, as shown in FIG. 1, different frequencies f 1 to the signal S 1 (f 1) for carrying the f n to S n (f n) respectively to the amplifier a 1 for each signal of a n of Is used separately and the respective output signals are combined by the antenna duplexer 2, which is the method used in the current transmitters of automobile telephone base stations and high-power television broadcasters. In this system, the amplifiers a 1 to a n have a frequency f 1
To f n , one for each, and those amplifiers
Since the antenna duplexer 2 for synthesizing the output signals of a 1 to a n is also required, the device is upsized, and the frequency used cannot be changed easily because the antenna duplexer 2 limits the frequency to be used. It exposes the drawback.

第2の方式は、第2図aに示すように、増幅器の歪特性
を改善した広帯域低歪増幅器4を使用して多周波の信号
S1(f1)乃至Sn(fn)をn波合成器6により合成した
後、同時に増幅する方式である。この方式では使用する
周波数を自由に変更出来るが、広帯域低歪増幅器4で発
生する歪を少なくしなければならない要請から当該広帯
域低歪増幅器4の信号出力レベルを当該広帯域低歪増幅
器4の飽和出力レベルに比較して十分に小さい信号レベ
ルで使用しなければならず、結果的には全体としての電
力利用効率が極めて低くなるという問題点が存在してい
る。この場合、例えば、第2図bに示すように周波数チ
ャンネル間隔が周波数幅Δfで割り当てられている時、
この中、周波数f3、f4に対応する隣接するチャンネルの
2つの信号S3(f3)、S4(f4)が広帯域低歪増幅器4に
入力されると、当該広帯域低歪増幅器4の非直線性によ
りその出力端子8には前記周波数f3、f4の近傍に次の第
1式並びに第2式に示すような三次歪成分のスプリアス
周波数f2、f5に対応する三次歪成分(第2図c参照)が
発生し、夫々周波数f3の下側のチャンネル{以下、C
(f3)と標記する}および周波数f4の上側のチャンネル
C(f4)に妨害を与える。
The second method is, as shown in FIG. 2a, a multi-frequency signal using a wide band low distortion amplifier 4 having improved distortion characteristics of the amplifier.
In this method, S 1 (f 1 ) to S n (f n ) are combined by the n-wave combiner 6 and then amplified simultaneously. In this method, the frequency to be used can be freely changed, but the signal output level of the wide band low distortion amplifier 4 is changed to the saturation output of the wide band low distortion amplifier 4 because of the requirement to reduce the distortion generated in the wide band low distortion amplifier 4. There is a problem that the signal must be used at a signal level that is sufficiently smaller than the level, and as a result, the overall power use efficiency becomes extremely low. In this case, for example, when the frequency channel intervals are assigned with the frequency width Δf as shown in FIG. 2b,
In this, the frequency f 3, f 4 2 two signals adjacent channel corresponding to S 3 (f 3), when S 4 (f 4) are input to the wideband low-distortion amplifier 4, the wideband low-distortion amplifier 4 tertiary distortion in the output terminal 8 nonlinearities that correspond to spurious frequency f 2, f 5 of the tertiary distortion component as shown in the frequency f 3, the first equation and the second equation in the vicinity of f 4 follows A component (see FIG. 2c) is generated, and the lower channel of each frequency f 3 {hereinafter, C
Labeled (f 3 )} and interferes with channel C (f 4 ) above frequency f 4 .

2f3−f4=f3−Δf=f2 (1) 2f4−f3=f4+Δf=f5 (2) 従って、本方式ではこのような使用帯域内のスプリアス
の発生を低レベルに抑制しなければならないことから当
該広帯域低歪増幅器4の信号出力レベルを所定のレベル
以上には高くすることが出来ない。そのため、当該広帯
域低歪増幅器4の電力効率が悪化し、実際上、この方式
によって大出力の広帯域低歪増幅器4を実現することは
極めて困難なものとなっている。
2f 3 −f 4 = f 3 −Δf = f 2 (1) 2f 4 −f 3 = f 4 + Δf = f 5 (2) Therefore, in this method, the generation of such spurious in the use band is reduced to a low level. Since it has to be suppressed, the signal output level of the wide band low distortion amplifier 4 cannot be increased to a predetermined level or higher. Therefore, the power efficiency of the wide band low distortion amplifier 4 is deteriorated, and in practice, it is extremely difficult to realize the high power wide band low distortion amplifier 4 by this method.

第3の方式は、第3図に示すように、前記の第2の方式
を採用する際、増幅時に発生する歪成分を前置歪補償器
10で予め補償する、所謂、フィードフォワード制御方式
である。この方式の問題点は第1に増幅すべき信号の出
力レベル、信号数、周波数配列が変化すると歪成分も変
化するために前置歪補償器10の歪補償量をその度毎に再
調整しなければならない煩雑さがあることにある。第2
に当該前置歪補償器10のダイナミックレンジを大きく設
計することが困難であるため、広帯域低歪増幅器4の出
力信号レベル並びに入力信号数が大幅に変化する用途に
使用する多周波同時増幅器としては安定した状態で使用
することが出来ないことにある。すなわち、信号周波数
が2倍になる毎に前置歪補償器10のダイナミックレンジ
を6dB広くする必要があることから当該前置歪補償器10
を使用する多周波同時増幅器は出力信号レベル、入力信
号数の変化に対応出来る可能性が極めて小さくなる難点
が存在している。
In the third method, as shown in FIG. 3, when the second method is adopted, the distortion component generated at the time of amplification is corrected by the predistortion compensator.
This is a so-called feedforward control system in which compensation is performed in advance with 10. The problem with this method is that, firstly, when the output level of the signal to be amplified, the number of signals, and the frequency arrangement change, the distortion component also changes, so the distortion compensation amount of the predistortion compensator 10 is readjusted each time. It has to be complicated. Second
Since it is difficult to design the dynamic range of the predistortion compensator 10 to be large, the multi-frequency simultaneous amplifier used for the application in which the output signal level of the wideband low-distortion amplifier 4 and the number of input signals change significantly This is because it cannot be used in a stable state. That is, since it is necessary to widen the dynamic range of the predistortion compensator 10 by 6 dB every time the signal frequency is doubled, the predistortion compensator 10 is required.
However, the multi-frequency simultaneous amplifier that uses is extremely difficult to deal with changes in the output signal level and the number of input signals.

[発明の目的] 本発明は前記の技術的課題を解決するためになされたも
のであって、多数の無線周波の信号を多周波同時増幅器
により同時に増幅する時に発生する非直線歪成分を検出
し、当該歪成分を補償する成分を広帯域低歪増幅器の入
力側にフィードバック信号として供給することにより非
直線歪を自動補償し、これにより広帯域且つ低歪であ
り、さらに電力効率がよく、しかも使用状態に対応して
可能性の高い多周波同時増幅器を提供することを目的と
する。
[Object of the Invention] The present invention has been made in order to solve the above technical problem, and detects a non-linear distortion component generated when a large number of radio frequency signals are simultaneously amplified by a multi-frequency simultaneous amplifier. , Non-linear distortion is automatically compensated by supplying a component for compensating for the distortion component to the input side of the wide band low distortion amplifier as a feedback signal, thereby wide band and low distortion, more power efficient, and in use condition It is an object of the present invention to provide a multi-frequency simultaneous amplifier having a high possibility corresponding to the above.

[目的を達成するための手段] 前記の目的を達成するために、本発明は、例えば、第4
図および第5図に示すように、周波数の異なる多数の無
線周波の入力信号を多周波合成器22により合成した後広
帯域低歪増幅器24により増幅する多周波同時増幅器にお
ける歪補償回路において、広帯域低歪増幅器24の出力信
号を分岐する第1の結合器26と、第1結合器26によって
分岐した信号から歪成分を検出する歪検出器28と、多周
波合成器22の出力信号を本線信号と標本信号とに分岐す
る第2の結合器34と、標本信号から歪成分を発生する歪
増幅器38と、歪増幅器38と直列に接続される可変減衰器
40および可変位相器42と、可変位相器42の出力信号と第
2結合器34からの本線信号とを結合して広帯域低歪増幅
器24の入力側に供給する第3の結合器36と、可変減衰器
40と可変位相器42の制御入力端子に接続されるととも
に、歪検出器28に接続される制御部30とを有し、制御部
30は、入力信号の無線周波の複数の周波数データf1
f2,f3に基づいて、広帯域低歪増幅器24で発生するスプ
リアス成分のうち入力信号の周波数と分離可能なスプリ
アス成分の周波数チャンネルf-1,f0,f4,f5を算出し
た後、歪検出器28で検出する歪成分が算出したスプリア
ス成分の周波数の歪成分となるように歪検出器28を制御
し、歪検出器28で検出した歪成分が最小となるように可
変減衰器40の減衰率と可変位相器42の位相とを制御する
ことを特徴とする。
[Means for Achieving the Object] In order to achieve the above object, the present invention provides, for example, a fourth embodiment.
As shown in FIG. 5 and FIG. 5, in a distortion compensation circuit in a multi-frequency simultaneous amplifier in which a large number of radio frequency input signals having different frequencies are combined by a multi-frequency synthesizer 22 and then amplified by a wide band low distortion amplifier 24, The first combiner 26 for branching the output signal of the distortion amplifier 24, the distortion detector 28 for detecting a distortion component from the signal branched by the first combiner 26, and the output signal of the multi-frequency synthesizer 22 as the main line signal. A second coupler 34 that branches into a sample signal, a distortion amplifier 38 that generates a distortion component from the sample signal, and a variable attenuator connected in series with the distortion amplifier 38.
40 and a variable phase shifter 42, a third coupler 36 that couples the output signal of the variable phase shifter 42 and the main line signal from the second coupler 34 and supplies the combined signal to the input side of the wide band low distortion amplifier 24, and Attenuator
40 and a control unit 30 connected to the control input terminal of the variable phase shifter 42 and connected to the distortion detector 28.
30 is a plurality of frequency data f 1 of the radio frequency of the input signal,
After calculating frequency channels f -1 , f 0 , f 4 , f 5 of spurious components that can be separated from the frequency of the input signal among the spurious components generated in the wide band low distortion amplifier 24 based on f 2 and f 3. , The distortion detector 28 is controlled so that the distortion component detected by the distortion detector 28 becomes the distortion component of the frequency of the calculated spurious component, and the variable attenuator is set so that the distortion component detected by the distortion detector 28 is minimized. It is characterized in that the attenuation factor of 40 and the phase of the variable phase shifter 42 are controlled.

[実施態様] 次に、本発明に係る自動歪補償回路を内蔵する多周波同
時増幅器について好適な実施態様を挙げ、添付の図面を
参照しながら以下詳細に説明する。
[Embodiment] Next, preferred embodiments of a multi-frequency simultaneous amplifier incorporating an automatic distortion compensation circuit according to the present invention will be described in detail below with reference to the accompanying drawings.

第4図において、参照符号20は本実施態様に係る自動歪
補償回路を内蔵する多周波同時増幅器を示し、当該多周
波同時増幅器20は、基本的に周波数の異なる信号S
1(f1)乃至Sn(fn)を合成する多周波合成器22(以
下、n波合成器という)と、当該n波合成器22の多周波
合成信号Q2を歪補償する歪補償部23と、当該歪補償部23
を通過した多周波合成信号Q4を増幅する広帯域低歪増幅
器24と、当該広帯域低歪増幅器24の多周波合成信号Q6
ら第1の結合器26を介して標本信号Q8を抽出しその標本
信号Q8から歪信号を検出する歪検出部28と、当該歪検出
部28によって検出された歪レベルデータに応じて前記広
帯域低歪増幅器24に入力する多周波合成信号Q2に対する
歪補償信号の振幅を制御する振幅制御信号SAと位相を制
御する位相制御信号SPを供給する制御部30とから構成さ
れる。
In FIG. 4, reference numeral 20 indicates a multi-frequency simultaneous amplifier incorporating the automatic distortion compensation circuit according to the present embodiment, and the multi-frequency simultaneous amplifier 20 is basically a signal S having different frequencies.
A multi-frequency synthesizer 22 (hereinafter, referred to as an n-wave synthesizer) that synthesizes 1 (f 1 ) to S n (f n ) and distortion compensation that compensates the multi-frequency synthesized signal Q 2 of the n-wave synthesizer 22. Section 23 and the distortion compensating section 23
The wideband low-distortion amplifier 24 that amplifies the multifrequency combined signal Q 4 that has passed through, and the sample signal Q 8 is extracted from the multifrequency combined signal Q 6 of the wideband low distortion amplifier 24 via the first combiner 26, and Distortion detector 28 for detecting a distortion signal from the sample signal Q 8, and a distortion compensation signal for the multi-frequency composite signal Q 2 input to the wideband low distortion amplifier 24 according to the distortion level data detected by the distortion detector 28. Of the amplitude control signal S A and the phase control signal S P for controlling the phase.

前記n波合成器22の出力信号である多周波合成信号Q2
歪補償部23を構成する第2の結合器34並びに第3の結合
器36を介して多周波合成信号Q4として広帯域低歪増幅器
24の入力端子に導入される。前記第2結合器34に入力し
た多周波合成信号Q2は本線信号Q3と標本信号Q5とに分岐
され、その中、標本信号Q5は歪増幅器38に入力され、歪
増幅器38の出力信号は可変減衰器40において制御部30の
制御下に振幅制御され、次いで、可変位相器42において
同様に制御部30の制御下に位相制御された後、歪補償信
号Q10として前記第3結合器36の他方の入力端子に導入
される。
The multi-frequency combined signal Q 2 which is the output signal of the n-wave combiner 22 is passed through the second combiner 34 and the third combiner 36 constituting the distortion compensator 23 as a multi-frequency combined signal Q 4 in a wide band low frequency range. Distortion amplifier
Introduced to 24 input terminals. The multi-frequency composite signal Q 2 input to the second combiner 34 is branched into a main line signal Q 3 and a sample signal Q 5 , of which the sample signal Q 5 is input to a distortion amplifier 38 and the output of the distortion amplifier 38. The signal is amplitude-controlled under the control of the control unit 30 in the variable attenuator 40, and then phase-controlled under the control of the control unit 30 in the variable phase shifter 42 in the same manner, and then the third combination is performed as the distortion compensation signal Q 10. Is introduced to the other input terminal of the device 36.

広帯域低歪増幅器24の出力信号である多周波合成信号Q6
は第1結合器26を介して出力端子44に多周波合成信号Q
12として導入されると共に、前記したように、その一部
の信号は多周波合成信号Q6の標本信号Q8として歪検出部
28を構成する周波数混合器46の一方の入力端子に導入さ
れる。この場合、周波数混合器46の他方の入力端子には
制御部30からの周波数制御信号SFによってその発振周波
数が可変される局部発振器48の出力信号が導入される。
Multi-frequency composite signal Q 6 which is the output signal of wide band low distortion amplifier 24
Is output to the output terminal 44 via the first combiner 26 by the multifrequency composite signal Q.
While being introduced as 12, as described above, a portion of the signal distortion detector unit as a sample signal Q 8 of the multi-frequency combined signal Q 6
It is introduced into one of the input terminals of the frequency mixer 46 that constitutes 28. In this case, the output signal of the local oscillator 48 to the other input terminal of the frequency mixer 46 whose oscillation frequency is varied by the frequency control signal S F from the control unit 30 is introduced.

周波数混合器46によって検出された特定周波数の信号は
その振幅がレベル測定器50によって測定されレベル測定
器50からの歪レベルデータSDは制御部30に導入される。
制御部30は周波数データ入力端子52より入力される周波
数データSFDから前記局部発振器48の出力信号周波数を
制御する周波数制御信号SFを出力し、前記歪レベルデー
タSDと前記周波数データSFDから振幅制御信号SA並びに
位相制御信号SPを前記歪補償部23を構成する可変減衰器
40並びに可変位相器42に夫々導入する。
The amplitude of the signal of the specific frequency detected by the frequency mixer 46 is measured by the level measuring device 50, and the distortion level data S D from the level measuring device 50 is introduced into the control unit 30.
The control unit 30 outputs a frequency control signal S F for controlling the output signal frequency of the local oscillator 48 from the frequency data S FD input from the frequency data input terminal 52, and the distortion level data S D and the frequency data S FD. From the amplitude control signal S A and the phase control signal S P to the variable attenuator that constitutes the distortion compensator 23.
40 and variable phase shifter 42, respectively.

本実施態様に係る多周波同時増幅器は基本的には以上の
ように構成されるものであり、次にその作用並びに効果
について説明する。
The multi-frequency simultaneous amplifier according to this embodiment is basically configured as described above, and its operation and effect will be described next.

そこで、先ず、当該多周波同時増幅器20に、第5図aの
スペクトル線図に示すように、周波数幅Δfの周波数
f1、f2、f3である多周波の信号S1(f1)、S2(f2)、S3
(f3)の3波がn波合成器22に入力する。初期状態にお
いては制御部30からの振幅制御信号SA、位相制御信号SP
が共に0レベルであるので多周波合成信号Q2はそのまま
のスペクトル値で多周波合成信号Q4として広帯域低歪増
幅器24に入力される。
Therefore, first, in the multi-frequency simultaneous amplifier 20, as shown in the spectrum diagram of FIG.
f 1, f 2, f 3 multi-frequency signals S 1 which is (f 1), S 2 ( f 2), S 3
The three waves of (f 3 ) are input to the n-wave combiner 22. In the initial state, the amplitude control signal S A and the phase control signal S P from the control unit 30
Are both 0 levels, the multi-frequency composite signal Q 2 is input to the wide band low distortion amplifier 24 as the multi-frequency composite signal Q 4 with the spectrum value as it is.

その結果、当該広帯域低歪増幅器24の入出力特性の非直
線性に起因する三次歪が発生し広帯域低歪増幅器24の多
周波合成信号Q4の周波数成分は第5図bに示されるスプ
リアス成分を含む成分となる。この歪成分を含む広帯域
低歪増幅器24の多周波合成信号Q6は第1結合器26で本線
54から分岐され、標本信号Q8として歪検出部28の中、周
波数混合器46の一方の入力端子に導入される。
As a result, third-order distortion occurs due to the nonlinearity of the input / output characteristics of the wide band low distortion amplifier 24, and the frequency component of the multi-frequency composite signal Q 4 of the wide band low distortion amplifier 24 is the spurious component shown in FIG. It will be a component containing. The multi-frequency composite signal Q 6 of the wide band low distortion amplifier 24 including this distortion component is supplied to the main line by the first combiner 26.
The signal is branched from 54 and is introduced into one input terminal of the frequency mixer 46 in the distortion detector 28 as the sample signal Q 8 .

第5図bに示すスプリアス成分の周波数成分は入力信号
S1(f1)、S2(f2)およびS3(f3)の周波数が第3式お
よび第4式に示す関係にあるとすると、次の第5式並び
に第13式に示すように分類される。
The frequency component of the spurious component shown in Fig. 5b is the input signal.
Assuming that the frequencies of S 1 (f 1 ), S 2 (f 2 ) and S 3 (f 3 ) have the relations shown in the third and fourth equations, as shown in the following fifth and thirteenth equations, are categorized.

f2=f1+Δf …(3) f3=f1+2Δf …(4) 2f1−f2=f1−Δf …(5) 2f1−f3=f1−2Δf …(6) 2f2−f1=f3 …(7) 2f2−f3=f1 …(8) 2f3−f1=f3+2Δf …(9) 2f3−f2=f3+Δf …(10) f1+f2−f3=f1−Δf …(11) f3+f1−f2=f2 …(12) f2+f3−f1=f3+Δf …(13) このように分類されるスプリアス成分の中、第7式、第
8式および第12式に示されるスプリアス成分は現在使用
中のチャンネル周波数f1、f2、f3に相当し信号に悪影響
を与え、その他のスプリアス成分は使用チャンネルC
(f1)、C(f2)およびC(f3)近傍のチャンネルの周
波数に相当し、空きチャンネルに妨害信号として混入す
る。
f 2 = f 1 + Δf (3) f 3 = f 1 + 2Δf (4) 2f 1 −f 2 = f 1 −Δf (5) 2f 1 −f 3 = f 1 −2Δf (6) 2f 2 -F 1 = f 3 (7) 2f 2 -f 3 = f 1 (8) 2f 3 -f 1 = f 3 + 2Δf (9) 2f 3 -f 2 = f 3 + Δf (10) f 1 + F 2 −f 3 = f 1 −Δf… (11) f 3 + f 1 −f 2 = f 2 … (12) f 2 + f 3 −f 1 = f 3 + Δf… (13) Spurious classified in this way Of the components, the spurious components shown in equations 7, 8 and 12 correspond to the channel frequencies f 1 , f 2 and f 3 currently in use, and adversely affect the signal, while other spurious components are used. Channel C
Corresponding to the frequencies of the channels near (f 1 ), C (f 2 ) and C (f 3 ), they are mixed in the vacant channels as an interfering signal.

広帯域低歪増幅器24の出力信号である多周波合成信号Q6
を第1結合器26で分岐し歪検出部28で歪(スプリアス)
のレベル測定する場合、前記第7式、第8式および第12
式に示すスプリアス成分は信号周波数f1乃至f3と重畳す
るため検出困難であるが、第1、5、6、9、10、11お
よび13式に示すスプリアス成分は入力される信号S1
S2、S3と周波数が異なるため容易に検出出来る。
Multi-frequency composite signal Q 6 which is the output signal of wide band low distortion amplifier 24
Is split by the first combiner 26 and is distorted (spurious) by the distortion detector 28.
In the case of measuring the level of
The spurious component shown in the equation is difficult to detect because it is superimposed on the signal frequencies f 1 to f 3 , but the spurious component shown in the first, fifth, sixth, ninth, tenth, eleventh, and thirteenth equations is the input signal S 1 ,
Since the frequency is different from S 2 and S 3, it can be easily detected.

すなわち、制御部30は周波数データ入力端子52から現在
n波合成器22に入力されている信号S1(f1)、S
2(f2)、S3(f3)に対応する周波数f1、f2、f3を表す
周波数データSFDを受け、測定可能なスプリアスの周波
数チャンネルC(f-1)、C(f0)、C(f4)、C
(f5)を算出して局部発振器48の周波数を制御すること
により周波数チャンネルC(f-1)、C(f0)、C
(f4)、C(f5)のスプリアスのレベルを測定すると共
にその歪レベルデータSDを制御部30に取り込む。制御部
30は歪増幅器38で発生する歪成分の振幅および位相を第
5図cに示すように制御し、第3結合器36の一方の入力
端子に印加する。この場合、第3結合器36の他方の入力
端子には前記第2結合器34からの本線信号Q3が導入され
ている。
That is, the control unit 30 controls the signals S 1 (f 1 ) and S 1 currently input to the n-wave synthesizer 22 from the frequency data input terminal 52.
2 (f 2 ), S 3 (f 3 ) corresponding frequency data S FD representing the frequencies f 1 , f 2 , f 3 and measurable spurious frequency channels C (f −1 ), C (f 0 ), C (f 4 ), C
By calculating (f 5 ) and controlling the frequency of the local oscillator 48, the frequency channels C (f −1 ), C (f 0 ), C
The spurious levels of (f 4 ) and C (f 5 ) are measured and the distortion level data S D is taken into the control unit 30. Control unit
Reference numeral 30 controls the amplitude and phase of the distortion component generated in the distortion amplifier 38 as shown in FIG. 5c, and applies it to one input terminal of the third coupler 36. In this case, the main line signal Q 3 from the second coupler 34 is introduced to the other input terminal of the third coupler 36.

従って、広帯域低歪増幅器24に印加される歪成分を含む
多周波合成信号Q4は第5図dに示すように信号成分SX
歪補償成分SYが合成された信号となり、広帯域低歪増幅
器24を通過した多周波合成信号Q6は、第5図eに示すよ
うに、新たに歪補償成分SYが加算された信号として表さ
れる。そこで、歪検出部28において前記歪レベルデータ
SDが最小になるように前記周波数チャンネルC(f-1
乃至C(f5)に対応して振幅制御並びに位相制御を行う
ことにより、第5図fに示すように、出力多周波合成信
号Q12の歪を除去することが可能である。
Therefore, the multi-frequency composite signal Q 4 including the distortion component applied to the wide band low distortion amplifier 24 becomes a signal in which the signal component S X and the distortion compensation component S Y are combined as shown in FIG. The multi-frequency composite signal Q 6 that has passed through the amplifier 24 is represented as a signal to which the distortion compensation component S Y is newly added, as shown in FIG. Therefore, in the distortion detector 28, the distortion level data
The frequency channel C (f -1 ) so that S D is minimized
Through the amplitude control and the phase control corresponding to C (f 5 ) to C (f 5 ), it is possible to remove the distortion of the output multi-frequency combined signal Q 12 as shown in FIG.

このように、本発明に係る歪補償回路を内蔵する多周波
同時増幅器20は入力する信号の数や周波数配列が変化し
た場合においても制御部30の制御下に歪検出部28によっ
て検出可能なスプリアス成分を検出し歪検出部28で検出
される歪の量が最小となるように高速にフィードバック
制御している。従って、当該多周波同時増幅器20を用い
ることにより増幅可能な信号数や周波数配列を自由に変
更して使用することが出来る。
As described above, the multi-frequency simultaneous amplifier 20 including the distortion compensation circuit according to the present invention has a spurious signal that can be detected by the distortion detection unit 28 under the control of the control unit 30 even when the number of input signals or the frequency arrangement changes. The feedback control is performed at high speed so that the component is detected and the amount of distortion detected by the distortion detector 28 is minimized. Therefore, by using the multi-frequency simultaneous amplifier 20, the number of signals that can be amplified and the frequency arrangement can be freely changed and used.

さらに、本発明に係る自動歪補償回路を採用することに
より、増幅器本体の小型化、低消費電力化、低コスト化
が可能である。以下にその理由を述べる。
Further, by adopting the automatic distortion compensation circuit according to the present invention, it is possible to downsize the amplifier main body, reduce power consumption, and reduce cost. The reason will be described below.

一般に、A級動作の増幅器において、増幅器の信号出力
レベルと増幅器出力の三次歪成分のスプリアスレベルの
関係は、信号出力レベルが1dB増加する毎にスプリアス
レベルが3dB増加する性質がある。例えば、多周波同時
増幅器において、信号S1(f1)、S2(f2)の出力レベル
が夫々+30dBm(1W)の時、これに対応する出力の歪成
分のレベルが−30dBm、すなわち、信号S1(f1)、S2(f
2)の出力レベルに対して−60dBであったとすると、こ
の増幅器の信号S1(f1)、S2(f2)の出力レベルを夫々
10dB増加させ+40dBm(10W)とした場合、これに対応す
る出力の歪成分のレベルは0dBm、すなわち、入力信号S1
(f1)、S2(f2)の出力レベルに対し−40dBになり、結
局、出力信号レベルが10dB増加することにより信号対ス
プリアス比が20dB劣化することになる。また、出力の信
号数が2倍に増加すると、出力ピーク電力が6dB増加し
信号対スプリアス比が12dB劣化することになる。
Generally, in a class A amplifier, the relationship between the signal output level of the amplifier and the spurious level of the third-order distortion component of the amplifier output has a property that the spurious level increases by 3 dB every time the signal output level increases by 1 dB. For example, in the multi-frequency simultaneous amplifier, when the output levels of the signals S 1 (f 1 ) and S 2 (f 2 ) are +30 dBm (1 W), the level of the distortion component of the output corresponding to this is −30 dBm, that is, Signal S 1 (f 1 ), S 2 (f
Assuming that the output level of 2 ) is -60 dB, the output levels of the signals S 1 (f 1 ) and S 2 (f 2 ) of this amplifier are respectively
When increasing by 10 dB to +40 dBm (10 W), the level of the distortion component of the output corresponding to this is 0 dBm, that is, the input signal S 1
The output level of (f 1 ) and S 2 (f 2 ) becomes −40 dB, and eventually the output signal level increases by 10 dB, resulting in a 20 dB deterioration in the signal-to-spurious ratio. When the number of output signals is doubled, the output peak power is increased by 6 dB and the signal-to-spurious ratio is deteriorated by 12 dB.

ところで、通常、増幅器の歪特性を改善するには、前記
したように、増幅素子を大型化する手段が採用されるが
増幅素子の大型化により、消費電力も増加する。例え
ば、出力信号対スプリアス比を−60dB以下にしようとす
る時、歪補償を実施しない場合にはその増幅器の許容出
力レベルは1Wになる。
By the way, normally, in order to improve the distortion characteristic of the amplifier, the means for enlarging the amplifying element is adopted as described above, but the enlarging of the amplifying element also increases the power consumption. For example, when trying to reduce the output signal-to-spurious ratio to −60 dB or less, the allowable output level of the amplifier becomes 1 W without distortion compensation.

これに対して本発明に係る自動歪補償回路を採用した多
周波同時増幅器により出力信号対スプリアス比を−40dB
から−60dBに改善出来、許容出力レベルを10倍の10Wに
拡大することが出来る。若し、本発明に係る多周波同時
増幅器を許容出力レベル1W以内で使用する用途に用いる
場合には、前記したように、20dBの歪補償効果により取
り扱うことの可能な信号数を補償前の約3倍に増加する
ことが出来る。
On the other hand, the output signal-to-spurious ratio is -40 dB by the multi-frequency simultaneous amplifier adopting the automatic distortion compensation circuit according to the present invention.
Can be improved to -60dB and the allowable output level can be expanded to 10W, which is 10 times. If the multi-frequency simultaneous amplifier according to the present invention is used for the purpose of using it within the allowable output level of 1 W, as described above, the number of signals that can be handled by the distortion compensation effect of 20 dB is about It can be tripled.

つまり、本発明に係る自動歪補償を実施することによ
り、小型の増幅素子で従来以上の許容出力レベルの増幅
器を実現出来、増幅器の小型化、低消費電力化、および
周波数の有効利用を併せて図ることが可能となる。
In other words, by implementing the automatic distortion compensation according to the present invention, it is possible to realize an amplifier having an allowable output level higher than that of a conventional one with a small amplifying element, and to reduce the size of the amplifier, reduce the power consumption, and effectively use the frequency. It is possible to plan.

なお、本実施態様においてはn波合成器22に入力する無
線周波の信号を3周波の信号として説明したが、3周波
を超える入力信号に対しても同様に実施出来ることは勿
論である。
In the present embodiment, the radio frequency signal input to the n-wave synthesizer 22 has been described as a three-frequency signal, but it goes without saying that the same can be applied to an input signal exceeding three frequencies.

[発明の効果] 以上のように、本発明によれば、多周波の信号の同時増
幅を行う多周波同時増幅器において同時増幅時に発生す
る非直線性歪の量を周波数毎に検出し振幅補償並びに位
相補償を実施している。このため、多周波の信号を同時
に増幅する際に発生する非直線歪成分を可及的に低減す
ることが出来る。従って、従来技術に係る多周波同時増
幅器と同一の歪成分を許容する時、当該多周波同時増幅
器の小型化、簡素化、周波数の有効利用等を同時に実現
し得る効果を奏する。
[Advantages of the Invention] As described above, according to the present invention, in a multi-frequency simultaneous amplifier that simultaneously amplifies multi-frequency signals, the amount of non-linear distortion that occurs during simultaneous amplification is detected for each frequency, and amplitude compensation is performed. Phase compensation is implemented. Therefore, it is possible to reduce the non-linear distortion component that occurs when a multi-frequency signal is simultaneously amplified. Therefore, when allowing the same distortion component as the multi-frequency simultaneous amplifier according to the related art, it is possible to simultaneously realize downsizing, simplification, effective use of frequency, etc. of the multi-frequency simultaneous amplifier.

以上、本発明について好適な実施態様を挙げて説明した
が、本発明はこの実施態様に限定されるものではなく、
本発明の要旨を逸脱しない範囲において種々の改良並び
に設計の変更が可能なことは勿論である。
Although the present invention has been described with reference to the preferred embodiment, the present invention is not limited to this embodiment,
It goes without saying that various improvements and design changes can be made without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来技術に係る多周波同時増幅器の構成ブロッ
ク図、 第2図は他の従来技術に係る多周波同時増幅器とその作
用の説明図、 第3図はさらに他の従来技術に係る多周波同時増幅器の
構成ブロック図、 第4図は本発明に係る歪補償回路を内蔵する多周波同時
増幅器の概略構成ブロック図、 第5図a乃至fは当該歪補償回路を内蔵する多周波同時
増幅器の作用を説明するための周波数スペクトラム図で
ある。 20…多周波同時増幅器、22…n波合成器 24…広帯域低歪増幅器、28…歪検出部 30…制御部 Q2、Q4、Q6…多周波合成信号 Q3…本線信号、Q5、Q8…標本信号 SA…振幅制御信号、SD…歪レベルデータ SF…周波数制御信号、SFD…周波数データ SP…位相制御信号
FIG. 1 is a block diagram of a multi-frequency simultaneous amplifier according to the related art, FIG. 2 is an explanatory view of a multi-frequency simultaneous amplifier according to another conventional technology and its operation, and FIG. 3 is a multi-frequency simultaneous amplifier according to another conventional technology. 4 is a schematic block diagram of a multi-frequency simultaneous amplifier including a distortion compensation circuit according to the present invention, and FIGS. 5a to 5f are multi-frequency simultaneous amplifiers including the distortion compensation circuit. 3 is a frequency spectrum diagram for explaining the action of FIG. 20 ... Multi-frequency simultaneous amplifier, 22 ... n-wave synthesizer 24 ... Wide band low distortion amplifier, 28 ... Distortion detection section 30 ... Control section Q 2 , Q 4 , Q 6 ... Multi-frequency synthesized signal Q 3 … Main line signal, Q 5 , Q 8 … Sample signal S A … Amplitude control signal, S D … Distortion level data S F … Frequency control signal, S FD … Frequency data S P … Phase control signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】周波数の異なる多数の無線周波の入力信号
を多周波合成器により合成した後広帯域低歪増幅器によ
り増幅する多周波同時増幅器における歪補償回路におい
て、 前記広帯域低歪増幅器の出力信号を分岐する第1の結合
器と、 前記第1結合器によって分岐した信号から歪成分を検出
する歪検出器と、 前記多周波合成器の出力信号を本線信号と標本信号とに
分岐する第2の結合器と、 前記標本信号から歪成分を発生する歪増幅器と、 当該歪増幅器と直列に接続される可変減衰器および可変
位相器と、 当該可変位相器の出力信号と前記第2結合器からの本線
信号とを結合して前記広帯域低歪増幅器の入力側に供給
する第3の結合器と、 前記可変減衰器と可変位相器の制御入力端子に接続され
るとともに、前記歪検出器に接続される制御部とを有
し、 前記制御部は、前記入力信号の無線周波の複数の周波数
データに基づいて、前記広帯域低歪増幅器で発生するス
プリアス成分のうち前記入力信号の周波数と分離可能な
スプリアス成分の周波数チャンネルを算出した後、前記
歪検出器で検出する歪成分が前記算出したスプリアス成
分の周波数の歪成分となるように前記歪検出器を制御
し、前記歪検出器で検出した歪成分が最小となるように
前記可変減衰器の減衰率と前記可変位相器の位相とを制
御することを特徴とする多周波同時増幅器における歪補
償回路。
1. A distortion compensating circuit in a multi-frequency simultaneous amplifier which synthesizes a large number of radio frequency input signals having different frequencies by a multi-frequency synthesizer and then amplifies it by a wide band low distortion amplifier. A first combiner for branching, a distortion detector for detecting a distortion component from the signal branched by the first combiner, and a second combiner for branching an output signal of the multi-frequency synthesizer into a main line signal and a sample signal. A combiner, a distortion amplifier that generates a distortion component from the sampled signal, a variable attenuator and a variable phaser connected in series with the distortion amplifier, an output signal of the variable phaser, and the second combiner. A third combiner for combining the main line signal and supplying it to the input side of the wideband low-distortion amplifier, connected to the control input terminals of the variable attenuator and variable phaser, and connected to the distortion detector. System And a control unit, based on a plurality of frequency data of radio frequencies of the input signal, a spurious component separable from the frequency of the input signal among spurious components generated in the wideband low distortion amplifier. After calculating the frequency channel of, the distortion component is controlled so that the distortion component detected by the distortion detector becomes the distortion component of the frequency of the calculated spurious component, and the distortion component detected by the distortion detector is A distortion compensating circuit in a multi-frequency simultaneous amplifier, wherein an attenuation factor of the variable attenuator and a phase of the variable phase shifter are controlled so as to be a minimum.
JP63133160A 1988-05-31 1988-05-31 Distortion compensation circuit in multi-frequency simultaneous amplifier Expired - Fee Related JPH07101819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133160A JPH07101819B2 (en) 1988-05-31 1988-05-31 Distortion compensation circuit in multi-frequency simultaneous amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133160A JPH07101819B2 (en) 1988-05-31 1988-05-31 Distortion compensation circuit in multi-frequency simultaneous amplifier

Publications (2)

Publication Number Publication Date
JPH01302901A JPH01302901A (en) 1989-12-06
JPH07101819B2 true JPH07101819B2 (en) 1995-11-01

Family

ID=15098094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133160A Expired - Fee Related JPH07101819B2 (en) 1988-05-31 1988-05-31 Distortion compensation circuit in multi-frequency simultaneous amplifier

Country Status (1)

Country Link
JP (1) JPH07101819B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394120A (en) * 1993-04-13 1995-02-28 Japan Radio Co., Ltd. Device for testing an amplifier
JP4744376B2 (en) * 2006-06-30 2011-08-10 富士通株式会社 Carrier state determination device and transmission device
JP5871210B2 (en) * 2010-01-29 2016-03-01 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
JP2020096253A (en) 2018-12-11 2020-06-18 住友電気工業株式会社 Multistage amplifier
CN117200719B (en) * 2023-11-07 2024-02-02 成都四威功率电子科技有限公司 Broadband high-power multi-frequency amplifying system and working method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113649A (en) * 1984-06-28 1986-01-21 Nec Corp Hybrid integrated circuit
JPS6155283A (en) * 1984-08-21 1986-03-19 北陽製紙株式会社 Regeneration of sodium sulfite digestion waste liquor

Also Published As

Publication number Publication date
JPH01302901A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US4943783A (en) Feed forward distortion correction circuit
US7042283B2 (en) High-efficiency linear power amplifier
US6392483B2 (en) Feed-forward amplifier
JP3360464B2 (en) Feed forward amplifier
US5644268A (en) Feed forward RF amplifier for combined signal and error amplification
US20030071684A1 (en) Linearisation method and signal processing device
US6791410B2 (en) Feedforward amplifier and method of improving the performance thereof
US6784731B2 (en) System and method for reducing amplifier distortion using distortion feedback
US6393011B1 (en) Receiving circuit of mobile communication terminal having feed forward linearizer
US7209715B2 (en) Power amplifying method, power amplifier, and communication apparatus
JPH07101819B2 (en) Distortion compensation circuit in multi-frequency simultaneous amplifier
JP4052834B2 (en) Amplifier circuit
US6904267B2 (en) Amplifying device
US6608523B1 (en) System and method for producing a pilot signal in a distortion reduction system
US6545487B1 (en) System and method for producing an amplified signal with reduced distortion
US6959174B2 (en) Amplifying device
JP2000261252A (en) Distortion compensation power amplification circuit
KR100371531B1 (en) Feedforward linear power amplifier using error feedback
JP2001217885A (en) Amplification system
JPH10303777A (en) Mutual modulation distortion reduction circuit for radio equipment
JP4014404B2 (en) Distortion compensation circuit
JP3764088B2 (en) Feed forward amplifier and control circuit thereof
JP3037538B2 (en) Multi-frequency common amplifier
Nesimoglu et al. A novel wideband active feedback amplifier linearization scheme suitable for handsets
JP2004080770A (en) Power amplification method, power amplifier, and communication equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees