JPH07100941A - Internal area irradiating method in photosetting shaping method - Google Patents

Internal area irradiating method in photosetting shaping method

Info

Publication number
JPH07100941A
JPH07100941A JP5250576A JP25057693A JPH07100941A JP H07100941 A JPH07100941 A JP H07100941A JP 5250576 A JP5250576 A JP 5250576A JP 25057693 A JP25057693 A JP 25057693A JP H07100941 A JPH07100941 A JP H07100941A
Authority
JP
Japan
Prior art keywords
scanning
offset
calculated
line
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5250576A
Other languages
Japanese (ja)
Other versions
JP3342125B2 (en
Inventor
Naoichiro Saito
直一郎 斉藤
Hideo Takamatsu
秀男 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C MET KK
Original Assignee
C MET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C MET KK filed Critical C MET KK
Priority to JP25057693A priority Critical patent/JP3342125B2/en
Publication of JPH07100941A publication Critical patent/JPH07100941A/en
Application granted granted Critical
Publication of JP3342125B2 publication Critical patent/JP3342125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation

Abstract

PURPOSE:To move a light beam at a high speed to reduce an irradiation time by a method wherein a line offset inward from a profile line is found, intersections of the offset line are determined, a scanning loop for connecting the intersections by the offset line is evaluated, and a light is emitted along the scanning loop when an internal area is filled with a scanning loop group. CONSTITUTION:A method comprises a first process S8 for calculating an offset line offset inward from a profile line by a predetermined distance, a second process S10 for calculating intersections of the offset line calculated in the first process, and a third process S12 for calculating a scanning loop for connecting the intersections calculated in the second process by the offset line calculated in the first process S8. The 1st-3rd processes are determined as one cycle. By repeating the cycle with the increase of an offset distance in the first process S8, a scanning loop group for an internal area of a profile is calculated. By scanning a light beam along the calculated scanning loop group, the internal area is irradiated with the light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光硬化造形法に関し、特
に中実モデル作成時に多用される輪郭の内部領域に対す
る光照射工程を改善する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photo-curing molding method, and more particularly to a technique for improving a light irradiation process for an inner region of a contour which is frequently used when a solid model is prepared.

【0002】[0002]

【従来の技術】光硬化造形法では、造形希望形状の断面
に対応する領域において、光硬化性液の液面に光照射す
る。すると光照射された領域中の液面が光硬化され、断
面硬化層が形成される。光硬化造形法ではこのようにし
て断面硬化層を次々に形成すると同時に、新たに形成さ
れる断面硬化層が先に形成されている断面硬化層に積層
一体化されるようにする。このようにすると断面硬化層
が積層一体化されて全体として造形希望形状を呈する三
次元物体が造形される。光硬化造形法の基本構成は特開
昭56−144478号公報に開示されている。
2. Description of the Related Art In the photo-curing molding method, a liquid surface of a photo-curing liquid is irradiated with light in a region corresponding to a cross section of a desired molding shape. Then, the liquid surface in the light-irradiated area is photo-cured to form a cross-section hardened layer. In the photo-curing modeling method, the sectional hardened layers are successively formed in this manner, and at the same time, the newly formed sectional hardened layer is laminated and integrated with the previously formed sectional hardened layer. In this way, the cross-section hardened layers are laminated and integrated to form a three-dimensional object having the desired desired shape as a whole. The basic constitution of the photo-curing molding method is disclosed in Japanese Patent Application Laid-Open No. 56-144478.

【0003】光硬化造形法では中空のモデルを造形する
ことができる。この場合は断面領域のうち輪郭のみを光
照射する。このようにすると輪郭のみが硬化され、これ
が積層一体化される結果、外皮の内側が空となっている
中空モデルが造形される。通常の光硬化造形装置は、中
空モデルも中実モデルも造形可能となっている。中実モ
デルを造形する場合は、輪郭のみならず、輪郭によって
囲繞される内部領域をも光照射する。通常は中実モデル
作成時、1つの断面に対する照射が輪郭に対する照射と
内部領域に対する照射とにわけて取扱われる。輪郭に沿
って光照射すると、モデルの外表面が滑らかとなるとい
う利点も得られる。図2(A) は輪郭Cの内部領域Rを光
照射する走査ラインのパターンを示している。光ビーム
が走査ラインa→b→c…のように走査されることによ
って内部領域Rに対する光照射が行なわれる。
In the photo-curing molding method, a hollow model can be molded. In this case, only the contour of the cross sectional area is irradiated with light. In this way, only the contour is hardened, and this is laminated and integrated. As a result, a hollow model in which the inside of the outer cover is empty is formed. A normal photo-curing modeling apparatus can mold both a hollow model and a solid model. When modeling a solid model, not only the contour but also the internal area surrounded by the contour is illuminated. Normally, when creating a solid model, irradiation for one cross section is handled as irradiation for the contour and irradiation for the internal region. Illuminating along the contours also has the advantage of smoothing the outer surface of the model. FIG. 2A shows a scanning line pattern for irradiating the inner region R of the contour C with light. The internal region R is irradiated with light by scanning the light beam as scanning lines a → b → c.

【0004】[0004]

【発明が解決しようとする課題】さて図2(B) は、図2
(A) の走査パターンに従って制御されるときの光ビーム
の移動速度を示している。光ビームは、ラインaに沿っ
て走査される際にまず加速され、所定速になったらその
速度を維持し、走査限界点に近づいたら減速して走査限
界点で停止する。その後走査ラインbにシフトし、ライ
ンbについても同様に加速→定速→減速を繰返す。この
ため光ビームの平均速度が遅く、内部領域Rの照射に長
時間を必要とする。本発明はより短時間で内部領域Rの
照射が完了するようにするものである。
Now, FIG. 2B is the same as FIG.
The moving speed of the light beam when controlled according to the scanning pattern of (A) is shown. The light beam is first accelerated while being scanned along the line a, maintains the speed when reaching a predetermined speed, decelerates when approaching the scanning limit point, and stops at the scanning limit point. After that, the scanning line b is shifted to, and similarly for the line b, acceleration → constant speed → deceleration is repeated. Therefore, the average speed of the light beam is slow, and it takes a long time to irradiate the internal region R. The present invention aims to complete the irradiation of the internal region R in a shorter time.

【0005】[0005]

【課題を解決するための手段】本発明では、光硬化造形
法で輪郭線によって囲繞される内部領域を光ビームを走
査することによって光照射するに際し、輪郭線を内側に
所定距離オフセットしたオフセットラインを演算する第
1工程と、第1工程で演算されたオフセットラインの交
点を演算する第2工程と、第2工程で演算された交点間
を第1工程で演算されたオフセットラインで結ぶ走査ル
ープを演算する第3工程とを備え、前記第1・第2・第
3工程を1サイクルとし、前記第1工程におけるオフセ
ット距離を増大させつつ前記サイクルを繰返すことで輪
郭の内部領域に対する走査ループ群を演算し、演算され
た走査ループ群に沿って光ビームを走査することによっ
て内部領域を光照射する。
According to the present invention, an offset line is formed by offsetting a contour line inward by a predetermined distance when irradiating the interior region surrounded by the contour line with a light beam by scanning with a light beam in the photo-curing molding method. And a scanning loop that connects between the intersections calculated in the second step and the second step that calculates the intersections of the offset lines calculated in the first step with the offset lines calculated in the first step. And a third step for calculating the first, second, and third steps as one cycle, and the cycle is repeated while increasing the offset distance in the first step, thereby repeating the scanning loop group for the internal region of the contour. Is calculated and a light beam is scanned along the calculated scanning loop group to irradiate the internal region with light.

【0006】[0006]

【作用】本発明の作用を図4を参照して説明する。図4
においてC1は輪郭線を例示し、この場合輪郭線C1は
C1aとC1bの2つの部分輪郭線を備えている。図中
Cは光ビームの中心を輪郭線C1に沿って走査したとき
に形成される硬化範囲を示している。図中L1aは部分
輪郭線C1aを第1オフセット距離OF1だけ内側にオ
フセットしたラインを示し、L1bは部分輪郭線C1b
を第1オフセット距離OF1だけオフセットしたライン
を示している。図中D1はこのようにして算出された2
つのオフセットラインL1aとL1bの交点を示してい
る。このようにして算出される交点間をオフセットライ
ンで結ぶと1つのループが得られる。図2(C) のdはこ
のようにして算出される第1走査ループを示している。
The operation of the present invention will be described with reference to FIG. Figure 4
In FIG. 1, C1 exemplifies a contour line, and in this case, the contour line C1 includes two partial contour lines C1a and C1b. In the figure, C indicates the curing range formed when the center of the light beam is scanned along the contour line C1. In the figure, L1a indicates a line in which the partial contour line C1a is offset inward by the first offset distance OF1, and L1b indicates the partial contour line C1b.
Shows a line offset by the first offset distance OF1. D1 in the figure is 2 calculated in this way
The intersection of two offset lines L1a and L1b is shown. One loop is obtained by connecting the intersections calculated in this way with an offset line. The d in FIG. 2C shows the first scanning loop calculated in this way.

【0007】本発明では、上記のサイクルが繰返し実行
される。このときオフセット距離が増大されてゆく。図
4中L2aとL2bは2サイクル目においてオフセット
距離がOF2に増大されたときのオフセットラインを示
しており、その交点がD2に示されている。この結果図
2(c) 中eの第2走査ループが得られる。図2(c) は以
上のサイクルを第3サイクル、第4サイクルと繰返すこ
とによって得られる走査ループ群を例示しており、この
場合内部領域R中に4本の走査ループd,e,f,gが
算出されている。
In the present invention, the above cycle is repeatedly executed. At this time, the offset distance is increased. In FIG. 4, L2a and L2b indicate offset lines when the offset distance is increased to OF2 in the second cycle, and the intersection is indicated by D2. As a result, the second scanning loop e in FIG. 2 (c) is obtained. FIG. 2C illustrates a scan loop group obtained by repeating the above cycle as the third cycle and the fourth cycle. In this case, four scan loops d, e, f, g has been calculated.

【0008】本発明では、このようにして走査ループ群
が算出された後、光ビームを走査ループに沿って走査す
ることによって内部領域Rの光照射が実行される。この
ようにすると各走査ループd,e,f,gの全長を図2
(a) の走査ラインa,b,c…の各長さに比して大幅に
長くでき、図2(D) に示されるように、高速で光ビーム
を長く移動し続けることが可能となる。このようにし
て、本発明によると内部領域Rの光照射に要する時間を
短縮化することができる。
In the present invention, after the scanning loop group is calculated in this way, the light irradiation of the internal region R is executed by scanning the light beam along the scanning loop. In this way, the total length of each scanning loop d, e, f, g is shown in FIG.
The length of the scanning lines a, b, c, ... Of (a) can be made significantly longer, and as shown in FIG. 2 (D), the light beam can continue to move at high speed for a long time. . In this way, according to the present invention, the time required for the light irradiation of the inner region R can be shortened.

【0009】[0009]

【実施例】図1は本発明を具現化する一処理手順例を示
している。ステップS2では光硬化造形装置に三次元の
形状を定義するデータを入力する。このデータは三次元
CADシステムで設計されていることもあるし、三次元
測定機の測定結果として与えられる場合もある。ステッ
プS4では輪郭線を演算する。なお図1のステップS4
以後の処理は1つの断面に対する処理のみを図示してお
り、実際には全断面についてステップS4以後の処理が
実施される。
FIG. 1 shows an example of a processing procedure embodying the present invention. In step S2, data defining a three-dimensional shape is input to the photo-curing modeling apparatus. This data may be designed by the three-dimensional CAD system or may be given as the measurement result of the three-dimensional measuring machine. In step S4, the contour line is calculated. Note that step S4 in FIG.
Only the processing for one cross section is shown in the subsequent processing, and the processing after step S4 is actually performed for all the cross sections.

【0010】ステップS2で入力された形状を複数の層
でスライスした際の一つの断面が例えば図4に示すCR
の線まで広がっており、かつ光ビームBの半径がrであ
る場合には、広がり限界線CRを内側にrだけオフセッ
トすることによって、輪郭線C1が計算される。なお光
硬化造形法の分野において、所定距離だけオフセットし
たラインを定める技術は多用されている。
One slice when the shape input in step S2 is sliced into a plurality of layers is, for example, a CR shown in FIG.
When the radius of the light beam B is r, the contour line C1 is calculated by offsetting the divergence limit line CR inward by r. In the field of photo-curing molding method, a technique of defining a line offset by a predetermined distance is widely used.

【0011】次に図1のステップS6でサイクルの繰返
し回数Kを初期値“1”とする。次にステップS8で第
Kオフセット距離だけオフセットしたラインを求め、ス
テップS10でその交点を求め、ステップS12で交点
間をオフセットラインで結んだ走査ループを求める。こ
れについては先に説明した通りである。以上の処理はス
テップS16の実行後に繰返されるために、第2オフセ
ット距離を用いて第2サイクルが実行され、次に第3オ
フセット距離を用いて第3サイクルが実行され、以後同
様に順に繰返されてゆく。
Next, in step S6 of FIG. 1, the number of cycle repetitions K is set to an initial value "1". Next, in step S8, a line offset by the Kth offset distance is obtained, in step S10 the intersection is obtained, and in step S12, a scanning loop in which the intersections are connected by an offset line is obtained. This is as described above. Since the above processing is repeated after the execution of step S16, the second cycle is executed using the second offset distance, the third cycle is executed next using the third offset distance, and so on. Go on.

【0012】以上の処理を続けてゆくと、内部領域は走
査線群で狭くなってゆく。そして最後に図7(B) の現象
が生じる。図7(B) は第Kオフセット距離を用いて第K
走査ループを算出したときと、第K+1オフセット距離
を用いて第K+1走査ループを算出したときを例示して
いる。図7(B) のように、第K走査ループ間の間隔Gが
オフセット距離の2倍よりも小さくなると、次に求めら
れる走査ループ(この場合第K+1走査ループ)の回転
方向が逆転する。図7(B) において、第K走査ループが
時計回転なのに対し、第K+1走査ループは反時計回転
である。この現象は走査ループ群によって内部領域が埋
められたときに発生する。
When the above processing is continued, the internal area becomes narrower in the scanning line group. Finally, the phenomenon of FIG. 7 (B) occurs. FIG. 7B shows the Kth offset distance using the Kth offset distance.
The figure shows an example when the scan loop is calculated and a case where the (K + 1) th scan loop is calculated using the (K + 1) th offset distance. As shown in FIG. 7B, when the interval G between the Kth scan loops is smaller than twice the offset distance, the rotation direction of the scan loop (K + 1th scan loop in this case) to be obtained next is reversed. In FIG. 7B, the Kth scan loop is clockwise, while the K + 1th scan loop is counterclockwise. This phenomenon occurs when the inner area is filled with the scan loop group.

【0013】そこでステップS14がYESとなった
ら、次にステップS18以後を実行して実際に光照射し
てゆく。この場合ステップS18でまず第K走査ループ
が走査され、次に第K−1走査ループが走査され、以後
同様に走査ループが走査されてゆき、最後に第1走査ル
ープが走査されたあと(ステップS20)、輪郭線が最
後に走査される(ステップS22)。この結果、走査ル
ープ群は輪郭から内側に向かって順に求められ、実際の
照射は内側から順々に外側に向かって照射されることに
なる。このようにすると、歪みの少ない硬化層が造形さ
れ、しかも輪郭の外表面が滑らかなものとできる。
If step S14 is YES, step S18 and subsequent steps are executed to actually irradiate light. In this case, in step S18, the Kth scan loop is first scanned, then the K-1th scan loop is scanned, the scan loop is similarly scanned thereafter, and finally the first scan loop is scanned (step S18). S20), the contour is finally scanned (step S22). As a result, the scanning loop group is sequentially obtained from the contour toward the inside, and the actual irradiation is sequentially performed from the inside toward the outside. In this way, a hardened layer with less distortion can be formed, and the outer surface of the contour can be made smooth.

【0014】さて図3はこのようにして求められる走査
ループ群を示している。図中OCは外側の輪郭であり、
ICが内側の輪郭である。図中1が第1走査ループ、2
が第2走査ループを示し、以後同様である。この場合外
側の輪郭OCの側からも内側の輪郭ICの側からも第K
オフセットラインが求められ、それが交差し始めたとき
以後(この例では第3オフセットラインで交差し始め
る)、交点間をオフセットラインで結ぶことによって、
図中3,4,5…に示す走査ループが求められるのであ
る。このようにして、全ての断面に対して図1の処理に
よって内部領域をカバーする走査ループ群が算出され
る。
FIG. 3 shows the scan loop group obtained in this way. In the figure, OC is the outer contour,
IC is the inner contour. In the figure, 1 is the first scanning loop, 2
Shows the second scanning loop, and so on. In this case, from the outside contour OC side as well as the inside contour IC side,
By finding the offset line and starting to intersect it (beginning to intersect at the third offset line in this example), by connecting the intersection points with the offset line,
The scanning loops indicated by 3, 4, 5 ... In this way, the scanning loop group covering the internal region is calculated by the processing of FIG. 1 for all the cross sections.

【0015】さて図3は輪郭を照射するレーザビーム径
と内部領域を照射するレーザビーム径が等しい場合を示
している。この場合オフセット距離をビームの直径2r
に等しくとると、図4に示すようにコーナ部において照
射されない領域USが発生する。これを避けるためには
内部領域照射時にレーザビームの半径を1.4倍にすれ
ばよい。このようにすると未照射領域は残らない。ある
いは逆に図5に示すようにオフセット距離を2r/
(2)1/2 としてもよい。このようにするとビーム径を
変えなくとも未照射領域をなくすことができる。
FIG. 3 shows a case where the diameter of the laser beam for irradiating the contour is the same as the diameter of the laser beam for irradiating the inner region. In this case, set the offset distance to the beam diameter 2r.
When it is equal to, a non-irradiated region US is generated in the corner portion as shown in FIG. In order to avoid this, the radius of the laser beam may be increased 1.4 times when irradiating the internal area. In this way, no unirradiated area remains. On the contrary, as shown in FIG. 5, the offset distance is set to 2r /
(2) It may be 1/2 . In this way, the unirradiated area can be eliminated without changing the beam diameter.

【0016】さて図6は別の実施例を示している。この
場合、第7,9,11走査ループの算出が省略されてい
る。すなわち内部領域のうちでも最も内側についてはオ
フセット距離を長くするのである。そのかわりにオフセ
ット距離を長くしたところでは光ビームの半径を他の2
倍とする。このようにすると走査ループ6よりも内側の
光照射時間がほぼ半減される。さらに走査ループ6より
も内側における硬化の程度を他の部分より低くすること
ができ、走査ループ6よりも内側における硬化応力の発
生の程度を軽減することができる。なお領域6内の光硬
化度が低すぎる場合は走査ループ6,8,10,12に
おける走査速度を低下させることによって必要な露光量
に調整することができる。
FIG. 6 shows another embodiment. In this case, the calculation of the seventh, ninth and eleventh scanning loops is omitted. That is, the offset distance is increased in the innermost part of the inner region. Instead, when the offset distance is increased, the radius of the light beam is
Double. In this way, the light irradiation time inside the scanning loop 6 is almost halved. Further, the degree of curing inside the scanning loop 6 can be made lower than other portions, and the degree of curing stress generated inside the scanning loop 6 can be reduced. If the degree of photo-curing in the area 6 is too low, the required exposure amount can be adjusted by lowering the scanning speed in the scanning loops 6, 8, 10, 12.

【0017】さて図7(B) で説明したように、最内側の
走査ループよりもさらに内側にオフセットすると、走査
ループの方向が逆転してしまうような場合、図1の処理
手順では逆転した最初のループ(図7(B) 中のK+1)
のみを光照射し、それ以上は走査ループを算出しないよ
うにしている。これにかわって図7(A) に示すように、
最後に残る未照射領域70の中心を走査するライン71
を算出してもよい。またこのときのビーム径を未照射領
域70の幅にあわせてもよい。これらの技術によって内
部領域の照射に要する時間を短縮化することができる。
また内部領域の露光量を例えば均一にしたり、あるいは
場所ごとに強弱をつけるといったことが可能となる。
As described with reference to FIG. 7 (B), if the scanning loop direction is reversed by offsetting the scanning loop further inward than the innermost scanning loop, in the processing procedure of FIG. Loop (K + 1 in Figure 7 (B))
Only the light is illuminated, and the scanning loop is not calculated any further. Instead, as shown in Fig. 7 (A),
A line 71 for scanning the center of the last unirradiated area 70
May be calculated. Further, the beam diameter at this time may be matched with the width of the unirradiated region 70. With these techniques, the time required for irradiation of the internal area can be shortened.
Further, it is possible to make the exposure amount of the inner region uniform, or to make the intensity stronger and weaker for each place.

【0018】[0018]

【発明の効果】本発明によると、オフセットを繰返して
ゆく処理によって走査ループが決められるために、走査
ループの全長を長く確保することができ、そのために光
ビームを高速で動かし続けることが可能となる。この結
果内部領域の光照射に要する時間が短縮化される。なお
オフセット処理は光硬化造形法で通常に用いられる技術
であり、輪郭線等の算出に不可欠である。本発明は輪郭
線を算出するためのプログラムを利用することができ、
ソフト開発も容易化される。
According to the present invention, since the scanning loop is determined by the process of repeating the offset, the total length of the scanning loop can be secured long, and therefore the light beam can be continuously moved at high speed. Become. As a result, the time required for light irradiation of the internal region is shortened. The offset process is a technique that is normally used in the photo-curing modeling method, and is indispensable for calculating contour lines and the like. The present invention can utilize a program for calculating a contour line,
Software development is also facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を具現化する一処理手順例を示す図FIG. 1 is a diagram showing an example of a processing procedure embodying the present invention.

【図2】本発明の走査ループを従来と比較する図FIG. 2 is a diagram comparing a scan loop of the present invention with a conventional one.

【図3】本発明の走査ループの一例を示す図FIG. 3 is a diagram showing an example of a scanning loop of the present invention.

【図4】オフセットラインと交点例等を示す図FIG. 4 is a diagram showing an offset line and an example of an intersection.

【図5】オフセット距離による影響を示す図FIG. 5 is a diagram showing an influence of an offset distance.

【図6】走査ループの他の例を示す図FIG. 6 is a diagram showing another example of a scanning loop.

【図7】最内側の走査ループを示す図FIG. 7 is a diagram showing an innermost scanning loop.

【符号の説明】[Explanation of symbols]

S8 第1工程 S10 第2工程 S12 第3工程 S16からS8へ戻るループ サイクル繰返し工程 S8 1st process S10 2nd process S12 3rd process Returning from S16 to S8 Loop cycle repeating process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光硬化造形法で、輪郭線によって囲繞さ
れる内部領域を光ビームを走査することによって光照射
するに際し、 輪郭線を内側に所定距離オフセットしたオフセットライ
ンを演算する第1工程と、 第1工程で演算されたオフセットラインの交点を演算す
る第2工程と、 第2工程で演算された交点間を第1工程で演算されたオ
フセットラインで結ぶ走査ループを演算する第3工程と
を備え、 前記第1・第2・第3工程を1サイクルとし、前記第1
工程におけるオフセット距離を増大させつつ前記サイク
ルを繰返すことで輪郭の内部領域に対する走査ループ群
を演算し、 演算された走査ループ群に沿って光ビームを走査するこ
とによって内部領域を光照射するようにした光硬化造形
法における内部領域照射法。
1. A first step of calculating an offset line offset by a predetermined distance inside a contour line when irradiating light by scanning a light beam on an inner region surrounded by the contour line by a photo-curing molding method. A second step of calculating the intersection of the offset lines calculated in the first step, and a third step of calculating a scanning loop connecting the intersections calculated in the second step with the offset line calculated in the first step. The first, second, and third steps are defined as one cycle, and the first
By repeating the cycle while increasing the offset distance in the process, the scanning loop group for the internal area of the contour is calculated, and the internal area is irradiated with light by scanning the light beam along the calculated scanning loop group. Internal area irradiation method in the photo-curing modeling method.
JP25057693A 1993-10-06 1993-10-06 Internal area irradiation method in light curing molding method Expired - Lifetime JP3342125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25057693A JP3342125B2 (en) 1993-10-06 1993-10-06 Internal area irradiation method in light curing molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25057693A JP3342125B2 (en) 1993-10-06 1993-10-06 Internal area irradiation method in light curing molding method

Publications (2)

Publication Number Publication Date
JPH07100941A true JPH07100941A (en) 1995-04-18
JP3342125B2 JP3342125B2 (en) 2002-11-05

Family

ID=17209948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25057693A Expired - Lifetime JP3342125B2 (en) 1993-10-06 1993-10-06 Internal area irradiation method in light curing molding method

Country Status (1)

Country Link
JP (1) JP3342125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527225A (en) * 2012-07-06 2015-09-17 フェニックス システム Laser beam control method for manufacturing a three-dimensional object using a lamination method
JP6254292B1 (en) * 2016-05-31 2017-12-27 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
JP2022007167A (en) * 2020-06-25 2022-01-13 株式会社ディーメック Method of producing resin mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527225A (en) * 2012-07-06 2015-09-17 フェニックス システム Laser beam control method for manufacturing a three-dimensional object using a lamination method
US10144177B2 (en) 2012-07-06 2018-12-04 Phenix Systems Method and apparatus for controlling a laser beam for manufacturing three-dimensional objects by means of stacked layers
JP6254292B1 (en) * 2016-05-31 2017-12-27 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
US10442136B2 (en) 2016-05-31 2019-10-15 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and fabricating system, three-dimensional laminating and fabricating method, laminating and fabricating control apparatus and method of controlling the same, and control program
JP2022007167A (en) * 2020-06-25 2022-01-13 株式会社ディーメック Method of producing resin mold

Also Published As

Publication number Publication date
JP3342125B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
EP2433778B1 (en) Method for reducing differential shrinkage in stereolithography
KR101959610B1 (en) Stereolithography method comprising a vertical compensation process, as well as apparatus and computer program product suited to implement said method
JP2002127260A (en) Method for manufacturing three-dimensional item
EP1136235B1 (en) Method and apparatus of correcting superfluous curing thickness of optical modeling product
JPH05301293A (en) Manufacture of support structural body in optical shaping method
JPH07100941A (en) Internal area irradiating method in photosetting shaping method
US5475799A (en) Method of modeling shapes using a combination of different shapes to represent the resultant shape
JP2000263650A (en) Stereo lithographic apparatus
JP3218769B2 (en) Optical molding method
JP2919982B2 (en) 3D shape forming method
JPH09286058A (en) Formation of three-dimensional shape
JP3948835B2 (en) Stereolithography method and apparatus therefor
JP4079544B2 (en) Stereolithography and apparatus therefor
JP3360896B2 (en) Photo-curing molding method to improve surface roughness of honeycomb model
JPH0671761A (en) Formation of three-dimensional form
JP2007021922A (en) Lamination shaping method and apparatus
JPH07100937A (en) Photosetting shaping method for reducing internal stress
JPH04126225A (en) Three-dimensionally shaping device
JPH05278123A (en) Laser scanning method for optical model
JP2004009573A (en) Method and apparatus for photosetting stereo lithography
JP4405671B2 (en) Determination of resin hardened area in optical stereolithography
JP2003316828A (en) Structure optimization method
JPH08238678A (en) Optically molding machine
JPH07100939A (en) Photosetting shaping method for easy removal of auxiliary support
JPH05278124A (en) Method for producing optically modeling data

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140823

Year of fee payment: 12

EXPY Cancellation because of completion of term