JPH07100672A - Working method for ceramics by laser beam - Google Patents

Working method for ceramics by laser beam

Info

Publication number
JPH07100672A
JPH07100672A JP5248343A JP24834393A JPH07100672A JP H07100672 A JPH07100672 A JP H07100672A JP 5248343 A JP5248343 A JP 5248343A JP 24834393 A JP24834393 A JP 24834393A JP H07100672 A JPH07100672 A JP H07100672A
Authority
JP
Japan
Prior art keywords
energy density
altic
processing
excimer laser
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5248343A
Other languages
Japanese (ja)
Inventor
Takashi Kuwabara
尚 桑原
Yasuo Tokunaga
康夫 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP5248343A priority Critical patent/JPH07100672A/en
Publication of JPH07100672A publication Critical patent/JPH07100672A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the sticking of debris, and keep a working surface smooth by selecting a laser energy density in a range where the laser energy density on the surface to be worked of a composite sintered body is an abrasion threshold value or more and the coarsening of grains after the melting and the solidification on the working surface, is few. CONSTITUTION:For instance, the energy density of a KvF laser beam 10 irradiating on the AlTiC plate 1, is selected to approximately 1J/cm<2>. This energy density is a little higher than a threshold value to the extent that the threshold value can be secured even in the case of a fluctuation. The smoothness of a worked bottom surface with subjected to an abrasion work, is satisfactorily kept by an energy density with a low value like this. Also, since a melted layer on the worked surface of the AlTiC plate, is thin and a cooling speed is fast, the coarsening of grains, is few by resolidification. Also, since the mass of splashed matters, is small, the generation and the attachment of debris in a working area, is few. Further, since the energy density is low, an increase in temperature of the AlTiC plate, is suppressed, thermal strain is lower, and the development of a cracking, is remarkably reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ加工に関し、特
にアルチックの名で知られるアルミニウム酸化物とチタ
ン炭化物との複合焼結体のレーザ加工に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to laser processing, and more particularly to laser processing of a composite sintered body of aluminum oxide and titanium carbide known as Altic.

【0002】[0002]

【従来の技術】エキシマレーザ光は、化学結合を切断で
きる高いホトンエネルギを有し、アブレーションと呼ば
れる光化学反応により、熱的な影響少なく、加工対象物
を除去することができる。
2. Description of the Related Art Excimer laser light has a high photon energy capable of breaking a chemical bond, and a photochemical reaction called ablation can remove an object to be processed with little thermal influence.

【0003】エネルギ密度を調整したエキシマレーザ光
を照射することにより、プラスチック、金属、セラミッ
クス等種々の物質をアブレーション加工することができ
る。加工対象物によっては、アブレーション加工により
加工領域周辺にデブリと呼ばれる飛散物が付着する。ま
た、加工領域底面に凹凸を生じることもある。デブリや
底面の凹凸が生じると、所望の加工精度が得られないこ
ともある。
By irradiating an excimer laser beam having an adjusted energy density, various materials such as plastics, metals and ceramics can be ablated. Depending on the object to be processed, scattered objects called debris adhere to the periphery of the processing area due to the ablation process. In addition, unevenness may occur on the bottom surface of the processing region. If debris or unevenness on the bottom surface occurs, the desired processing accuracy may not be obtained.

【0004】磁気記憶装置において、空気力学的な作用
により磁気ヘッドを磁気ディスク盤の表面から0.2μ
m程度の微小な間隙で浮上させるために、微細溝加工を
した磁気ヘッドスライダーが用いられる。この磁気ヘッ
ドスライダーにアルチック(Al2 3 −TiCの複合
焼結体)が用いられる。
In the magnetic storage device, the magnetic head is moved 0.2 μm from the surface of the magnetic disk disk by the aerodynamic action.
A magnetic head slider with a fine groove is used in order to levitate with a minute gap of about m. Altic (Al 2 O 3 —TiC composite sintered body) is used for the magnetic head slider.

【0005】従来磁気ヘッド用アルチックはイオンミリ
ングで加工されていた。点加工のイオンミリングは加工
速度が遅いので、最近面加工で高速加工に有利なYAG
レーザ加工やエキシマレーザ加工が注目されている。
Conventionally, AlTiC for a magnetic head has been processed by ion milling. Ion milling for spot machining has a slow machining speed, so YAG is advantageous for high-speed machining in recent surface machining.
Laser processing and excimer laser processing are drawing attention.

【0006】セラミックスのエキシマレーザ加工は、ポ
リマ等の高分子材料のエキシマレーザ加工に比べて加工
速度が遅い。セラミックスのエキシマレーザ加工は、通
常10J/cm2 以上のエネルギ密度で行われていた。
Al2 3 やSi3 4 等を主成分としたセラミックス
はエキシマレーザによる加工性がよく、加工後の底面は
平滑である。しかしアルチックは加工性が悪く、加工後
の底面は凹凸が激しくなる。加工領域周辺のデブリの付
着と共に、加工底面の凹凸が加工品質を低下させてしま
う。
The excimer laser processing of ceramics has a slower processing speed than the excimer laser processing of polymer materials such as polymers. The excimer laser processing of ceramics is usually performed with an energy density of 10 J / cm 2 or more.
Ceramics mainly composed of Al 2 O 3 or Si 3 N 4 have good workability by excimer laser, and the bottom surface after processing is smooth. However, the workability of Altic is poor, and the bottom surface after processing becomes rough. Along with the attachment of debris around the processing area, the unevenness of the processing bottom surface deteriorates the processing quality.

【0007】[0007]

【発明が解決しようとする課題】以上説明したように、
アルチックのエキシマレーザアブレーション加工におい
ては、デブリの発生および加工底面の粗面化が加工品質
を低下させている。
As described above,
In the excimer laser ablation process of Altic, the generation of debris and the roughening of the processed bottom surface deteriorate the processing quality.

【0008】本発明の目的は、デブリの付着を低減し、
加工表面を平滑(加工面の荒さを加工深さの20%以
下)に保つことが可能なアルチックのエキシマレーザ加
工を提供することである。
The object of the present invention is to reduce the deposition of debris,
It is an object of the present invention to provide Altic excimer laser processing capable of maintaining a processed surface smooth (roughness of the processed surface is 20% or less of the processed depth).

【0009】[0009]

【課題を解決するための手段】本発明のレーザ加工方法
は、アルミニウム酸化物とチタン炭化物との複合焼結体
をエキシマレーザで加工するレーザ加工方法において、
複合焼結体の加工表面でのレーザエネルギ密度をアブレ
ーション閾値以上で加工表面で溶解凝固による結晶粒の
成長が少ない範囲に選択する。この範囲は、好ましくは
加工閾値以上、かつ加工閾値の2倍以内である。
The laser processing method of the present invention is a laser processing method for processing a composite sintered body of aluminum oxide and titanium carbide by an excimer laser,
The laser energy density on the processed surface of the composite sintered body is selected to be in a range above the ablation threshold value, where crystal grain growth due to melting and solidification on the processed surface is small. This range is preferably equal to or more than the processing threshold value and within twice the processing threshold value.

【0010】[0010]

【作用】アルチックのエキシマレーザ加工において、加
工底面が粗面化する原因は、エキシマレーザの照射によ
って加工対象物が一部溶解し、再凝固することによって
結晶粒が粗大化し、加工底面の凹凸が激しくなるものと
考えられる。
[Function] In Altic excimer laser processing, the reason why the processed bottom surface becomes rough is that the object to be processed is partially melted by the irradiation of the excimer laser and re-solidified to coarsen the crystal grains, resulting in unevenness of the processed bottom surface. It is expected to become fierce.

【0011】加工用エキシマレーザのエネルギ密度をア
ブレーションの閾値以上で、加工表面で溶解・凝固によ
る結晶粒の粗大化が少ない範囲に選択することにより、
加工底面の平滑性を保つことが可能となる。また、エキ
シマレーザのエネルギ密度をこのように選択することに
より、デブリの付着も減少する。
By selecting the energy density of the excimer laser for processing to be equal to or higher than the threshold value for ablation and to reduce the coarsening of crystal grains due to melting and solidification on the processing surface,
It is possible to maintain the smoothness of the processed bottom surface. Also, by selecting the energy density of the excimer laser in this way, the attachment of debris is reduced.

【0012】[0012]

【実施例】図1にエキシマレーザ加工機の構成を概略的
に示す。KrF等のエキシマレーザ発振器10は、制御
装置11の制御の下にエキシマレーザ光をパルス発振す
る。エキシマレーザ発振器10から発光したエキシマレ
ーザ光は、ミラーM1、M2を介してマスクパターンM
P上に照射される。マスクパターンMPは石英等の透明
基板の上にクロミウム等の遮光材料をパターンニングし
たものや開孔を形成した金属板等で構成される。
EXAMPLE FIG. 1 schematically shows the structure of an excimer laser processing machine. The excimer laser oscillator 10 of KrF or the like pulse-oscillates the excimer laser light under the control of the control device 11. The excimer laser light emitted from the excimer laser oscillator 10 passes through the mirrors M1 and M2 and the mask pattern M.
Irradiated on P. The mask pattern MP is formed by patterning a light-shielding material such as chromium on a transparent substrate such as quartz, a metal plate having openings formed therein, or the like.

【0013】マスクパターンMPを通過したエキシマレ
ーザ光は、さらにミラーM3を介して結像レンズLに入
射し、XYZ−ステージ3上に載置されたアルチック板
1の上に結像される。XYZ−ステージ3は大気中に設
置されている。
The excimer laser light that has passed through the mask pattern MP is further incident on the imaging lens L via the mirror M3, and is imaged on the Altic plate 1 placed on the XYZ-stage 3. The XYZ-stage 3 is installed in the atmosphere.

【0014】エキシマレーザ光のエネルギ密度およびパ
ルス数を制御することにより、マスクパターンMPの形
状に従って、アルチック板1に所望形状のアブレーショ
ン加工を施す。
By controlling the energy density and the number of pulses of the excimer laser light, the Altic plate 1 is ablated into a desired shape according to the shape of the mask pattern MP.

【0015】なお、エネルギ密度をビームパターンを変
えないで連続的に制御するために、反射率の光軸に対す
る角度依存性の違いを利用したバリアブルアテネーター
を用いた。
In order to continuously control the energy density without changing the beam pattern, a variable attenuator utilizing a difference in angular dependence of reflectance with respect to the optical axis was used.

【0016】一般的なセラミックスの加工においては、
結像レンズLの縮小率をたとえば1/5〜1/10程度
(エネルギ密度では1/25〜1/100)程度とし、
レーザ光のエネルギ密度を高めて、セラミックス表面を
加工する。本実施例においては、従来技術と比べ、照射
するエキシマレーザ光のエネルギ密度を極端に低下させ
る。
In the processing of general ceramics,
The reduction ratio of the imaging lens L is, for example, about 1/5 to 1/10 (energy density is 1 / 25-1 / 100),
The ceramic surface is processed by increasing the energy density of laser light. In this embodiment, the energy density of the excimer laser light to be irradiated is extremely reduced as compared with the conventional technique.

【0017】図2に、アルチックのエキシマレーザ加工
における加工深さのエネルギ密度依存性を示す。横軸が
エネルギ密度を示し、縦軸が照射部分の加工深さを示
す。なお、エキシマレーザ光としてはKrFの248n
mのレーザ光を用い、1,000パルスのパルス光を照
射した。アルチックとしてはAl2 3 :TiC≒7
5:25の複合焼結品を用いた。
FIG. 2 shows the energy density dependence of the working depth in the excimer laser processing of AlTiC. The horizontal axis represents the energy density, and the vertical axis represents the processing depth of the irradiated portion. The excimer laser light is 248n of KrF.
A pulsed light of 1,000 pulses was irradiated using m laser light. Altic is Al 2 O 3 : TiC≈7
A composite sintered product of 5:25 was used.

【0018】図2から明らかなように、エキシマレーザ
光のエネルギ密度が非常に低い領域においては、レーザ
加工が行われず加工深さは0のままである。エネルギ密
度がある値を越えるとエキシマレーザ加工が開始され、
加工深さはエネルギ密度と共にほぼリニアに増大する。
なお、加工が開始される閾値としては、大気圧の下にお
ける値が真空下における値よりも幾分高い。大気中で行
った場合の閾値は、約0.7J/cm2 である。
As is clear from FIG. 2, in the region where the energy density of the excimer laser light is very low, laser processing is not performed and the processing depth remains zero. When the energy density exceeds a certain value, excimer laser processing starts,
The working depth increases almost linearly with the energy density.
As a threshold value for starting processing, a value under atmospheric pressure is somewhat higher than a value under vacuum. The threshold value when performed in air is about 0.7 J / cm 2 .

【0019】なお、エネルギ密度が高くなると、真空下
における加工深さはリニアに増大するのに対し、大気圧
下の加工深さは若干低く、かつ次第に飽和する傾向を示
している。エネルギ密度の高い領域では、加工による飛
散分の発光部分(プルーム)において、入射レーザ光が
吸収されて損失が増大していることが考えられる。
When the energy density increases, the working depth under vacuum linearly increases, whereas the working depth under atmospheric pressure is slightly low and tends to be gradually saturated. In a region having a high energy density, it is considered that the incident laser light is absorbed and the loss is increased in the light emission portion (plume) corresponding to the scattering due to the processing.

【0020】本実施例においては、アルチック板に照射
するKrFレーザ光のエネルギ密度を約1J/cm2
選択した。このエネルギ密度は、変動が生じても閾値を
確保できる程度に閾値よりも若干高めである。
In this embodiment, the energy density of the KrF laser beam with which the AlTiC plate is irradiated is selected to be about 1 J / cm 2 . This energy density is slightly higher than the threshold value so that the threshold value can be secured even if fluctuation occurs.

【0021】このような低い値にエネルギ密度を選択す
ることにより、アブレーション加工をした加工底面の平
滑性が良好に保たれた。エネルギ密度が低いため、アル
チックの加工表面において溶解層が薄く、かつ冷却速度
が速いため、再凝固により結晶粒の粗大化が少ないもの
と考えられる。
By selecting the energy density to such a low value, the smoothness of the machined bottom surface after ablation processing was kept good. Since the energy density is low, the melted layer is thin on the processed surface of AlTiC, and the cooling rate is high, so that it is considered that re-solidification does not cause coarsening of crystal grains.

【0022】また、加工領域周辺におけるデブリの発生
および付着も少なかった。その原因は今後の解明を待つ
が、溶解層が薄いため、飛散物の質量の小さいことが効
いていると考えられる。
Further, the generation and adhesion of debris in the periphery of the processed area was small. The cause of this is awaiting further clarification, but it is thought that the small mass of the scattered matter is effective because the dissolved layer is thin.

【0023】また、加工後のアルチックにおいて、クラ
ックの発生が著しく少ない。この現象は、高エネルギ密
度のレーザ光を照射すると、アルチックの加工表面が温
度上昇し、溶解再凝固する際の熱歪みによって発生する
ものと考えられる。エネルギ密度を低くすることによ
り、アルチックの温度上昇が抑えられ、熱歪みが低下し
たものと考えられる。
Further, in the AlTiC after processing, the occurrence of cracks is extremely small. It is considered that this phenomenon is caused by thermal strain at the time of melting and re-solidifying due to the temperature rise of the processed surface of AlTiC when the laser beam of high energy density is irradiated. It is considered that by lowering the energy density, the temperature rise of AlTiC was suppressed and the thermal strain was lowered.

【0024】すなわち、アルチックのエキシマレーザ光
加工において、照射するエキシマレーザ光のエネルギ密
度を閾値以上かつ閾値の2倍以内に制限することによ
り、加工底面の平滑性が補償され、同時にデブリの発生
が抑圧される。
That is, in the processing of Altic excimer laser light, by limiting the energy density of the excimer laser light to be irradiated to the threshold value or more and within twice the threshold value, the smoothness of the processing bottom surface is compensated and at the same time debris is generated. Oppressed.

【0025】以上実施例に基づいて本発明を説明した
が、本発明は実施例に制限されるものではない。たとえ
ば、エキシマレーザとしてKrF以外のエキシマレーザ
を用いることもできる。アルチックは磁気ヘッドのみに
限らず、用途に則した種々の組成のアルチックに加工を
行うことができるし、また難加工性の別のセラミックス
にも適用できる。レーザ加工は大気圧の下で行っても真
空下で行ってもよい。その他種々の変更、改良、組合せ
が可能なことは当業者に自明であろう。
Although the present invention has been described based on the embodiments, the present invention is not limited to the embodiments. For example, an excimer laser other than KrF can be used as the excimer laser. Altics are not limited to magnetic heads, and can be processed into Altics of various compositions according to the application, and can also be applied to other ceramics that are difficult to process. Laser processing may be performed under atmospheric pressure or under vacuum. It will be apparent to those skilled in the art that various other modifications, improvements, and combinations can be made.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
エキシマレーザ光によるアルチックの加工の品質を向上
することができる。
As described above, according to the present invention,
The quality of processing of AlTiC by the excimer laser light can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるエキシマレーザ加工機の
構成を概略的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of an excimer laser processing machine according to an embodiment of the present invention.

【図2】エキシマレーザ加工における加工深さのエネル
ギ密度依存性を示すグラフである。
FIG. 2 is a graph showing energy density dependence of processing depth in excimer laser processing.

【符号の説明】[Explanation of symbols]

1 アルチック板 3 XYZ−ステージ 10 エキシマレーザ 11 制御装置 M ミラー L レンズ MP マスクパターン 1 Altic Plate 3 XYZ-Stage 10 Excimer Laser 11 Controller M Mirror L Lens MP Mask Pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム酸化物とチタン炭化物との
複合焼結体をエキシマレーザで加工するレーザ加工方法
において、 複合焼結体の加工表面でのレーザエネルギ密度をアブレ
ーション閾値以上かつ加工表面で溶解凝固後の粒子の粗
大化が少ない範囲に選択することを特徴とするレーザ加
工方法。
1. A laser processing method for processing a composite sintered body of aluminum oxide and titanium carbide with an excimer laser, wherein the laser energy density on the processed surface of the composite sintered body is equal to or higher than an ablation threshold and is melted and solidified on the processed surface. A laser processing method characterized by selecting a range in which coarsening of particles afterward is small.
JP5248343A 1993-10-04 1993-10-04 Working method for ceramics by laser beam Withdrawn JPH07100672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5248343A JPH07100672A (en) 1993-10-04 1993-10-04 Working method for ceramics by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5248343A JPH07100672A (en) 1993-10-04 1993-10-04 Working method for ceramics by laser beam

Publications (1)

Publication Number Publication Date
JPH07100672A true JPH07100672A (en) 1995-04-18

Family

ID=17176681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5248343A Withdrawn JPH07100672A (en) 1993-10-04 1993-10-04 Working method for ceramics by laser beam

Country Status (1)

Country Link
JP (1) JPH07100672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131806A (en) * 2008-12-03 2010-06-17 Disco Abrasive Syst Ltd METHOD FOR DIVIDING AlTiC SUBSTRATE
JP2013081950A (en) * 2011-10-06 2013-05-09 Disco Corp Ceramic substrate ablation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131806A (en) * 2008-12-03 2010-06-17 Disco Abrasive Syst Ltd METHOD FOR DIVIDING AlTiC SUBSTRATE
JP2013081950A (en) * 2011-10-06 2013-05-09 Disco Corp Ceramic substrate ablation method

Similar Documents

Publication Publication Date Title
KR101779364B1 (en) Method of forming densified layer in thermal spray coating, and thermal spray coating covering member
US5198637A (en) Method of cutting grooves in hydrodynamic bearing made of ceramic material
CN109514076A (en) A kind of process of picosecond-nanosecond laser composite asynchronous polishing ceramics
US4835361A (en) Laser machining for producing very small parts
WO1999012695A1 (en) Method of laser scribing a glass microsheet and scribed microsheet
JP2008302376A (en) Laser beam machining method and product machined by laser beam
JP2005095936A (en) Apparatus and method for laser machining
JP3131288B2 (en) Laser processing method and apparatus
JPH11267867A (en) Method and device for laser processing
JPS6189636A (en) Optical processing
JPH07100672A (en) Working method for ceramics by laser beam
JPH09141480A (en) Ablation machining method
JP2000061667A (en) Laser beam machining method for glass and glass formed parts
JP3082013B2 (en) Laser processing method and apparatus
JPS63313685A (en) Surface working method of oxide material
JPH08187588A (en) Laser beam processing method
JPH04182093A (en) Laser beam machining method
JP2559947B2 (en) Dimple processing apparatus and processing method for cooling drum for casting thin wall slab
JPH04344887A (en) Laser beam machining method
US5063653A (en) Method of producing a core for a magnetic head
JP2004160478A (en) Method and apparatus for laser beam machining
JP2570406B2 (en) Beam processing method
JP2003251482A (en) Laser beam machining method and device
JPH0825064A (en) Method and device for laser working
JPS61105885A (en) Photo-processing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226