JPH04182093A - Laser beam machining method - Google Patents

Laser beam machining method

Info

Publication number
JPH04182093A
JPH04182093A JP2310371A JP31037190A JPH04182093A JP H04182093 A JPH04182093 A JP H04182093A JP 2310371 A JP2310371 A JP 2310371A JP 31037190 A JP31037190 A JP 31037190A JP H04182093 A JPH04182093 A JP H04182093A
Authority
JP
Japan
Prior art keywords
laser
workpiece
laser beam
absorption coefficient
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2310371A
Other languages
Japanese (ja)
Other versions
JP2682230B2 (en
Inventor
Nobuhiko Omori
暢彦 大森
Masami Inoue
井上 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2310371A priority Critical patent/JP2682230B2/en
Publication of JPH04182093A publication Critical patent/JPH04182093A/en
Application granted granted Critical
Publication of JP2682230B2 publication Critical patent/JP2682230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To prevent damage given to the periphery of a laser beam irradiation part, to smoothen a machining side wall and to reduce a cutting width by sticking material having a high absorption coefficient for a laser beam to the machining surface of a workpiece, irradiating the material with the laser beam and removing the workpiece with the material. CONSTITUTION:When the workpiece 4 through which the laser beam is transmitted is set up in a gas 30 atmosphere to form amorphous carbon 31 having the high absorption coefficient for the laser beam by laser beam CVD and a part to be machined for removing is irradiated with the laser beam 11, amrphous carbon films 31 are formed on both front surface and rear of the workpiece 4. The workpiece 4 is then irradiated with the laser beam 11 having higher energy density than that at the time of forming the amorphous carbon films 31. The laser beam 11 is absorbed by the formed amorphous carbon films 31 and heat is generated and sinultaneously, an ablation phenomenon is generated. At this time, although the amorphous carbon films 31 evaporate and scatter, scattering of the workpiece 4 also takes place at the same time and as a result, the workpiece is machined for removing.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レーザを透過する透明材料にレーザを用い
精度よく切断、溝彫り、穴明は等の除去加工を施す方法
に間するものであり、特に透明材料として硬く割れやす
い水晶やサファイヤなどの薄い基板の微細形状加工に適
するレーザ加工方法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a method of accurately cutting, grooving, drilling, etc., using a laser on a transparent material that transmits the laser. This laser processing method is especially suitable for fine-shape processing of thin substrates such as crystal and sapphire, which are hard transparent materials and easily break.

[従来の技術] 従来、水晶基板等の透明材料の微細形状加工には、水と
砥粒をぶつけるホーニング法や水と砥粒を使い超音波て
型飄りする方法等の力学的加工法やエツチング液を用い
る湿式エツチング法が用いられている。しかし、これら
従来の加工方法では加工が非常に困難で、加工精度も低
い。
[Conventional technology] Conventionally, mechanical processing methods such as honing method in which water and abrasive particles are bombarded, a method in which water and abrasive particles are used to form a shape using ultrasonic waves, etc. have been used to process transparent materials such as crystal substrates. A wet etching method using an etching solution is used. However, these conventional processing methods are extremely difficult to process and have low processing accuracy.

そのため、近年、代替加工方法としてレーザ加工法が開
発されつつある。しかしながら、このレーザ加工法も、
例えば水晶ではエキシマレーザの紫外光を殆ど透過する
等、透明材料ではレーザを透過するため、単にレーザを
照射して除去加工することは甚だ困難である。そこで、
かなり高エネルギーのレーザ(例えば波長10.6μ−
のCO2レーザ: 50W/cs+2)を照射する、加
工と言うよりはむしろ損傷させるという類の方法や、ハ
ロゲン系ガス等をエツチングガスとして用いるレーザア
シストエツチング法(この技術については例えば J。
Therefore, in recent years, laser processing methods are being developed as an alternative processing method. However, this laser processing method also
For example, quartz allows most of the ultraviolet light from an excimer laser to pass through, while transparent materials allow the laser to pass through, so it is extremely difficult to remove the material by simply irradiating it with a laser. Therefore,
A fairly high-energy laser (e.g. wavelength 10.6μ-
CO2 laser: 50W/cs+2), which damages rather than processes, and laser-assisted etching methods that use halogen-based gas as an etching gas (this technique is described in, for example, J.

V ac、S ci、T echnol、B 3(5)
、5ep10ct 1985 P+445〜P1449
参照)をとっている。
Vac, Sci, Technol, B 3(5)
, 5ep10ct 1985 P+445~P1449
).

[発明が解決しようとする課題] しかしながら、この従来のレーザ加工法も加工された側
壁が粗い、加工周辺部が損傷を受ける、エツチングガス
を用いる場合エツチングガス成分が被加工物内部に残留
するなど加工精度が悪いという問題点があった。
[Problems to be Solved by the Invention] However, this conventional laser processing method also has problems such as the processed sidewall being rough, the processed peripheral area being damaged, and when etching gas is used, etching gas components remain inside the workpiece. There was a problem with poor processing accuracy.

この発明は、上記のような問題点を解消するためになさ
れたもので、レーザを透過する被加工物に、穴明け、切
断等の微細除去加工を、加工側壁を滑らかに、照射部周
辺に損傷を与えることなく、小さい切断幅で精度よく行
えるレーザ加工方法を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to perform micro-removal processing such as drilling and cutting on a workpiece through which the laser passes, while making the processing side wall smooth and surrounding the irradiation part. It is an object of the present invention to provide a laser processing method that can be performed accurately with a small cutting width without causing damage.

[課題を解決するための手段] この発明のレーザ加工方法は、レーザを透過する被加工
物の加工面に上記レーザに対する吸収係数の大きな物質
を付着させて上記レーザを照射し、上記物質とともに上
記被加工物を除去するようにしたものである。
[Means for Solving the Problems] The laser processing method of the present invention includes attaching a substance having a large absorption coefficient to the laser to the processing surface of the workpiece through which the laser passes, and irradiating the substance with the laser, and It is designed to remove the workpiece.

また、レーザ照射によりレーザに対する吸収係数の大き
な物質を形成し放出する材料にレーザを照射し、上記レ
ーザを透過する被加工物の加工面に上記物質を付着させ
るようにしたものである。
Further, the material is irradiated with a laser to form and emit a substance having a large absorption coefficient for the laser, and the material is made to adhere to the processed surface of the workpiece through which the laser passes.

また、レーザCVD化学気相薫着によりレーザに対する
吸収係数の大きな物質を、上記レーザを透過する被加工
物の加工面に付着させるようにしたものである。
Further, by laser CVD chemical vapor deposition, a substance having a large absorption coefficient for the laser is attached to the processed surface of the workpiece through which the laser passes.

[作用] 上記レーザに対する吸収係数の大きな物質にレーザを照
射することにより上記レーザを透過する被加工物も共に
除去され、加工された側壁を滑らかに、照射部周辺に損
傷を与えることなく、精度よく加工できる。その理由は
明白ではないが、レーザ照射によりレーザに対する吸収
係数の大きな物質が温度上昇し、その熱が被加工物表面
に伝わるために、本来その波長では加熱されない被加工
物が加熱されて蒸発あるいは昇華が起こり、除去加工が
行なわれるためと推察される。
[Operation] By irradiating a material with a large absorption coefficient for the laser, the workpiece that the laser passes through is also removed, making the processed side wall smooth and improving accuracy without damaging the area around the irradiated part. Can be processed well. The reason for this is not clear, but laser irradiation raises the temperature of a substance with a large absorption coefficient for the laser, and that heat is transmitted to the surface of the workpiece, causing the workpiece, which would not normally be heated at that wavelength, to be heated and evaporate or It is presumed that this is because sublimation occurs and removal processing is performed.

[実施例] この発明は照射レーザの波長に対し吸収のない、これを
透過する材料の被加工物に、上記レーザに対する吸収係
数の大きな物質を付着させて上記レーザを照射し、上記
物質とともに上記被加工物を除去するようにして、穴明
け、溝掘り、切断等の微細除去加工を施すものである。
[Example] The present invention involves attaching a substance having a large absorption coefficient to the laser to a workpiece made of a material that does not absorb the wavelength of the irradiated laser but transmitting the wavelength, and irradiating the workpiece with the laser. Micro-removal processes such as drilling, grooving, and cutting are performed to remove the workpiece.

この発明において対象とするレーザの波長に対して吸収
のない、透過する被加工物としては、水晶基板、合成石
英基板、サフフイヤ基板等の透明材料が挙げられる。
Examples of workpieces that do not absorb and transmit the laser wavelength targeted in this invention include transparent materials such as quartz substrates, synthetic quartz substrates, and sapphire substrates.

また、この発明に係わるレーザに対する吸収係数の大き
な物質としては、5 X 103cm−’以上の吸収係
数を有するもので、できるだけ大きいものが望ましく、
例えばアモルファスカーボン(すす)、酸化チタン、ム
ライトなどのセラミクス、アルミ、シリコンなどの金属
が用いられる。
In addition, the material having a large absorption coefficient for the laser according to the present invention has an absorption coefficient of 5 x 103 cm-' or more, preferably as large as possible.
For example, amorphous carbon (soot), ceramics such as titanium oxide and mullite, and metals such as aluminum and silicon are used.

また、レーザを照射すると上記レーザに対する吸収係数
の大きな物質を形成し放出する材料としては、例えばポ
リイミドやポリアミドなどベンゼン環を持つ高分子材料
、セラミクス材料、金属材料が用いられる。
Further, as a material that forms and emits a substance having a large absorption coefficient for the laser when irradiated with a laser, for example, a polymer material having a benzene ring such as polyimide or polyamide, a ceramic material, or a metal material is used.

そして、加工に用いるレーザは特に限定するものではな
いが、紫外線パルスレーザを用いるのが好ましい。
Although the laser used for processing is not particularly limited, it is preferable to use an ultraviolet pulse laser.

以下、この発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図はこの発明の実施例1に係わるレーザ加工装置を
示す構成図であり、図において、(la)及び(1b)
はレーザ発振器、(2a)及び(2b)は光学系、(3
)はレーザを照射すると上記レーザに対する吸収係数の
大きな物質を形成し放出する材料、(4)は上記レーザ
の波長に対して吸収のない、透過する透明な被加工物、
(lla)及び(llb)はレーザビーム、(31)は
上記レーザに対する吸収係数の大きな物質である。
Embodiment 1 FIG. 1 is a configuration diagram showing a laser processing apparatus according to Embodiment 1 of the present invention. In the figure, (la) and (1b)
is a laser oscillator, (2a) and (2b) are optical systems, (3
) is a material that forms and emits a substance with a large absorption coefficient for the laser when irradiated with the laser; (4) is a transparent workpiece that does not absorb the wavelength of the laser and transmits it;
(lla) and (llb) are laser beams, and (31) is a substance with a large absorption coefficient for the laser.

次に、上記装置を用いて、透明材料の加工を行なった具
体例について説明する。
Next, a specific example of processing a transparent material using the above apparatus will be described.

この実施例においては、レーザ発振器(1aX1b)に
ArFエキシマレーザ、紫外線レーザに対する吸収係数
の大きな物質を形成し放出する材料(3)にポリイミド
フィルム、紫外線を透過する透明な被加工物(4)に厚
さ100μ−の水晶基板を用いた。
In this example, the laser oscillator (1aX1b) is an ArF excimer laser, the material (3) that forms and emits a substance with a large absorption coefficient for ultraviolet laser is a polyimide film, and the transparent workpiece (4) that transmits ultraviolet rays is used. A quartz substrate with a thickness of 100 μm was used.

この実施例においては、除去加工用レーザビーム(ll
a)のエネルギー密度及びビーム径は3.8J/c閉2
及びφ150μ閣、レーザに対する吸収係数の大きな物
質(31)を被加工物(4)に付着させるための成膜用
レーザビーム(llb)のエネルギー密度及びビーム径
は0.4J/cm2及びφ300μ■とした。また照射
方法は、成膜用レーザビーム(llb)照射後、除去加
工用レーザビーム(lla)を照射する方法とした。
In this example, the laser beam for removal processing (ll
The energy density and beam diameter of a) are 3.8 J/c closed2
The energy density and beam diameter of the film-forming laser beam (llb) for attaching the material (31) with a large laser absorption coefficient to the workpiece (4) are 0.4 J/cm2 and φ300 μ. did. Further, the irradiation method was such that after irradiation with a laser beam for film formation (llb), a laser beam for removal processing (lla) was irradiated.

このような条件にてそれぞれ交互にlOOショット照射
して加工した。
Processing was performed by alternately irradiating 100 shots under these conditions.

まず、ポリイミドフィルムに紫外線パルスレーザを照射
すると紫外線レーザに対する吸収係数の大きなアモルフ
ァスカーボンが放出される。なお、この理由は明白では
ないが、紫外線パルスレーザの照射によりポリイミドが
分解して炭素が発生し、レーザの持つエネルギーにより
重合してアモルファスカーボンになると推察される。こ
のアモルファスカーボンにレーザを照射するとアモルフ
ァスカーボンは紫外線をよく吸収するので照射により温
度上昇する。従ってアモルファスカーボンが付着してお
り、且つレーザを照射された水晶基板表面の温度が上昇
し、蒸発が起こって加工されると考えられる。
First, when a polyimide film is irradiated with an ultraviolet pulse laser, amorphous carbon having a large absorption coefficient for the ultraviolet laser is emitted. Although the reason for this is not clear, it is presumed that polyimide decomposes and carbon is generated by irradiation with the ultraviolet pulse laser, and the energy of the laser causes polymerization to form amorphous carbon. When this amorphous carbon is irradiated with a laser, the temperature rises due to the irradiation because amorphous carbon absorbs ultraviolet rays well. Therefore, it is thought that the temperature of the surface of the crystal substrate to which amorphous carbon is attached and irradiated with the laser increases, evaporation occurs, and processing is performed.

このようにしてレーザにより穴明は加工した水晶基板の
加工状態を走査型電子顕微鏡で調べた結果を参考写真I
に示す。写真下方の150KVは加速電圧、X200は
倍率、100μ冒はそのすぐ上の白い横線スケールの長
さを表わしている。
Reference photo I shows the results of examining the processing state of the crystal substrate that has been laser-processed in this way using a scanning electron microscope.
Shown below. 150KV at the bottom of the photograph represents the accelerating voltage, X200 represents the magnification, and 100μ represents the length of the white horizontal line scale immediately above it.

この参考写真1より知られるごとく、この発明によれば
、本来は吸収がないため通常のレーザを照射するだけで
は加工できない水晶基板をArFエキシマレーザにより
微細除去加工できることがわかる。
As can be seen from this reference photo 1, according to the present invention, it is possible to micro-remove a quartz substrate using an ArF excimer laser, which cannot be processed by normal laser irradiation because it originally has no absorption.

実施例2 第2図はこの発明の実施例2に係わるレーザ加工装置を
示す構成図である0図において、(1)はレーザ発振器
、(2)は光学系、(3)はレーザを照射すると上記レ
ーザに対する吸収係数の大きな物質を形成し放出する材
料、(4)は上記レーザの波長に対して吸収のない透過
する透明な被加工物、(11)はレーザビーム、(31
)は上記レーザに対する吸収係数の大きな物質である。
Embodiment 2 FIG. 2 is a configuration diagram showing a laser processing apparatus according to Embodiment 2 of the present invention. In FIG. A material that forms and emits a substance with a large absorption coefficient for the laser, (4) a transparent workpiece that does not absorb and transmit the wavelength of the laser, (11) a laser beam, (31)
) is a substance with a large absorption coefficient for the above laser.

次に、上記装置を用いて、透明材料の加工を行なった具
体例について説明する。
Next, a specific example of processing a transparent material using the above apparatus will be described.

この実施例においても、レーザ発振器(1)にA「Fエ
キシマレーザ、紫外線をよく吸収する物質を形成し放出
する材料(3)にポリイミドフィルム、紫外線に対して
透明な被加工物(4)に厚さ100μ鰯の水晶基板を用
いた。またレーザビーム(11)のエネルギー密度及び
ビーム径は3.8J/cm2及びφ150μ■とした。
In this example as well, the laser oscillator (1) is an A"F excimer laser, the material (3) that forms and releases a substance that absorbs ultraviolet rays is a polyimide film, and the workpiece (4) is transparent to ultraviolet rays. A quartz substrate with a thickness of 100 μm was used.The energy density and beam diameter of the laser beam (11) were 3.8 J/cm 2 and φ150 μm.

このような条件にて150シヨツト照射して加工した。Processing was performed by irradiating 150 shots under these conditions.

第3図(a)〜(d)はこの実施例のレーザ加工方法を
被加工物の加工状態を示して順に説明する説明図である
。レーザ発振器(1)より発振されたArFエキシマレ
ーザビーム(11)は水晶基板(4)を透過し、水晶基
板(0の裏面(この明細書ではレーザ入射側を表面、出
射側を裏面という)側に配置されたポリイミドフィルム
(3)を照射する(第3図a)。レーザビーム(11)
がポリイミドフィルム(3)に吸収され、アブレーショ
ン現象によりポリイミドフィルム(3)からレーザに対
する吸収係数の大きなアモルファスカーボン(31)が
放出され(第3図b)、水晶基板(0裏面に付着する(
第3図C)。
FIGS. 3(a) to 3(d) are explanatory diagrams sequentially explaining the laser processing method of this embodiment by showing the processing state of a workpiece. The ArF excimer laser beam (11) oscillated by the laser oscillator (1) passes through the crystal substrate (4), and the back surface of the crystal substrate (0 (in this specification, the laser incidence side is referred to as the front surface and the emission side is referred to as the back surface) side The polyimide film (3) placed in the laser beam (11) is irradiated (Fig. 3a).
is absorbed by the polyimide film (3), and amorphous carbon (31) with a large laser absorption coefficient is released from the polyimide film (3) due to the ablation phenomenon (Fig. 3b), and adheres to the back surface of the crystal substrate (0).
Figure 3C).

そして、後続のレーザビーム(11)がこのアモルファ
スカーボン(31)に吸収されることにより、アモルフ
ァスカーボン(31)と水晶基板(4)の界面が発熱し
、この作用により水晶基板(4)裏面がアモルファスカ
ーボン(31)とともに除去される(第3図d)。この
過程が順に繰り返され所望の除去加工がなされる。
When the subsequent laser beam (11) is absorbed by this amorphous carbon (31), the interface between the amorphous carbon (31) and the crystal substrate (4) generates heat, and this action causes the back surface of the crystal substrate (4) to heat up. It is removed together with the amorphous carbon (31) (Fig. 3d). This process is repeated in order to achieve the desired removal process.

このようにしてレーザにより穴明は加工した水晶基板の
加工状態を走査型電子顕微鏡で調べた結果を参考写真2
に示す。写真下方の150KVは加速電圧、x200は
倍率、IOθμ慣はそのすぐ上の白い横線スケールの長
さを表わしている。
Reference photo 2 shows the results of examining the processing state of the crystal substrate processed using a laser in this manner using a scanning electron microscope.
Shown below. 150KV at the bottom of the photograph represents the accelerating voltage, x200 represents the magnification, and IOθμ represents the length of the white horizontal line scale immediately above it.

この参考写真2より、実施例1と同様水晶基板をArF
エキシマレーザにより微II除去加工できることがわか
る。しかも表面から照射した実施例1に比へこの実施例
2の裏面からの方が加工形状がきれいであった。理由は
よくわからないが被加工物との界面部分でレーザの吸収
、発熱が起こるためと考えられる。
From this reference photo 2, we can see that the crystal substrate is ArF as in Example 1.
It can be seen that fine II removal processing can be performed using an excimer laser. Moreover, compared to Example 1, which was irradiated from the front surface, the processed shape from the back side of Example 2 was more beautiful. The reason is not fully understood, but it is thought to be because laser absorption and heat generation occur at the interface with the workpiece.

実施例3 上記実施例1. 2では被加工物の片面を除去加工する
ものについて示したが、この実施例3では被加工物の両
面から除去加工を施せるようにしたものを示す、第4図
、第5図はそれぞれこの発明の実施例3に係わるレーザ
加工装置を示す構成図で、第4図は第1図と第2図に示
す加工装置を組み合わせた構成となっており、第5図は
ビームスプリッタ(5)、ミラー(6)を配設し、1台
のレーザ発振器(1)で両面から加工できるように構成
している。
Example 3 Example 1 above. Embodiment 2 shows an example in which the removal process is performed on one side of the workpiece, but this embodiment 3 shows an example in which the removal process can be performed on both sides of the workpiece. FIG. 4 is a configuration diagram showing a laser processing apparatus according to Embodiment 3. FIG. 4 has a configuration that combines the processing apparatuses shown in FIGS. 1 and 2, and FIG. 5 shows a beam splitter (5) and a mirror. (6) is arranged so that processing can be performed from both sides with one laser oscillator (1).

孔をあける場合など、片面のみから除去加工を行った場
合貫通時に周辺部に欠落が生じ、きれいな加工ができな
い虞があるが、この実施例では両面から除去加工を施す
ので貫通時の周辺部の欠落を防止でき、きれいな加工面
が得られる。
If the removal process is performed only from one side, such as when drilling a hole, there is a risk that the peripheral part will be chipped during penetration, making it impossible to perform clean machining.However, in this example, the removal process is performed from both sides, so the peripheral part during penetration is This prevents chipping and provides a clean machined surface.

実施例4 第6図(a)〜(f)はこの発明の実施例4の加工方法
を被加工物の加工状態を示して順に説明する説明図であ
る。(30)はレーザ化学気相蒸着(以下CVDと記す
)によりレーザに対する吸収係数の大きな物質を形成す
る原料ガスである。
Embodiment 4 FIGS. 6(a) to 6(f) are explanatory diagrams sequentially illustrating the machining method of Embodiment 4 of the present invention by showing the machining state of a workpiece. (30) is a raw material gas that forms a substance with a large laser absorption coefficient by laser chemical vapor deposition (hereinafter referred to as CVD).

上記実施例ではレーザの照射によりレーザに対する吸収
係数の大きな物質を形成し放出する材料を用い、これに
レーザを照射して被加工物に吸収係数の大きな物質を付
着させるようにしているが、この実施例では、レーザに
対する吸収係数の大きな物質を形成する原料ガスを用い
、レーザCVDにより被加工物に吸収係数の大きな物質
を付着させるようにしている。
In the above embodiment, a material that forms and emits a substance with a large absorption coefficient to the laser when irradiated with the laser is used, and the substance with a large absorption coefficient is attached to the workpiece by irradiating the laser with the material. In the embodiment, a raw material gas that forms a substance with a large absorption coefficient for laser is used, and the substance with a large absorption coefficient is attached to the workpiece by laser CVD.

まず、レーザを透過する被加工物(4)をレーザCVD
によりレーザに対する吸収係数の大きな物質、この場合
はアモルファスカーボン(31)を形成するガス(30
)雰囲気中に設置して除去加工したい部分にレーザビー
ム(11)を照射するとく第6図a)、被加工物(4)
の表、裏画面にアモルファスカーボン膜(31)が形成
される(第6図b)。次いで、アモルファスカーボンI
!(31)形成時より高いエネルギー密度のレーザビー
ム(11)を照射する。形成されたアモルファスカーボ
ン膜(31)に レーザビーム(11)が吸収され、発
熱が生じると同時にアブレーション現象が生じる。この
時、アモルファスカーボン膜(31)が蒸発飛散するが
、被加工物(4)の飛散も同時に起き、結果として被加
工物が除去加工される(第6図C+d)、l!いて同様
にアモルファスカーボン膜(31)形成(第6図e)、
アモルファスカーボン膜(31)と被加工物(4)の除
去加工を繰り返し、被加工物に孔が形成される(@6図
f)。
First, the workpiece (4) that transmits the laser is processed by laser CVD.
A gas (30
) The workpiece (4) is placed in an atmosphere and the laser beam (11) is irradiated onto the part to be removed.
An amorphous carbon film (31) is formed on the front and back screens (FIG. 6b). Next, amorphous carbon I
! (31) Irradiate the laser beam (11) with a higher energy density than during formation. The laser beam (11) is absorbed by the formed amorphous carbon film (31), heat is generated, and at the same time an ablation phenomenon occurs. At this time, the amorphous carbon film (31) evaporates and scatters, but the workpiece (4) also scatters at the same time, and as a result, the workpiece is removed (FIG. 6 C+d), l! Similarly, an amorphous carbon film (31) is formed (Fig. 6e).
By repeating the removal process of the amorphous carbon film (31) and the workpiece (4), a hole is formed in the workpiece (@6 f).

例えば、1%アセチレン−99%水素あるいは、1%四
塩化炭素−99%水素等を用いアモルファスカーボンを
形成する場合、被加工物を真空槽内に設置し、真空槽内
の上記原料ガスの圧力を1OTorr以1とし、さらに
、レーザビームの照射方法は、まずアモルファスカーボ
ンが形成されやすいエネルギー密度0.3〜0.5J/
cr’、次に除去加工されやすいエネルギー密度3.8
J/cm2と交互に照射する方法とする。
For example, when forming amorphous carbon using 1% acetylene-99% hydrogen or 1% carbon tetrachloride-99% hydrogen, etc., the workpiece is placed in a vacuum chamber, and the pressure of the raw material gas in the vacuum chamber is is set to 1 OTorr or more, and the laser beam irradiation method is first set at an energy density of 0.3 to 0.5 J/, which facilitates the formation of amorphous carbon.
cr', energy density 3.8, which is the next most likely to be removed
The method is to alternately irradiate with J/cm2.

なお、上記実施例1及び2では光学系に円形のマスクを
用いた場合について示したがが、所望する形状のマスク
を用いて型抜き加工を行なってもよい。
In addition, although the above-mentioned Examples 1 and 2 show the case where a circular mask is used in the optical system, the die-cutting process may be performed using a mask of a desired shape.

また、レーザに対する吸収係数の大きな物質を付着させ
る方法としては、上記実施例に限らず、少々面倒ではあ
るが塗布方法でもよいし、他の方法であっても良く、同
様の効果を奏する。
Further, the method for attaching the substance having a large absorption coefficient to the laser is not limited to the above-mentioned embodiments, but may be a coating method, although it is a little troublesome, or another method, which will produce the same effect.

[発明の効果] 以上のように、この発明によれば、レーザを透過する被
加工物の加工面に上記レーザに対する吸収係数の大きな
物質を付着させて上記レーザを照射し、上記物質ととも
に上記被加工物を除去するようにしたので、レーザ照射
部周辺に損傷を与えることなく、加工側壁を滑らかに、
切断幅を小さく、優れた加工精度てレーザを透過する透
明材料等の穴明け、切断等の微細除去加工が行える効果
がある。
[Effects of the Invention] As described above, according to the present invention, a material having a large absorption coefficient for the laser is attached to the processed surface of the workpiece through which the laser passes, and the material is irradiated with the laser, and the material is absorbed together with the material. Since the workpiece is removed, the processed side wall can be smoothed without damaging the area around the laser irradiation area.
This has the effect of allowing fine removal processing such as drilling and cutting of transparent materials through which laser can be transmitted, with a small cutting width and excellent processing accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例1に係わる加工装置を示す構
成図、第2図はこの発明の実施例2に係わる加工装置を
示す構成図、第3図(a)〜(d)はこの実施例2のレ
ーザ加工方法を順に説明する説明図、第4図及び第5図
はそれぞれこの発明の実施例3に係わるレーザ除去加工
装置を示す構成図、第6図(a)〜(f)はこの発明の
実施例4の加工方法を順に説明する説明図である。 図において、(+)、(la)、(lb)・・・・・・
レーザ発振器、(3)・・−・−・レーザに対する吸収
係数の大きな物質を形成し放出する材料、(4) −・
・・・−レーザを透過する被加工物、(11)、(Il
a)、(llb) −−−−−−レーザビーム、(30
)−・・−・レーザに対する吸収係数の大きな物質を形
成する原料ガス、(31)・−・−・レーザに対する吸
収係数の大きな物質である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing a processing device according to Embodiment 1 of the present invention, FIG. 2 is a block diagram showing a processing device according to Embodiment 2 of the present invention, and FIGS. Embodiment 2 An explanatory diagram for sequentially explaining the laser processing method, FIGS. 4 and 5 are block diagrams showing a laser removal processing apparatus according to Embodiment 3 of the present invention, and FIGS. 6(a) to (f) FIG. 3 is an explanatory diagram sequentially explaining a processing method according to a fourth embodiment of the present invention. In the figure, (+), (la), (lb)...
Laser oscillator, (3) --- Material that forms and emits a substance with a large absorption coefficient for laser, (4) ---
...-Workpiece through which the laser passes, (11), (Il
a), (llb) ------- Laser beam, (30
) --- Raw material gas that forms a substance with a large absorption coefficient for the laser; (31) --- A material that has a large absorption coefficient for the laser. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)レーザを透過する被加工物に上記レーザを照射し
て除去加工するものにおいて、上記被加工物の加工面に
上記レーザに対する吸収係数の大きな物質を付着させて
上記レーザを照射し、上記物質とともに上記被加工物を
除去するようにしたことを特徴とするレーザ加工方法。
(1) A workpiece that transmits the laser is irradiated with the laser to remove the workpiece, in which a substance having a large absorption coefficient for the laser is attached to the processing surface of the workpiece, and the laser is irradiated on the workpiece, and the workpiece is irradiated with the laser. A laser processing method characterized in that the workpiece is removed together with the substance.
(2)レーザ照射によりレーザに対する吸収係数の大き
な物質を形成し放出する材料にレーザを照射し、上記レ
ーザを透過する被加工物の加工面に上記物質を付着させ
るようにしたことを特徴とする請求項1記載のレーザ加
工方法。
(2) A material that forms and emits a substance with a large absorption coefficient for the laser is irradiated with the laser, and the substance is attached to the processed surface of the workpiece through which the laser passes. The laser processing method according to claim 1.
(3)レーザ化学気相蒸着によりレーザに対する吸収係
数の大きな物質を上記レーザを透過する被加工物の加工
面に付着させるようにしたことを特徴とする請求項1記
載のレーザ加工方法。
(3) A laser processing method according to claim 1, characterized in that a substance having a large absorption coefficient for the laser is attached to the processing surface of the workpiece through which the laser passes through by laser chemical vapor deposition.
JP2310371A 1990-11-14 1990-11-14 Laser processing method Expired - Fee Related JP2682230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310371A JP2682230B2 (en) 1990-11-14 1990-11-14 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310371A JP2682230B2 (en) 1990-11-14 1990-11-14 Laser processing method

Publications (2)

Publication Number Publication Date
JPH04182093A true JPH04182093A (en) 1992-06-29
JP2682230B2 JP2682230B2 (en) 1997-11-26

Family

ID=18004446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310371A Expired - Fee Related JP2682230B2 (en) 1990-11-14 1990-11-14 Laser processing method

Country Status (1)

Country Link
JP (1) JP2682230B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968441A (en) * 1997-10-21 1999-10-19 Nec Corporation Laser processing method
US6486435B1 (en) * 1998-04-14 2002-11-26 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Device and method for structuring the surface of floor coverings which have already been laid
US6870125B2 (en) 2001-12-03 2005-03-22 Sony Corporation Crystal layer separation method, laser irradiation method and method of fabricating devices using the same
JP2006021315A (en) * 2004-06-07 2006-01-26 Fujitsu Ltd Layered material and cutting method, manufacturing device and manufacturing method thereof
JP2006150499A (en) * 2004-11-29 2006-06-15 Fujitsu Ltd Laminate body cutting method and laminate body
JP2014139963A (en) * 2013-01-21 2014-07-31 Ngk Spark Plug Co Ltd Glass substrate manufacturing method
CN104999182A (en) * 2015-07-09 2015-10-28 江苏科技大学 Machining device and machining method for surface micro-texture of high-speed steel cutting tool
JP2015205344A (en) * 2014-04-18 2015-11-19 アップル インコーポレイテッド Coated substrate and process for cutting coated substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215394A (en) * 1987-03-02 1988-09-07 Mitsubishi Electric Corp Method for processing substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215394A (en) * 1987-03-02 1988-09-07 Mitsubishi Electric Corp Method for processing substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968441A (en) * 1997-10-21 1999-10-19 Nec Corporation Laser processing method
KR100292102B1 (en) * 1997-10-21 2001-06-01 가네꼬 히사시 Laser processing method
US6486435B1 (en) * 1998-04-14 2002-11-26 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Device and method for structuring the surface of floor coverings which have already been laid
US6870125B2 (en) 2001-12-03 2005-03-22 Sony Corporation Crystal layer separation method, laser irradiation method and method of fabricating devices using the same
JP2006021315A (en) * 2004-06-07 2006-01-26 Fujitsu Ltd Layered material and cutting method, manufacturing device and manufacturing method thereof
JP2006150499A (en) * 2004-11-29 2006-06-15 Fujitsu Ltd Laminate body cutting method and laminate body
JP2014139963A (en) * 2013-01-21 2014-07-31 Ngk Spark Plug Co Ltd Glass substrate manufacturing method
JP2015205344A (en) * 2014-04-18 2015-11-19 アップル インコーポレイテッド Coated substrate and process for cutting coated substrate
US10537963B2 (en) 2014-04-18 2020-01-21 Apple Inc. Coated substrate and process for cutting a coated substrate
CN104999182A (en) * 2015-07-09 2015-10-28 江苏科技大学 Machining device and machining method for surface micro-texture of high-speed steel cutting tool

Also Published As

Publication number Publication date
JP2682230B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US4980536A (en) Removal of particles from solid-state surfaces by laser bombardment
US5800625A (en) Removal of material by radiation applied at an oblique angle
JPH0563274B2 (en)
JP2004188451A (en) Device and method for laser beam machining
KR20100057513A (en) Method of working material with high-energy radiation
JPH04182093A (en) Laser beam machining method
JPS6189636A (en) Optical processing
Dolgaev et al. Etching of sapphire assisted by copper-vapour laser radiation
JP5918044B2 (en) Processing method and processing apparatus
JPH0740336A (en) Diamond machining method
TW201808509A (en) Processing method of wafer
JPH05330806A (en) Method for machining cubic boron nitride
JP2001269793A (en) Method of laser beam machining
JP2003303789A (en) Method and equipment for exfoliating photoresist
JP3082013B2 (en) Laser processing method and apparatus
TW201939593A (en) Method of processing workpiece with laser beam
JPH09141480A (en) Ablation machining method
TW589714B (en) Wafer scribing method and wafer scribing device
Toenshoff et al. Absorption behavior of ceramic materials irradiated with excimer lasers
JPH1167700A (en) Manufacture of semiconductor wafer
JPH08112682A (en) Optical processing method
Ralchenko et al. Processing of CVD diamond with UV and green lasers
Konov et al. Laser microprocessing of diamond and diamond-like films
JP2990490B2 (en) Material processing method using light irradiation
JPS61105885A (en) Photo-processing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees