JPH0699290A - Friction welding method for copper member and aluminium member - Google Patents

Friction welding method for copper member and aluminium member

Info

Publication number
JPH0699290A
JPH0699290A JP4221212A JP22121292A JPH0699290A JP H0699290 A JPH0699290 A JP H0699290A JP 4221212 A JP4221212 A JP 4221212A JP 22121292 A JP22121292 A JP 22121292A JP H0699290 A JPH0699290 A JP H0699290A
Authority
JP
Japan
Prior art keywords
friction welding
stage
copper
speed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4221212A
Other languages
Japanese (ja)
Inventor
Keiji Taguchi
啓二 田口
Kazuaki Yokoi
和明 横井
Akiomi Kono
顕臣 河野
Osamu Isshiki
治 一色
Masayoshi Hashiura
雅義 橋浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4221212A priority Critical patent/JPH0699290A/en
Publication of JPH0699290A publication Critical patent/JPH0699290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To execute the friction welding of metals having a poor joining property by making an appearance pressurizing force to plural stages by changing the feeding velocity to plural stages during the friction welding. CONSTITUTION:At the time point storing the prescribed energy at the prescribed number of revolution in a fly wheel, a hydraulic cylinder is revolved, the Al alloy material of a un-revolving side is pressed to the copper material of the revolving side with comparative slow speed, the frictional heat is generated and the number of revolution is rapidly reduced. During transmitting from the first stage feeding speed v1 to the second stage feeding speed v2, the delay time of 0.1-1.0sec is set, and the second stage feeding speed v2 is made to the value of 1.5 times larger than the first stage feeding speed v1. Further, the start position t2 is executed during the fly wheel revolving, and the set pressing load is made to be applied at the same time stopping the revolution of the fly wheel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウム及びその合
金と銅及びその合金の摩擦圧接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction welding method for aluminum and its alloys and copper and its alloys.

【0002】[0002]

【従来の技術】アルミニウムと銅の摩擦圧接は圧接不可
能と記載(特開昭52−59053 号公報)される場合もある
ように簡単には接合されないため多くの発明が特許申請
されている。例えば、アルミニウムと銅のまさつ圧接接
続法(特開昭51−86045 号公報)では、金属間化合物を減
少させるために第2段階の加圧工程であるアップセット
工程に入ると接合部に水,油,液化ガス等の冷媒体を封
入して急冷し、冷却時に生成する金属間化合物を減少さ
せている。これは、接合条件で適切ではないために薄い
金属間化合物を被接合面へ均一に生成できず、均一性を
厚くすることで得ようとしているために摩擦温度を高く
するためであり、無駄な冷媒を用いて作業性を悪くする
と共に接合部強度の不安定性が避けられない欠点があ
る。
2. Description of the Related Art Many inventions have been applied for patents because friction welding of aluminum and copper is not easily joined as described in some cases (Japanese Patent Laid-Open No. 52-59053). For example, in the aluminum pressure welding connection method using copper (Japanese Patent Laid-Open No. 51-86045), when the upsetting step, which is the second step of pressing to reduce intermetallic compounds, is performed, water is applied to the joint. Coolant bodies such as oil and liquefied gas are enclosed and rapidly cooled to reduce intermetallic compounds generated during cooling. This is because a thin intermetallic compound cannot be uniformly generated on the surfaces to be joined because it is not suitable for the joining conditions, and the friction temperature is increased because it is attempted to obtain by increasing the uniformity. There are drawbacks that workability is deteriorated by using a refrigerant and instability of the joint strength is unavoidable.

【0003】まと、特開昭54−52648 号公報の記載では
溶融点の高い銅を予熱してから摩擦圧接をおこなってい
るが、熱伝導性の良好な銅を加熱するため一定温度で接
合することが困難であり、さらに熱いものを扱うので生
産性を阻害するとともに接合部強度の不安定性が避けら
れない欠点がある。
According to Japanese Patent Laid-Open Publication No. 54-52648, copper having a high melting point is preheated before friction welding, but since copper having good thermal conductivity is heated, it is bonded at a constant temperature. It is difficult to do so, and since hot ones are handled, productivity is impaired, and instability of joint strength is unavoidable.

【0004】さらに、特開昭52−59053 号公報ではアル
ミニウムと銅の各圧接境界面に溶射皮膜或いは溶射材料
の粉末を接着し、これを媒体として摩擦熱により、従
来、摩擦接着が不可能視されていた異種金属の摩擦圧着
を可能としたと記しているように媒体を介しての接合と
なり、生産性を阻害するとともに接合部の強度の低下が
避けられない欠点がある。
Further, in Japanese Patent Laid-Open No. 52-59053, a thermal spray coating or powder of a thermal spray material is adhered to each pressure contact interface between aluminum and copper, and friction heat is used as a medium to make friction adhesion impossible in the past. As described above, the frictional pressure bonding of dissimilar metals has been made possible, which results in joining via a medium, which has a drawback that productivity is impaired and a decrease in strength of the joined portion cannot be avoided.

【0005】従来技術による摩擦圧接では、アルミニウ
ムと銅の異種金属を直接に接合することが困難なため摩
擦圧接後に急冷を行ったり、溶融点の高い銅側を予熱し
たり、さらに媒体を介しての接合となり、それぞれ作業
工程が増加することからコスト高となる。また、余分な
作業工程の増加で生産性を阻害するとともに、接合部強
度の不安定性と低下が生じる難点がある。
In the friction welding according to the prior art, it is difficult to directly join dissimilar metals such as aluminum and copper to each other, so that rapid cooling is performed after the friction welding, preheating of the copper side having a high melting point is performed, and further through a medium. However, the cost increases due to the increased number of work processes. Further, there is a problem in that the productivity is hindered by the increase of extra work steps, and the strength and instability of the joint strength are reduced.

【0006】特開昭51−86045号,特開平2−30386 号の
各公報ではブレーキ方式であるが、実施例として摩擦圧
接条件を図3に示すようにグラフ化して表示している。
図3ではアップセット圧力P2の加圧は回転停止と同時
に負荷を開始している。図3に示すアップセット圧力P
2の開始時期は文献(最新接合技術総覧,P306,産
業技術サービスセンター発行、S59年)でも示されて
いるように一般的である。しかし、本発明では第2段目
の送り速度を図3に示すように回転停止と同時に早くし
たのでは充分に接合されない難点がある。
In each of JP-A-51-86045 and JP-A-2-30386, the braking method is used, but as an example, the friction welding conditions are shown in graph form as shown in FIG.
In FIG. 3, the pressurization of the upset pressure P2 starts the load at the same time when the rotation is stopped. Upset pressure P shown in FIG.
The start time of 2 is general as shown in the literature (Latest Joining Technology Guide, P306, published by Industrial Technology Service Center, S59). However, in the present invention, there is a problem in that the second stage feed speed cannot be sufficiently joined by increasing the feed speed at the same time as the rotation stop as shown in FIG.

【0007】上記、各公報で示す接合面は銅材側及びア
ルミ合金材側とも平面である。一般的に接合面の形状
(継手形状)は、文献(摩擦圧接、P109,コロン社
発行、S54年)でも平面或いはパイプを主とした円錐
形とした斜め継手の2種類を示すだけである。一般に接
合面の形状として平面が多く適用されているが、平面状
態で摩擦圧接をすると被圧接品の外径側は接合され易
く、内径側は接合され難い傾向にあるので一段加圧方式
では多くの場合、内径側は接合されない難点がある。
The joint surfaces shown in the above publications are flat on the copper material side and the aluminum alloy material side. Generally, the shape of the joint surface (joint shape) also shows only two types of flat joints or conical slant joints mainly having a pipe even in the literature (friction welding, P109, published by Colon Co., S54). Generally, a flat surface is often used as the shape of the joining surface, but when friction welding is performed in a flat state, the outer diameter side of the pressure-welded product tends to be joined and the inner diameter side is difficult to join. In the case of, there is a drawback that the inner diameter side is not joined.

【0008】[0008]

【発明が解決しようとする課題】アルミニウムと銅の異
種金属を摩擦圧接法で直接に接合することは上記の従来
技術で示したように困難である。この原因として次の5
項目が指摘できる。
It is difficult to directly bond dissimilar metals such as aluminum and copper by a friction welding method as shown in the above prior art. The following 5
Items can be pointed out.

【0009】(ア)全接合面に対し実際に接合している面
積の比率を接合率と呼称する。一般に接合率100%が
得難い。
(A) The ratio of the area actually bonded to the entire bonding surface is called the bonding rate. Generally, it is difficult to obtain a bonding rate of 100%.

【0010】(イ)接合状態は摩擦圧接をすると被圧接品
の外径側は接合され易く、内径側は接合され難い傾向に
ある。
(A) In the joined state, when friction welding is performed, the outer diameter side of the product to be pressure-welded tends to be easily joined, and the inner diameter side tends to be difficult to be joined.

【0011】(ウ)接合するのは接合界面にCuAl2
の金属間化合物を生成するためである。接合率100%
であっても、接合界面の金属間化合物が厚くなると接合
部の強度は低下するので薄い方が良いのに、一般には適
正な厚さが判っていない。
(C) The reason for joining is to form an intermetallic compound such as CuAl 2 at the joining interface. Joining rate 100%
However, if the intermetallic compound at the joint interface becomes thicker, the strength of the joint decreases, so it is better to make it thinner, but generally the proper thickness is not known.

【0012】(エ)被接合面へ金属間化合物を均一に生成
させることが困難である。特に、金属間化合物を薄くす
ると通常の摩擦圧接条件では均一性が得られ難い。
(D) It is difficult to uniformly form an intermetallic compound on the surfaces to be joined. In particular, if the intermetallic compound is made thin, it is difficult to obtain uniformity under normal friction welding conditions.

【0013】(オ)適正な摩擦圧接条件で接合界面にCu
Al2 等の金属間化合物を薄く均一に生成した場合でも
毎回、安定して得られる摩擦圧接装置の精度が得られ難
い。
(E) Cu at the joint interface under proper friction welding conditions
Even when an intermetallic compound such as Al 2 is thinly and uniformly produced, it is difficult to obtain the accuracy of the friction welding device which is stably obtained every time.

【0014】本発明は上記にかんがみ摩擦圧接法の内か
ら摩擦圧接装置の精度面からフライホィール方式を選択
した。さらに、精度の向上を図るため加圧方式として2
段加圧の方が良く接合されるので限定したが、従来のよ
うな加圧力を2段に変更するのでは加圧力パターンが安
定しない。そこで、図1に本発明の摩擦圧接条件を示し
たが、設定加圧力は1段加圧でありながら摩擦圧接中に
おける送り速度を2段に変えることで、見掛けの加圧力
を2段としたものである。しかも、第1段目の送り速度
1 から第2段目の送り速度v2 へ移行する間に0.1
〜1.0秒の遅延時間を設けること及び第2段目の送り
速度v2 は第1段目の送り速度v1 より1.5 倍以上の
大きな値であり、その開始位置t2 はフライホィール回
転中であり、フライホィール回転停止と同時に設定した
荷重が負荷されることにより、合理的な摩擦圧接を行っ
てアルミニウムと銅における被接合体の強度,信頼性及
び生産性を向上させることを目的とするものである。
In the present invention, the flywheel method is selected from the above-mentioned friction welding methods in view of the accuracy of the friction welding apparatus. Furthermore, in order to improve the accuracy, the pressure system is 2
This is limited because stepwise pressurization is better joined, but the pressurization pattern is not stable if the conventional pressurization is changed to two steps. Therefore, FIG. 1 shows the friction welding conditions of the present invention. The apparent pressing force is set to two steps by changing the feed speed during friction welding to two steps while the set pressing force is one step pressing. It is a thing. Moreover, it is 0.1 during the transition from the first stage feed speed v 1 to the second stage feed speed v 2 .
A delay time of up to 1.0 second is provided, and the feeding speed v 2 of the second stage is a value 1.5 times or more larger than the feeding speed v 1 of the first stage, and its starting position t 2 is a fly. While the wheel is rotating and the set load is applied at the same time as the flywheel is stopped, it is possible to perform rational friction welding to improve the strength, reliability and productivity of the joined objects in aluminum and copper. It is intended.

【0015】また、比較的、接合性の良い材料同士の接
合では、2段加圧方式を適用せずとも銅の接合面を平面
ではなしに、図2に示すように円弧状の凹曲面を設ける
ことで、1段加圧方式でも上記と同様の効果をねらうも
のである。
Further, in the case of joining materials having relatively good joining properties, the joining surface of copper is not a flat surface even if the two-step pressing method is not applied, and an arcuate concave curved surface is formed as shown in FIG. By providing it, the same effect as above can be obtained even with the one-stage pressurization method.

【0016】[0016]

【課題を解決するための手段】摩擦圧接法には大別する
とブレーキ方式とフライホィール方式の2方法がある。
接合強度として引張強さ20kgf/mm2 の高い値を得る
ための条件は接合率100%で接合界面にCuAl2
の金属間化合物を薄く生成させることである。そのため
に、適切な回転数の下で摩擦圧接時間として0.5〜2.
5秒程度の短時間で接合する必要がある。このような短
時間を安定して得られるのはフライホィール方式である
からである。また、摩擦圧接法における加圧方式として
1段加圧と2段加圧の2通りがある。各加圧方式をクラ
フ化して図3及び図4に示す。一般に、ブレーキ方式で
は2段加圧方式が、フライホィール方式では1段加圧方
式が、それぞれ、主として用いられている。
The friction welding method is roughly classified into two methods, a brake method and a flywheel method.
The condition for obtaining a high tensile strength of 20 kgf / mm 2 as the bonding strength is to form a thin intermetallic compound such as CuAl 2 at the bonding interface at a bonding rate of 100%. Therefore, the friction welding time is 0.5-2.
It is necessary to join in a short time of about 5 seconds. This is because the flywheel method can stably obtain such a short time. In addition, there are two types of pressurization methods in the friction welding method: one-stage pressurization and two-stage pressurization. Each pressurizing method is shown in FIG. 3 and FIG. Generally, a two-stage pressurization system is mainly used in the brake system, and a one-stage pressurization system is mainly used in the flywheel system.

【0017】図3に示す一般のブレーキ方式による2段
加圧では、加圧力を2段階に変化させるもので、初め
(第1段目)に比較的低い圧力P1 (加熱圧力と呼称す
る)で押し付ける。両金属が接触すると短時間で所定圧
力に達し、以後、ブレーキを掛けて回転が停止する直前
まで同一の加熱圧力を保持し、回転が停止すると同時に
加熱圧力より高い圧力P2 (第2段目でアップセット圧
力と呼称する)で加圧する。しかし、このように加圧力
を2段に変化させることは、制御機構として位置と加圧
力の2要因を制御する必要があり、精度的に劣ることに
なる。その結果は接合部材強度のばらつく原因となる。
また、図4に示す1段加圧は初めの加圧力P1 を回転が
停止以降まで持続させるものである。しかし、このよう
に加圧力を1段にしたのでは接合が困難な組合わせでは
充分に接合されない欠点がある。
In the two-stage pressurization by the general brake system shown in FIG. 3, the applied pressure is changed in two stages. At the beginning (first stage), a relatively low pressure P 1 (referred to as heating pressure) is used. Press with. When the two metals come into contact with each other, a predetermined pressure is reached in a short time, and thereafter, the same heating pressure is maintained until immediately before the brake is applied to stop the rotation, and at the same time when the rotation is stopped, a pressure P 2 (second stage) higher than the heating pressure is reached. It is called up-set pressure). However, changing the pressurizing force in two steps in this manner requires control of two factors of the position and the pressurizing force as a control mechanism, which is inferior in accuracy. As a result, the strength of the joint member varies.
Further, the one-step pressurization shown in FIG. 4 is to maintain the initial applied pressure P 1 until the rotation is stopped. However, there is a drawback in that the combination cannot be sufficiently joined with the combination in which joining is difficult if the pressing force is set to one step.

【0018】そこで、本発明では加圧力を一定として、
回転している銅部材に非回転のアルミ合金部材を送り押
し付ける速度を2段に変化させることで見掛けの加圧力
を2段に変化させることを特徴とした。即ち、第1段目
の送り速度を遅く設定することによりアルミ合金の塑性
流動に対して送りが追従しないため摩擦面で所定の加圧
力を維持できないことから低くなる。引き続き第2段目
は第1段目より早い送り速度とすることで送りが追従す
るので所定の加圧力を維持するようになる。
Therefore, in the present invention, the pressure is kept constant and
It is characterized in that the apparent pressing force is changed in two steps by changing the speed at which the non-rotating aluminum alloy member is fed and pressed against the rotating copper member in two steps. That is, when the feed speed in the first stage is set to be slow, the feed does not follow the plastic flow of the aluminum alloy, so that the predetermined pressing force cannot be maintained on the friction surface, resulting in a low pressure. Subsequently, the second stage is set at a higher feed speed than the first stage, and the feed follows, so that a predetermined pressure is maintained.

【0019】金属間化合物を薄く均一に分布させるに
は、単に2段加圧としただけでは不可能であり、1段目
から2段目に送り速度を変更する際に、送り速度をある
時間の間はゼロと停止させることが必要である。この送
り速度停止の間は、ばりの発生がないため接合温度の均
一化と接合面の軟化が行われ銅とアルミ合金の金属間化
合物が均一に生成される条件が整えられる。
It is not possible to distribute the intermetallic compound thinly and uniformly by simply applying the pressure in two steps, and when changing the feed rate from the first step to the second step, the feed rate is kept constant for a certain period of time. It is necessary to stop with zero between. During the stop of the feed rate, since no burrs are generated, the joining temperature is made uniform and the joining surfaces are softened, and the conditions for uniformly producing the intermetallic compound of copper and aluminum alloy are prepared.

【0020】銅とアルミ合金の摩擦圧接ではAl部材と
してA6063−T6処理材、Cu部材としてC102
0−質別Hをそれぞれ用いた場合に、最も接合状態が困
難であり、上記の手段を必要とする。しかし、Al部材
としてA1080−0材、Cu部材にC1020−質別
1/4Hをそれぞれ用いて接合する場合には、Cu部材
側の接合面を円弧状の凹曲面とすることで、接合率10
0%を1段加圧で得られる。
In friction welding of copper and aluminum alloy, A6063-T6 treated material as Al member and C102 as Cu member.
When 0-tempered H is used, the bonding state is the most difficult, and the above means is required. However, when using A1080-0 material as the Al member and C1020-tempered 1 / 4H for the Cu member, the joining ratio on the Cu member side is set to be an arcuate concave curved surface.
0% can be obtained by one-stage pressurization.

【0021】[0021]

【作用】本発明の摩擦圧接法では、フライホィールの回
転が停止したと同時に設定加圧力になるよう第2段目の
送り速度の開始位置を調節している。これは加圧が接合
部に対し、最大の効果を表わすためである。この結果、
接合面全面が密着するので、接合率100%を得るのに
効果がある。さらに、1段目から2段目に送り速度を変
更する際に、送り速度をある時間はゼロと停止させるこ
とを規定したのは強い接合部を得るためである。
In the friction welding method according to the present invention, the start position of the feed speed in the second stage is adjusted so that the set pressure is obtained at the same time when the rotation of the flywheel is stopped. This is because the pressure exerts the greatest effect on the joint. As a result,
Since the entire bonding surface is in close contact, it is effective to obtain a bonding rate of 100%. Further, when changing the feed rate from the first stage to the second stage, it is specified that the feed rate is stopped at zero for a certain time in order to obtain a strong joint.

【0022】アルミニウム合金と銅合金の異種金属が摩
擦圧接によって接合強度20kgf/mm2の高い引張強さ
を得るには、接合率100%で、しかも接合界面にCu
Al2等の金属間化合物を薄く生成させる必要がある。
しかし、接合界面の金属間化合物は厚く成ると接合部の
強度を低下させるので薄い方が良いが、金属間化合物を
薄くすると、被接合面へ均一に生成させることが困難と
なる。このため適正な摩擦圧接条件はごく限定された狭
い範囲となり作業を不安定なものとしている。本発明の
摩擦圧接法ではフライホィール方式と限定しているのは
銅とアルミ合金の金属間化合物の厚さを摩擦圧接時間で
調節するためであり、銅とアルミ合金の金属間化合物を
薄く生成させるために0.5〜2.5秒程度の短時間で接
合する必要がある。このような短時間を安定して精度高
く得られる方式としてフライホィール方式が優れている
ため選定した。また、2段加圧方式に限定したのは、1
段加圧方式に比較して高い接合率が安定して得られるた
めである。特に、2段加圧を得る方法として、加圧力は
一定として、回転している銅部材に非回転のアルミ合金
部材を送り押し付ける速度を2段に変化させることで見
掛けの加圧力を2段に変化させている。これは第1段目
の送り速度を遅く設定することによりアルミ合金の塑性
流動に対して送りが追従しないため摩擦面で所定の加圧
力を維持できないために低くなる。第2段目は第1段目
より早い送り速度(通常、第1段目の送り速度の1.5
倍以上とする)とすることで送りが追従するので所定の
加圧力を維持できるためである。この結果、送り速度1
因子だけであることから制御の精度を高くできるのでプ
ログラムが簡単になる。
In order to obtain a high tensile strength of 20 kgf / mm 2 by friction welding of dissimilar metals of aluminum alloy and copper alloy, the bonding rate is 100% and Cu is bonded to the bonding interface.
It is necessary to thinly form an intermetallic compound such as Al 2 .
However, the thicker the intermetallic compound at the joint interface, the lower the strength of the joint, so it is better to make it thinner, but if the intermetallic compound is thin, it becomes difficult to form it uniformly on the surfaces to be joined. For this reason, the proper friction welding conditions are limited to a narrow range, which makes the work unstable. The friction welding method of the present invention is limited to the flywheel method because the thickness of the intermetallic compound of copper and aluminum alloy is adjusted by the friction welding time, and the intermetallic compound of copper and aluminum alloy is formed thinly. Therefore, it is necessary to join in a short time of about 0.5 to 2.5 seconds. The flywheel method was selected as a method that can stably and accurately obtain such a short time, and was selected. Also, the limitation to the two-stage pressurization method is 1
This is because a high bonding rate can be stably obtained as compared with the stepwise pressing method. In particular, as a method of obtaining a two-step pressurization, the apparent pressurizing force is changed to two steps by changing the speed at which the non-rotating aluminum alloy member is pressed against the rotating copper member to two steps while keeping the pressurizing force constant. It is changing. This is low because the feed does not follow the plastic flow of the aluminum alloy by setting the feed speed at the first stage to be slow, and a predetermined pressing force cannot be maintained on the friction surface. The 2nd stage has a higher feed rate than the 1st stage (usually 1.5 times the feed rate of the 1st stage).
This is because the feed follows when the number of times is set to 2 times or more), so that a predetermined pressing force can be maintained. As a result, the feed rate is 1
Since it is only a factor, the precision of control can be improved, and the program becomes simple.

【0023】接合部の強度を最も高く、しかも安定して
得るため第2段目の送り速度は第1段目の送り速度より
1.5 倍以上の大きな値であり、その開始位置はフライ
ホィール回転中であり、フライホィール回転停止と同時
に設定した荷重が負荷されることにより接合率100%
を安定して得られる効果がある。回転停止と負荷が合致
しない場合に引張強さがばらつく原因となる。
The feed speed of the second stage is 1.5 times or more higher than the feed speed of the first stage in order to obtain the strongest and stable strength of the joint portion, and the start position is the flywheel. It is rotating and the set load is applied at the same time as the flywheel rotation is stopped.
There is an effect that can be obtained stably. If the rotation stops and the load does not match, the tensile strength will fluctuate.

【0024】銅とアルミ合金の摩擦圧接の場合ではAl
部材としてA6063−T6処理材、Cu部材にC10
20−質別Hのように、それぞれ硬い方に属する材料を
用いた場合に、最も接合率100%を得ることが困難で
あり、上記の発明条件を必要とする。しかし、Al部材
としてA1080−0材、Cu部材にC1020−質別
1/4Hのようにそれぞれ比較的軟い方に属する材料を
用いた場合には、上記の本発明で請求項1,2及び3を
適用するまでもなくCu部材側の接合面を請求項4の円
弧状の凹曲面とすることで接合率100%は得られる。
In the case of friction welding of copper and aluminum alloy, Al
A6063-T6 treated material as member, C10 as Cu member
It is difficult to obtain the maximum bonding rate of 100% when materials that belong to the harder ones such as 20-Temperature H are used, and the above-mentioned invention conditions are required. However, when an A1080-0 material is used as the Al member, and a relatively soft material such as C1020-tempered 1 / 4H is used for the Cu member, the above-mentioned present invention provides the above-mentioned claims 1, 2 and 3. Needless to say, the bonding rate of 100% can be obtained by making the bonding surface on the Cu member side the arcuate concave curved surface of claim 4.

【0025】[0025]

【実施例】【Example】

(実施例1)以下、本発明の実施例を図面に基づいて説
明する。図5はフライホィール方式の摩擦圧接中のフラ
イホィール回転数,加圧力,寄り代および銅材表面の温
度について測定した結果を示す。摩擦圧接は回転側に銅
材を、非回転側にAl合金材をそれぞれチャックで締付
け固定した後、主軸モータを回転させフライホィールに
回転エネルギを蓄え、所定の回転数に到達した時点で油
圧シリンダを動作させることにより非回転側のAl合金
材を回転側の銅材へ比較的遅い送り速度で押しつけると
摩擦熱が発生すると同時に回転数は急激に低下する。両
金属が接触すると0.2 秒程度の時間で加圧力はゼロよ
り急激に増加するが、その後は若干、低下する傾向を示
す。引き続き1段目より早い送り速度で加圧する。この
際、油圧シリンダの送りは1段目から2段目に切り換え
る際に0.4 秒程度を停止させる。加圧力はこの結果、
低下するが、第2段目の送りが開始すると再び圧力は上
昇し、回転が停止する際に設定した加圧力を示す。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 5 shows the results of measurement of the flywheel rotational speed, the pressing force, the deviation, and the temperature of the copper material surface during friction welding of the flywheel method. For friction welding, after fixing the copper material on the rotating side and the Al alloy material on the non-rotating side with chucks, respectively, the spindle motor is rotated to store the rotational energy in the flywheel, and the hydraulic cylinder is reached when the specified rotational speed is reached. When the Al alloy material on the non-rotating side is pressed against the copper material on the rotating side at a comparatively low feed rate by operating, the frictional heat is generated and at the same time the rotational speed is rapidly reduced. When the two metals come into contact with each other, the applied pressure rapidly increases from zero in a time of about 0.2 seconds, but after that, it tends to slightly decrease. Then pressurize at a higher feed rate than the first step. At this time, the feed of the hydraulic cylinder is stopped for about 0.4 seconds when switching from the first stage to the second stage. The resulting pressure is
Although the pressure decreases, the pressure increases again when the second-stage feed starts, and indicates the pressing force set when the rotation stops.

【0026】寄り代は第1段目の加圧とともに増加し、
第2段目の加圧へ切り換え時の圧力が低下する間は0と
なり、再度、第2段目の加圧とともに増加し、カットオ
フ回転数に達するとフライホィールと主軸モータとの締
結部を外すことで回転は一気に停止するので、それ以降
は寄り代がゼロとなる2段の傾向を示す。銅材表面の温
度はフライホィールの回転停止付近で極大値を示し、そ
の後、急速に冷却する。
The crossing margin increases with the pressure applied in the first step,
It becomes 0 while the pressure at the time of switching to the second stage pressurization decreases, then increases again with the second stage pressurization, and when the cutoff speed is reached, the fastening part between the flywheel and the spindle motor is changed. The rotation stops all at once by removing it, and after that, there is a two-step tendency in which the crossing margin becomes zero. The temperature of the copper surface shows a maximum value near the rotation stop of the flywheel and then cools rapidly.

【0027】この接合結果は、接合率98%,引張強さ
19.6kgf/mm2である。
As a result of this joining, the joining rate is 98% and the tensile strength is 19.6 kgf / mm 2 .

【0028】(実施例2)フライホィール方式の摩擦圧
接で1段加圧による実施例を図6で説明する。油圧シリ
ンダを動作させ非回転側のAl合金材を所定の送り速度
で回転側の銅材へ押し付ける。両接合材が接触すると圧
接面の圧力は所定加圧力まで短時間で増加し、所定加圧
力に達すると以後は変化しない。他方、回転数は時間と
ともに直線的に低下する。寄り代は一元的に増加する
が、フライホィールの回転が停止すると以後は変化しな
い1段の傾向を示す。この接合結果は、接合率46%,
引張強さ9.2kgf/mm2である。
(Embodiment 2) An embodiment in which one-step pressurization is applied by friction welding of a flywheel system will be described with reference to FIG. The hydraulic cylinder is operated to press the non-rotating Al alloy material against the rotating copper material at a predetermined feed rate. When the two joining materials come into contact with each other, the pressure on the pressure contact surface increases to a predetermined pressure in a short time, and after reaching the predetermined pressure, it does not change thereafter. On the other hand, the rotational speed decreases linearly with time. The crossing margin increases unitarily, but when the rotation of the flywheel is stopped, there is a one-step tendency that does not change thereafter. This joining result shows that the joining rate is 46%,
The tensile strength is 9.2 kgf / mm 2 .

【0029】(実施例3)銅とアルミ合金の摩擦圧接で
はAl部材としてA6063−T6処理材、Cu部材の
C1020−質別Hをそれぞれ用いた場合に、最も接合
状態が困難である。そこで、それぞれの部材を用いてフ
ライホィール方式で摩擦圧接を行い本発明の2段加圧と
一般の1段加圧による接合状態を比較した結果を図7に
示す。同図では接合率に及ぼす回転エネルギ密度の影響
として比較したものである。同図から各加圧方式は適正
な回転エネルギ密度を有するが、その場合でも1段加圧
では接合率60%以下であるのに対し、本発明の2段加
圧では95%〜100%の値を示し、2段加圧の方がば
らつきの少ない安定した接合率を示していることが判
る。
(Embodiment 3) In the friction welding of copper and aluminum alloy, when A6063-T6 treated material as Al member and C1020-Temperature H of Cu member are used, respectively, the joining state is the most difficult. Therefore, FIG. 7 shows the result of comparison between the two-stage pressurization of the present invention and the general one-stage pressurization performed by friction welding using the respective members by the flywheel method. In the figure, the effect of the rotational energy density on the bonding rate is compared. From the figure, each pressurizing method has an appropriate rotational energy density, but even in that case, the joining rate is 60% or less in the first-stage pressurization, whereas it is 95% to 100% in the second-stage pressurization of the present invention. The values show that the two-stage pressurization shows a stable bonding rate with less variation.

【0030】[0030]

【発明の効果】本発明によれば、次に列記する効果があ
る。
According to the present invention, the following effects are listed.

【0031】(1)摩擦圧接後に急冷を行ったり、溶融点
の高い銅側を予熱したり、さらに媒体を介する等の余分
な作業をせず、銅とアルミ合金を直接に接合できる。
(1) Copper and an aluminum alloy can be directly joined without performing extra work such as rapid cooling after friction welding, preheating of a copper side having a high melting point, and further through a medium.

【0032】(2)加圧力は1段の設定で押し付け速度を
2段に変化させる方法で、制御は1因子のみと簡素にな
った結果、摩擦圧接精度が高くなる。
(2) The pressing force is set to one step and the pressing speed is changed to two steps. The control is simplified with only one factor, resulting in high friction welding accuracy.

【0033】(3)1段目から2段目に押し付け速度が変
化する際に、停止時間を設けることにより、接合界面の
金属間化合物を適正な厚さで均一に生成できる。
(3) By providing a stop time when the pressing speed changes from the first step to the second step, the intermetallic compound at the joint interface can be uniformly formed with an appropriate thickness.

【0034】(4)2段目の押し付け速度を1段目の1.
5 倍以上とし、回転停止と同時に設定加圧力が負荷さ
れるようにタイミングをあわせることで、接合率100
%が安定して得られる。
(4) The pressing speed of the second step is set to 1.
The welding rate is 100% or more by adjusting the timing so that the set pressure is applied at the same time as the rotation is stopped.
% Is stably obtained.

【0035】(5)以上の(1)〜(4)までの発明により接
合部の引張強さ20kgf/mm2 が安定して得られる。
(5) According to the above inventions (1) to (4), the tensile strength of the joint portion of 20 kgf / mm 2 can be stably obtained.

【0036】(6)銅部材側の接合面を凹曲面とすること
で、摩擦圧接の接合性を著しく改善することができる。
(6) By forming the joining surface on the copper member side into a concave curved surface, the joining property of friction welding can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の摩擦圧接条件をグラフ化して示す特性
図。
FIG. 1 is a characteristic diagram showing a friction welding condition of the present invention as a graph.

【図2】本発明の銅側継手形状を示す断面図。FIG. 2 is a sectional view showing a copper-side joint shape of the present invention.

【図3】ブレーキ方式で用いられる2段加圧摩擦圧接条
件をグラフ化して示す説明図。
FIG. 3 is an explanatory diagram showing a graph of two-stage pressure friction welding conditions used in a braking system.

【図4】フライホィール方式で用いられる1段加圧摩擦
圧接条件をグラフ化して示す説明図。
FIG. 4 is an explanatory view showing a graph of a one-step pressure friction welding condition used in a flywheel system.

【図5】実施例1に用いた本発明の摩擦圧接条件の各条
件推移を示す特性図。
FIG. 5 is a characteristic diagram showing transition of each friction welding condition of the present invention used in Example 1.

【図6】実施例2に用いた1段加圧摩擦圧接の各条件推
移を示す特性図。
FIG. 6 is a characteristic diagram showing transition of each condition of the one-step pressure friction welding used in Example 2.

【図7】接合率に及ぼす回転エネルギ密度の影響を本発
明による2段加圧と一般の1段加圧と比較して示した説
明図。
FIG. 7 is an explanatory view showing the influence of the rotational energy density on the bonding rate in comparison with the two-step pressing according to the present invention and the general one-step pressing.

【符号の説明】[Explanation of symbols]

1…円弧形状、2…本発明による2段加圧、3…1段加
圧。
1 ... Arc shape, 2 ... Two-stage pressure according to the present invention, 3 ... One-stage pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一色 治 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 橋浦 雅義 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Osamu Isshiki 1-1-1, Kokubun-cho, Hitachi City, Ibaraki Prefecture Inside the Kokubun Plant, Hitachi, Ltd. (72) Inventor Masayoshi Hashiura 1-1-1, Kokubun-cho, Hitachi City, Ibaraki Prefecture No. 1 Stock company Hitachi Kokubu factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】設定加圧力は一定のままで、被接合部材の
摩擦圧接中における送り速度を2段に変えることで見掛
けの加圧力を2段に変化させ、その場合の送り速度とし
て第1段目は1.0mm/秒〜30mm/秒の条件下で行な
い、第2段目は5.0mm〜60mm/秒の条件範囲で行
い、第2段目の送り速度は第1段目の送り速度より1.
5倍以上の大きな値で設定することを特徴とする銅部材
とアルミニウム部材との摩擦圧接法。
1. The apparent pressing force is changed to two steps by changing the feeding speed to two steps during friction welding of the members to be welded while the set pressing force remains constant. The second stage is performed under the condition of 1.0 mm / sec to 30 mm / sec, the second stage is performed within the condition range of 5.0 mm to 60 mm / sec, and the feed speed of the second stage is the feed of the first stage. From speed 1.
A friction welding method for a copper member and an aluminum member, which is set to a large value of 5 times or more.
【請求項2】請求項1において、前記第1段目の送り速
度から前記第2段目の送り速度へ移行する間に0.05
〜1.0秒の遅延時間を設ける銅部材とアルミニウム部
材との摩擦圧接法。
2. The method according to claim 1, wherein during the transition from the feed speed of the first stage to the feed speed of the second stage, 0.05.
A friction welding method of a copper member and an aluminum member with a delay time of ~ 1.0 seconds.
【請求項3】請求項1において、前記第2段目の送り速
度開始位置はフライホィール回転中であり、しかも、フ
ライホィール回転停止と同時に設定した荷重が負荷され
る銅部材とアルミニウム部材との摩擦圧接法。
3. The first feed speed start position of the second stage is in the flywheel rotation, and the copper member and the aluminum member are loaded with a load set at the same time when the flywheel rotation is stopped. Friction welding method.
【請求項4】請求項1において、前記銅部材側の接合面
を平面ではなしに、凹曲面を設けて接合面とし、凹曲面
の形状は接合面距離の1/2長さ以上を半径とする円弧
状とする銅部材とアルミニウム部材との摩擦圧接法。
4. The joining surface on the copper member side is not a flat surface but a concave curved surface is provided as a joining surface, and the shape of the concave curved surface has a radius equal to or more than ½ of the joining surface distance as a radius. A friction welding method for forming a circular arc shape between a copper member and an aluminum member.
JP4221212A 1992-08-20 1992-08-20 Friction welding method for copper member and aluminium member Pending JPH0699290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4221212A JPH0699290A (en) 1992-08-20 1992-08-20 Friction welding method for copper member and aluminium member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4221212A JPH0699290A (en) 1992-08-20 1992-08-20 Friction welding method for copper member and aluminium member

Publications (1)

Publication Number Publication Date
JPH0699290A true JPH0699290A (en) 1994-04-12

Family

ID=16763226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4221212A Pending JPH0699290A (en) 1992-08-20 1992-08-20 Friction welding method for copper member and aluminium member

Country Status (1)

Country Link
JP (1) JPH0699290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307959B1 (en) * 2012-07-13 2013-09-12 니탄 밸브 가부시키가이샤 Method of friction welding and apparatus of friction welding
JP2014083564A (en) * 2012-10-23 2014-05-12 Ihi Corp Friction joining method, and joined structure
JP2021120163A (en) * 2020-01-30 2021-08-19 エイエフダブリュー カンパニー リミテッド Thin plate manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307959B1 (en) * 2012-07-13 2013-09-12 니탄 밸브 가부시키가이샤 Method of friction welding and apparatus of friction welding
JP5315478B1 (en) * 2012-07-13 2013-10-16 日鍛バルブ株式会社 Friction welding method and friction welding apparatus
WO2014010081A1 (en) * 2012-07-13 2014-01-16 日鍛バルブ株式会社 Friction-welding method and friction-welding device
US9446490B2 (en) 2012-07-13 2016-09-20 Nittan Valve Co., Ltd. Method of friction welding and apparatus of friction welding
JP2014083564A (en) * 2012-10-23 2014-05-12 Ihi Corp Friction joining method, and joined structure
JP2021120163A (en) * 2020-01-30 2021-08-19 エイエフダブリュー カンパニー リミテッド Thin plate manufacturing method

Similar Documents

Publication Publication Date Title
CN108838494B (en) Resistance welding fasteners, apparatus and methods for joining homogeneous and heterogeneous materials
US7967182B2 (en) Dissimilar metal joint product and joining method therefor
US7832970B2 (en) Friction stir nut and method of joining therewith
US6227433B1 (en) Friction welded fastener process
JP3209170B2 (en) Friction welding method and joint for aluminum alloy hollow member
US8127977B1 (en) Thermal stir welder
EP1029627B1 (en) Friction agitation jointing method of metal workpieces
JP2008506534A (en) Process for friction welding components
EP0028763B1 (en) Method for pressure bonding metal members by utilizing eutectic reaction
JP2000337327A (en) Improved blind rivet
JPH0699290A (en) Friction welding method for copper member and aluminium member
EP1567291B1 (en) Method of tying two or more components together
CN114406439B (en) Claw type rivet suitable for friction stir rivet welding and friction stir rivet welding method
US6152351A (en) Process for manufacturing a wheel for a motor vehicle
US3435510A (en) Bonding
WO2021182444A1 (en) Solid-phase spot-welding method and solid-phase spot-welding device
US6176415B1 (en) Method and device for connecting components
JPH1177338A (en) Friction joining method
US4072817A (en) Method of making semi-conductor mounts
JP2001090655A (en) Swash plate for swash plate type compressor, and manufacture thereof
JP2520245B2 (en) Joining method for dissimilar metal materials
JPH10180468A (en) Friction joining method
JPH0596385A (en) Method for friction joining aluminum or aluminum alloy
WO2022210048A1 (en) Linear friction-joining method and linear friction-joining structure
RU2645848C1 (en) Method of manufacture of bimetal saw blade with carbide inserts on the teeth