JPH0699188B2 - Method for manufacturing diamond sintered body - Google Patents

Method for manufacturing diamond sintered body

Info

Publication number
JPH0699188B2
JPH0699188B2 JP62292477A JP29247787A JPH0699188B2 JP H0699188 B2 JPH0699188 B2 JP H0699188B2 JP 62292477 A JP62292477 A JP 62292477A JP 29247787 A JP29247787 A JP 29247787A JP H0699188 B2 JPH0699188 B2 JP H0699188B2
Authority
JP
Japan
Prior art keywords
resin
diamond
sintered body
amorphous carbon
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62292477A
Other languages
Japanese (ja)
Other versions
JPH01133976A (en
Inventor
学 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62292477A priority Critical patent/JPH0699188B2/en
Publication of JPH01133976A publication Critical patent/JPH01133976A/en
Publication of JPH0699188B2 publication Critical patent/JPH0699188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切削用工具の刃先,ドレッサー,ダイス等の
耐摩耗性部品として有用なダイヤモンド焼結体を製造す
る方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a diamond sintered body which is useful as a wear-resistant component such as a cutting edge of a cutting tool, a dresser, and a die.

[従来の技術] ダイヤモンド焼結体は高硬度であり且つ耐摩耗性に富ん
でいるので、従来から切削用工具の刃先や線引ダイス等
の素材として使用されてきた。
[Prior Art] Since a diamond sintered body has a high hardness and abundant wear resistance, it has been conventionally used as a material for a cutting edge of a cutting tool, a wire drawing die, or the like.

この様なダイヤモンド焼結体の製造する方法としては、
ダイヤモンド粉末を高温・高圧下で焼結させるのが一般
的である。ところがこの様な従来技術であると、粉末状
の原料を使用しているので粉末原料の表面にガスが吸着
され易く、従って焼結が阻害されて未焼結部分が残って
しまうという問題があった。又原料が粉末或は粉末の成
形体である為原料相互間にガスが残留し、この残留ガス
は完全に脱ガスできる訳ではないので、高圧容器での圧
力発生効率が悪く、強固なダイヤモンド焼結体が得られ
ないという問題もあった。
As a method for producing such a diamond sintered body,
It is common to sinter diamond powder under high temperature and high pressure. However, with such a conventional technique, since powdery raw materials are used, there is a problem that gas is easily adsorbed on the surface of the powdery raw materials, and thus sintering is hindered and unsintered parts remain. It was In addition, since the raw material is powder or a powder compact, gas remains between the raw materials, and this residual gas cannot be completely degassed. Therefore, the pressure generation efficiency in the high-pressure container is poor and a strong diamond firing is performed. There was also the problem that a union could not be obtained.

[発明が解決しようとする問題点] 本発明はこうした技術背景のもとでなされたものであっ
て、その目的とするところは、高硬度且つ優れた耐摩耗
性を有するダイヤモンド焼結体を得る為の最適な方法を
提供する点にある。
[Problems to be Solved by the Invention] The present invention has been made under such a technical background, and an object of the present invention is to obtain a diamond sintered body having high hardness and excellent wear resistance. The point is to provide the optimum method for

[問題点を解決する為の手段] 上記目的を達成し得た本発明の製造方法とは、ダイヤモ
ンド焼結体を高温・高圧法によって製造するに当たり、
フェノール樹脂,アセトン・フルフラール共重合樹脂,
フルフリルアルコール・フェノール共重合樹脂,尿素樹
脂,メラミン樹脂,キシレン樹脂およびグアナミン樹脂
よりなる群から選択される1種又は2種以上を炭化処理
して得られた樹脂由来非晶質炭素に、ダイヤモンド粉末
を40〜95重量%分散させた状態で、前記樹脂由来非晶質
炭素に、鉄族金属を5重量%以上含む金属又は合金を接
触させ、1250℃以上の温度で且つ熱力学的なダイヤモン
ド安定領域の圧力で加圧焼結する点に要旨を有するもの
である。
[Means for Solving the Problems] The production method of the present invention which has achieved the above-mentioned object means that a diamond sintered body is produced by a high temperature / high pressure method.
Phenol resin, acetone-furfural copolymer resin,
Resin-derived amorphous carbon obtained by carbonizing one or more selected from the group consisting of furfuryl alcohol / phenol copolymer resin, urea resin, melamine resin, xylene resin and guanamine resin, and diamond A metal or alloy containing 5 wt% or more of an iron group metal is brought into contact with the resin-derived amorphous carbon in a state where powder is dispersed in 40 to 95 wt%, and a thermodynamic diamond at a temperature of 1250 ° C. or higher It has the gist of performing pressure sintering at a pressure in the stable region.

[作用] 本発明者らは上記目的を達成する為鋭意研究を重ねた結
果、ダイヤモンド粉末を所定量含有させた樹脂由来非晶
質炭素を原料とし、該原料を高温・高圧下で焼結させる
ことによって希望するダイヤモンド焼結体が実現できる
ことを見出し、本発明を完成した。
[Function] As a result of intensive studies conducted by the present inventors to achieve the above object, the resin-derived amorphous carbon containing a predetermined amount of diamond powder is used as a raw material, and the raw material is sintered at high temperature and high pressure. It was found that the desired diamond sintered body can be realized by doing so, and completed the present invention.

樹脂由来非晶質炭素は後述の如く液体状モノマーから製
造できるので、該樹脂由来非晶質炭素がマトリックスと
なってダイヤモンド粉末を適度に分散でき、従来技術で
述べたガス吸着等の不都合を発生することなく、最適な
ダイヤモンド焼結体が実現できるのである。
Since the resin-derived amorphous carbon can be produced from a liquid monomer as described below, the resin-derived amorphous carbon serves as a matrix to appropriately disperse the diamond powder, and the disadvantages such as the gas adsorption described in the prior art occur. The optimum diamond sintered body can be realized without doing so.

樹脂由来非晶質炭素はグラッシーカーボンとも呼ばれて
おり、代表例としてはフェノール樹脂由来非晶質炭素が
上げられ、これは液状のレゾールタイプ樹脂を熱処理及
び炭化処理することによって得られる。従って本発明に
おいて樹脂由来非晶質炭素としてフェノール樹脂由来非
晶質炭素を用いる場合には、液状のフェノール中にダイ
ヤモンド粉末を混合分散させてから上記処理を行なうこ
とによって、所定量のダイヤモンド粉末を含有する固形
のフェノール樹脂由来非晶質炭素が得られる。そして得
られたダイヤモンド粉末含有樹脂由来非晶質炭素を高温
真空下で脱ガス処理した後(従来技術ではこの後が問題
となる)、金属触媒と積層又は同心円状に配置して接触
させ、高温・高圧下で焼結させることによって、前記樹
脂由来非晶質炭素自体もダイヤモンドに変換され、全体
として高硬度のダイヤモンド焼結体が得られる。
Resin-derived amorphous carbon is also called glassy carbon, and a typical example thereof is phenol resin-derived amorphous carbon, which is obtained by heat treatment and carbonization treatment of a liquid resole type resin. Therefore, when the phenol resin-derived amorphous carbon is used as the resin-derived amorphous carbon in the present invention, a predetermined amount of diamond powder is obtained by mixing and dispersing diamond powder in liquid phenol and then performing the above treatment. The solid phenolic resin-derived amorphous carbon contained is obtained. After degassing the obtained diamond powder-containing resin-derived amorphous carbon under high temperature vacuum (this is a problem in the prior art), the metal catalyst is laminated or concentrically arranged and brought into contact with the metal catalyst at high temperature. -By sintering under high pressure, the resin-derived amorphous carbon itself is also converted into diamond, and a diamond sintered body having a high hardness as a whole is obtained.

ダイヤモンド粉末を分散含有した樹脂由来非晶質炭素は
緻密な固形物であり、一度脱ガス処理した後はガス成分
の吸着は少なく、しかも原料粉末をカーボンで均一に被
覆した成形体を形成する。
Resin-derived amorphous carbon in which diamond powder is dispersedly contained is a dense solid substance, and once degassed, adsorption of gas components is small, and a raw material powder is uniformly coated with carbon to form a compact.

上記樹脂由来非晶質炭素とは非晶質炭素結合によって一
体形をなすものであるが、本発明で用いられる樹脂由来
非晶質炭素は黒鉛化した部分を含んだものであっても不
都合はない。即ち黒鉛を原料中に添加して黒鉛からダイ
ヤモンドへの変換反応を利用する試みは従来から行われ
ており、粉末同士では相互に偏在するという問題があっ
たが、本発明ではその様な不都合は生じない。
The above-mentioned resin-derived amorphous carbon is an integral form due to an amorphous carbon bond, but the resin-derived amorphous carbon used in the present invention has disadvantages even if it contains a graphitized portion. Absent. That is, an attempt to utilize the conversion reaction from graphite to diamond by adding graphite to the raw material has been conventionally made, and there was a problem that the powders were unevenly distributed to each other, but the present invention has such a disadvantage. Does not happen.

上記説明では樹脂由来非晶質炭素の代表例としてフェノ
ール樹脂を炭化処理して得られるフェノール樹脂由来非
晶質炭素を示したが、本発明で用いる樹脂由来非晶質炭
素はフェノール樹脂由来のものに限らず、その他アセト
ン・フルフラール共重合樹脂,フルフリルアルコール・
フェノール共重合樹脂,尿素樹脂,メラミン樹脂,キシ
レン樹脂,グアナミン樹脂等の熱硬化性樹脂由来のもの
であっても同様に処理できる。尚これらの樹脂は2種以
上を混合して用いてもよい。
In the above description, a phenol resin-derived amorphous carbon obtained by carbonizing a phenol resin is shown as a typical example of the resin-derived amorphous carbon, but the resin-derived amorphous carbon used in the present invention is derived from the phenol resin. Not limited to acetone, furfural copolymer resin, furfuryl alcohol
The same treatment can be performed even if it is derived from a thermosetting resin such as a phenol copolymer resin, a urea resin, a melamine resin, a xylene resin, or a guanamine resin. These resins may be used as a mixture of two or more kinds.

一方希望するダイヤモンド焼結体を得る為の焼結温度は
1250℃以上とする必要があり、1250℃未満では焼結性が
劣る。又焼結の際の圧力としては当然のことながら、熱
力学的なダイヤモンド安定領域の圧力とする必要があ
り、約40kb以上の圧力が必要である。更に焼結工程で用
いる触媒としては鉄,コバルト,ニッケル等の鉄族金属
であることが必要であり、鉄族金属のいずれかを5重量
%以上含有する合金であれば十分な触媒作用が発揮され
る。しかしながら鉄族金属が5重量%未満であると触媒
作用が発揮されず、焼結性が低下する。
On the other hand, the sintering temperature for obtaining the desired diamond sintered body is
It is necessary to set the temperature to 1250 ° C or higher, and if it is lower than 1250 ° C, the sinterability is poor. As a matter of course, the pressure at the time of sintering needs to be a thermodynamic diamond stable region pressure, and a pressure of about 40 kb or more is required. Furthermore, the catalyst used in the sintering process must be an iron group metal such as iron, cobalt, nickel, etc., and an alloy containing at least 5% by weight of any iron group metal will exhibit sufficient catalytic action. To be done. However, when the iron group metal is less than 5% by weight, the catalytic action is not exhibited and the sinterability is deteriorated.

本発明においては、ダイヤモンド粉末の含有量は40〜95
重量%とする必要がある。これはダイヤモンド粉末の含
有量が40重量%より少ないと(すなわち樹脂由来非晶質
炭素が60重量%以上の場合は)、非晶質炭素がダイヤモ
ンドに変換するのに非晶質炭素が多い程、多量の触媒金
属を必要とするため、必然的に触媒金属の焼結体中に残
留する量が多くなり且つ金属が偏在した不均質な組織と
なり、良好なダイヤモンド焼結体が得られないからであ
る。又含有量が95重量%を超えるとダイヤモンド粉末の
均一分散が困難となり、焼結体中に未焼結部が残留す
る。尚ダイヤモンド粉末の好ましい含有量は、60〜85%
程度である。
In the present invention, the content of diamond powder is 40-95.
It is necessary to set it to the weight percent. This is because when the content of diamond powder is less than 40% by weight (that is, when the resin-derived amorphous carbon is more than 60% by weight), the more amorphous carbon is converted into diamond, the more amorphous carbon is. Since a large amount of the catalytic metal is required, the amount of the catalytic metal that remains in the sintered body is inevitably large and the metal has a non-uniform structure, so that a good diamond sintered body cannot be obtained. Is. If the content exceeds 95% by weight, it becomes difficult to uniformly disperse the diamond powder, and unsintered parts remain in the sintered body. The preferred content of diamond powder is 60-85%
It is a degree.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not of a nature limiting the present invention.
Any design changes made within the spirit of the later description are included in the technical scope of the present invention.

[実施例] アンモニアを触媒としてフェノールとホルムアルデヒド
から合成された液状のリゾールタイプフェノール樹脂中
に粒径2〜4μmダイヤモンド粉末を各種割合で混合
し、70℃で2日保持した後、140℃に加熱して硬化させ
た。これらを窒素雰囲気下900℃に加熱して炭化させ、
緻密な固形のダイヤモンド分散フェノール樹脂由来非晶
質炭素を得た。得られたフェノール樹脂由来非晶質炭素
を直径11mm,厚さ1mmの円板状に加工し、1×10-5Torr,1
450℃で脱ガスした。
[Example] A liquid resol type phenol resin synthesized from phenol and formaldehyde using ammonia as a catalyst was mixed with diamond powder having a particle diameter of 2 to 4 µm at various ratios, and the mixture was kept at 70 ° C for 2 days and then heated to 140 ° C. And cured. These are heated to 900 ° C under a nitrogen atmosphere to carbonize,
A dense solid diamond-dispersed phenolic resin-derived amorphous carbon was obtained. The obtained phenolic resin-derived amorphous carbon was processed into a disk shape with a diameter of 11 mm and a thickness of 1 mm, and 1 × 10 −5 Torr, 1
Degassed at 450 ° C.

これらのダイヤモンド粉末含有フェノール樹脂由来非晶
質炭素を直径11mmの各種金属触媒と積層し、60キロバー
ル,1500℃の条件で焼結を行ない各種の焼結体No.1〜10
を得た。得られた各焼結体No.1〜10の夫々について、硬
度及び組織を調査した。その結果は第1表に示す通りで
ある。尚焼結体No.8〜10については均質組織でない為硬
度は測定していない。
Amorphous carbon derived from phenol resin containing diamond powder was laminated with various metal catalysts with a diameter of 11 mm and sintered under the conditions of 60 kbar and 1500 ° C to obtain various sintered bodies No. 1 to 10
Got The hardness and structure of each of the obtained sintered bodies No. 1 to 10 were investigated. The results are shown in Table 1. The hardness of sintered bodies Nos. 8 to 10 is not measured because they do not have a homogeneous structure.

第1表の結果から明らかであるが、本発明方法によって
得られるダイヤモンド焼結体(No.1〜7)は、いずれも
均質な組織を有し且つ硬度も十分であった。
As is clear from the results shown in Table 1, all of the diamond sintered bodies (Nos. 1 to 7) obtained by the method of the present invention had a homogeneous structure and sufficient hardness.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、従来の製造方法が有する欠点を悉く解消
し、優れた性能を発揮する高硬度ダイヤモンド焼結体を
得られた。
[Effects of the Invention] As described above, according to the present invention, by adopting the above-described structure, it is possible to provide a high-hardness diamond sintered body that can eliminate the drawbacks of the conventional manufacturing method and exhibit excellent performance. Was obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ダイヤモンド焼結体を高温・高圧法によっ
て製造するに当たり、フェノール樹脂,アセトン・フル
フラール共重合樹脂,フルフリルアルコール・フェノー
ル共重合樹脂,尿素樹脂,メラミン樹脂,キシレン樹脂
およびグアナミン樹脂よりなる群から選択される1種又
は2種以上を炭化処理して得られた樹脂由来非晶質炭素
に、ダイヤモンド粉末を40〜95重量%分散させた状態
で、前記樹脂由来非晶質炭素に、鉄族金属を5重量%以
上含む金属又は合金を接触させ、1250℃以上の温度で且
つ熱力学的なダイヤモンド安定領域の圧力で加圧焼結す
ることを特徴とするダイヤモンド焼結体の製造方法。
1. When manufacturing a diamond sintered body by a high temperature / high pressure method, phenol resin, acetone / furfural copolymer resin, furfuryl alcohol / phenol copolymer resin, urea resin, melamine resin, xylene resin and guanamine resin are used. A resin-derived amorphous carbon obtained by carbonizing one or more selected from the group consisting of 40 to 95% by weight of diamond powder is added to the resin-derived amorphous carbon. A metal sintered body containing 5% by weight or more of an iron group metal, and pressure-sintered at a temperature of 1250 ° C. or higher and at a thermodynamic diamond stable region pressure, to produce a diamond sintered body. Method.
JP62292477A 1987-11-18 1987-11-18 Method for manufacturing diamond sintered body Expired - Lifetime JPH0699188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292477A JPH0699188B2 (en) 1987-11-18 1987-11-18 Method for manufacturing diamond sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292477A JPH0699188B2 (en) 1987-11-18 1987-11-18 Method for manufacturing diamond sintered body

Publications (2)

Publication Number Publication Date
JPH01133976A JPH01133976A (en) 1989-05-26
JPH0699188B2 true JPH0699188B2 (en) 1994-12-07

Family

ID=17782320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292477A Expired - Lifetime JPH0699188B2 (en) 1987-11-18 1987-11-18 Method for manufacturing diamond sintered body

Country Status (1)

Country Link
JP (1) JPH0699188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366975A (en) * 2012-03-30 2013-10-23 施耐德电器工业公司 Silver-based electrical contact material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134564A (en) * 1986-11-22 1988-06-07 科学技術庁無機材質研究所長 Manufacture of diamond sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366975A (en) * 2012-03-30 2013-10-23 施耐德电器工业公司 Silver-based electrical contact material
US9620258B2 (en) 2012-03-30 2017-04-11 Schneider Electric Industries Sas Silver-based electrical contact material

Also Published As

Publication number Publication date
JPH01133976A (en) 1989-05-26

Similar Documents

Publication Publication Date Title
CN110746192B (en) High-thermal-conductivity pure porous silicon carbide material and preparation method and application thereof
US4135937A (en) High density hot pressed thermal shock resistant silicon carbide
JPH066769B2 (en) Diamond sintered body and its manufacturing method
JP2735151B2 (en) Method for producing fiber-reinforced silicon carbide composite ceramics molded body
JPS6016869A (en) Manufacture of silicon carbide sintered body
JPH0699188B2 (en) Method for manufacturing diamond sintered body
JPS60200861A (en) Manufacture of high strength silicon carbide sintered body
JP2747358B2 (en) High hardness microcrystalline sintered body and method for producing the same
JPH0269354A (en) Sintered diamond body and production thereof
JPH06102575B2 (en) High hardness composite sintered body
JPH0220590B2 (en)
JPH0745340B2 (en) Method for manufacturing diamond sintered body
JPH05132704A (en) High-hardness microcrystal sintered compact and production thereof
JPH0269355A (en) Production of diamond sintered compact
JPH01133978A (en) High hardness combined sintered body having good workability and its manufacture
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPS596837B2 (en) Ceramic sintered body for tools and its manufacturing method
JPS63242969A (en) Silicon carbide base ceramics
JPH11139871A (en) Porous carbon material and its production
JPH0699189B2 (en) High hardness fine crystal sintered body and manufacturing method thereof
JPS6059171B2 (en) Method for manufacturing carbon products with dense and dense structure
CN116334431A (en) Cubic boron nitride composite material and preparation method thereof
JPH06305832A (en) Production of short fiber-reinforced c/c composite
JPS58194777A (en) Manufacture of whisker reinforced carbonaceous composite material