JPH0699126A - Control of speed of painting reciprocator - Google Patents

Control of speed of painting reciprocator

Info

Publication number
JPH0699126A
JPH0699126A JP28078592A JP28078592A JPH0699126A JP H0699126 A JPH0699126 A JP H0699126A JP 28078592 A JP28078592 A JP 28078592A JP 28078592 A JP28078592 A JP 28078592A JP H0699126 A JPH0699126 A JP H0699126A
Authority
JP
Japan
Prior art keywords
connector
endless chain
speed
reciprocator
sprocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28078592A
Other languages
Japanese (ja)
Other versions
JP2829467B2 (en
Inventor
Masahiko Matsubara
雅彦 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP4280785A priority Critical patent/JP2829467B2/en
Publication of JPH0699126A publication Critical patent/JPH0699126A/en
Application granted granted Critical
Publication of JP2829467B2 publication Critical patent/JP2829467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Spray Control Apparatus (AREA)

Abstract

PURPOSE:To extend the durable life of a reciprocator and to increase the loading wt. to a slide element by controlling the circulating speed of an endless chain so that the speeds of a connector when the connector passes respective sprockets are set to the min. value at the apex parts of the sprockets with respect to the speeds at the linear running parts of the chain and grdually decelerated. CONSTITUTION:A painting reciprocator is constituted so that the connector 8 provided to an endless chain 7 in a protruding state is connected to a slide element 2 in a freely laterally movable manner and the slide element 2 is allowed to rise and fall along guide rails while the connector 8 is moved within the slide element 2 and a spray gun 4 is allowed to reciprocally rise and fall at a constant stroke. The speed of the reciprocator is controlled by controlling the circulating running speed of the endless chain 7 so that the speeds of the connector 8 at the time when the connector 8 passes sprockets 5, 6 are set to the min. value at the apex parts of the sprockets 5, 6 with respect to the speeds of the connector at the linear running parts of the endless chain 7 and gradually decelerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、縦型の塗装用レシプロ
ケータにおいて、無端チエーンがスプロケツトを通過す
る際に垂直方向の加速度変化を生じて悪影響を及ぼすの
を極力低減し得るようにした速度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical type reciprocator for coating, which is capable of minimizing the adverse effect of an endless chain which causes a vertical acceleration change when passing through a sprocket. Regarding control method.

【0002】[0002]

【従来の技術】縦型の塗装用レシプロケータの一般的な
構造は、図1に示すように、互いに平行な一対の縦向き
のガイドレール1に摺動体2が昇降自由に嵌装されて、
その摺動体2にアーム3を介してスプレイガン4が取り
付けられており、そのガイドレール1の背面側に、上下
一対の駆動スプロケツト5と従動スプロケツト6との間
に掛け回された無端チエーン7が配設されて、その無端
チエーン7に突設した連結子8が、無端チエーン7の両
直線走行部間を横切るように摺動体2に形成された横溝
9に嵌合連結され、モータ10の駆動に伴う無端チエー
ン7の矢線方向への循環走行により、連結子8が横溝9
内で移動しつつ摺動体2がガイドレール1に沿つて昇降
して、スプレイガン4が一定のストロークで往復昇降さ
れるようになつている。そして、従来は、無端チエーン
7の走行速度は常に一定である。
2. Description of the Related Art As shown in FIG. 1, a general structure of a vertical coating reciprocator has a pair of vertically oriented guide rails 1 on which a slide body 2 is fitted so as to be freely movable up and down.
A spray gun 4 is attached to the sliding body 2 via an arm 3, and an endless chain 7 wound around a pair of upper and lower drive sprockets 5 and driven sprockets 6 is attached to the back side of the guide rail 1. A connector 8 which is provided and projects from the endless chain 7 is fitted and connected to a lateral groove 9 formed in the sliding body 2 so as to cross between both straight running portions of the endless chain 7, and the motor 10 is driven. As the endless chain 7 circulates in the direction of the arrow due to the
The sliding body 2 moves up and down along the guide rails 1 while moving inside, and the spray gun 4 reciprocates up and down with a constant stroke. Further, conventionally, the traveling speed of the endless chain 7 is always constant.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
縦型レシプロケータでは、連結子8がスプロケツト5、
6を通過する際に、垂直方向にチエーン速度に応じた加
速度変化を受け、それに伴つて連結子8と連結された摺
動体2に負荷が加わることが、摺動体2が損傷を受ける
主な原因となつていた。
By the way, in such a vertical reciprocator, the connector 8 has the sprocket 5,
The main cause of damage to the sliding body 2 is that, when passing through 6, the sliding body 2 connected to the connector 8 is subjected to a change in acceleration in the vertical direction according to the chain velocity and the load is accordingly added. I was told.

【0004】これを図2〜図4を参照してさらに詳細に
説明する。いま、無端チエーン7が分速70m(秒速
1.167m) で定速駆動されるとすると、連結子8が
スプロケツト5、6の回りをスプロケツト角度θが0゜
から180゜にわたつて通過する際の周速度V1 も、図
2の特性線aに示すように、V1=1.167m/sと一
定になるが、その周速度V1 の垂直成分V1aは、V1a
1・cosθとなつて、図3の特性線bのように変化す
る。
This will be described in more detail with reference to FIGS. Now, assuming that the endless chain 7 is driven at a constant speed of 70 m / min (1.167 m / s), when the connector 8 passes around the sprockets 5 and 6 with the sprocket angle θ passing from 0 ° to 180 °. The peripheral velocity V 1 of V is constant as V 1 = 1.167 m / s as shown by the characteristic line a in FIG. 2, but the vertical component V 1a of the peripheral velocity V 1 is V 1a =
V 1 · cos θ changes as shown by the characteristic line b in FIG. 3.

【0005】その周回運動によつて連結子8に生ずる垂
直加速度成分α1aは、V1aを微分することによつて得ら
れ、スプロケツト5、6の半径をrとすると、α1a=−
1 2・sinθ/r+V1′・cosθとなり、いま、V1
一定であつて、V1′=0であるから、結局は、α1a
−V1 2・sinθ/rとなる。
The vertical acceleration component α 1a generated in the connector 8 by the orbital motion is obtained by differentiating V 1a , and letting the radius of the sprockets 5 and 6 be r, α 1a =-
V 1 2 · sin θ / r + V 1 ′ · cos θ, and now V 1 is constant and V 1 ′ = 0, so α 1a =
A -V 1 2 · sinθ / r.

【0006】そして、重力加速度(g=9.8m/s2
を加味した連結子8に生じるトータルの垂直加速度成分
α1 は、上方の従動スプロケツト6側では、α1=9.8
−V1 2・sinθ/r(m/s2)となる。
Gravity acceleration (g = 9.8 m / s 2 )
The total vertical acceleration component α 1 generated in the connector 8 in which the above is added is α 1 = 9.8 on the upper driven sprocket 6 side.
−V 1 2 · sin θ / r (m / s 2 ).

【0007】ここで、スプロケツト5、6の半径rを
0.091mとして、従動スプロケツト6側におけるス
プロケツト角度θが0゜から180゜における垂直加速
度成分α1 を演算すると、図4(A)の特性線cのよう
に変化する。
Here, the radius r of the sprockets 5 and 6 is
When the vertical acceleration component α 1 when the sprocket angle θ on the driven sprocket 6 side is 0 ° to 180 ° is calculated as 0.091 m, it changes as shown by the characteristic line c in FIG. 4 (A).

【0008】特に、本例のように、スプロケツトの半径
rが比較的小さくて、周回運動に伴う垂直加速度成分α
1aの最大値が1gを超えると、特性線cから明らかなよ
うに、スプロケツト角度θが約40゜と140゜のとこ
ろで、連結子8に生じる垂直加速度成分α1 の向きが上
下に反転して、連結子8に連結された摺動体2に加わる
力の向きが反転し、それによつて摺動体2が損傷を受け
やすい。
In particular, as in this example, the radius r of the sprocket is relatively small, and the vertical acceleration component α associated with the orbiting motion is α.
When the maximum value of 1a exceeds 1 g, as is clear from the characteristic line c, the direction of the vertical acceleration component α 1 generated in the connector 8 is inverted up and down at the sprocket angle θ of about 40 ° and 140 °. , The direction of the force applied to the slide body 2 connected to the connector 8 is reversed, and the slide body 2 is easily damaged.

【0009】下方の駆動スプロケツト5側において連結
子8に生じるトータルの垂直加速度成分α1 は、周回運
動に伴う垂直加速度成分α1aの向きが上方の従動スプロ
ケツト6側とは逆となるから、α1=9.8+V1 2・sin
θ/r(m/s2)となり、図4(B)の特性線dのよ
うになる。
The total vertical acceleration component α 1 generated in the connector 8 on the lower drive sprocket 5 side is opposite to that of the upper driven sprocket 6 side because the direction of the vertical acceleration component α 1a accompanying the orbiting motion is opposite. 1 = 9.8 + V 1 2 · sin
θ / r (m / s 2 ), which is as shown by the characteristic line d in FIG. 4 (B).

【0010】この場合は、途中で垂直加速度成分α1
上下に反転することはないものの、ピークでは、重力加
速度gの2倍を十分に超えた下向きの垂直加速度成分α
1 が生じることとなつて、摺動体2に大きな力が作用
し、同じく摺動体2が損傷を受ける原因となつていた。
In this case, although the vertical acceleration component α 1 is not vertically inverted in the middle, at the peak, the downward vertical acceleration component α sufficiently exceeding twice the gravitational acceleration g.
The occurrence of 1 causes a large force to act on the sliding body 2 and also causes the sliding body 2 to be damaged.

【0011】[0011]

【課題を解決するための手段】本発明の塗装用レシプロ
ケータの速度制御方法は、叙上の点に鑑み完成されたも
のであつて、連結子が各スプロケツトを通過する際の速
度が、その連結子が無端チエーンの直線走行部を走行す
る際の速度に対して、その各スプロケツトの頂点部分の
通過時を最小値として次第に減速されるように、無端チ
エーンの循環走行速度を制御する構成とした。
The speed control method for a coating reciprocator of the present invention has been completed in view of the above points, and the speed at which the connector passes each sprocket is With respect to the speed at which the connector travels in the straight running part of the endless chain, the circulation running speed of the endless chain is controlled so that the speed is gradually reduced with the minimum value when passing through the top part of each sprocket. did.

【0012】[0012]

【作用】連結子がスプロケツトを通過する際に受ける垂
直加速度成分は、重力加速度と、周回運動に伴つて生ず
る垂直加速度成分の和として表される。
The vertical acceleration component that the connector receives when passing through the sprocket is expressed as the sum of the gravitational acceleration and the vertical acceleration component that accompanies the orbital motion.

【0013】本発明では、連結子がスプロケツトを通過
する際の速度を、スプロケツトの頂点部分を最小値とし
て次第に減速されるように制御することによつて、周回
運動に伴う垂直加速度成分のピークが抑えられる。
In the present invention, by controlling the speed at which the connector passes through the sprocket so as to be gradually decelerated with the apex portion of the sprocket as a minimum value, the peak of the vertical acceleration component due to the orbital motion is reduced. It can be suppressed.

【0014】上側のスプロケツトでは、重力加速度とは
逆向きである、周回運動に伴う上向きの垂直加速度成分
が抑えられることにより、重力加速度を加味したトータ
ルの垂直加速度成分が途中で上下反転するを阻止するこ
とが可能となる。
In the upper sprocket, the upward vertical acceleration component due to the orbiting motion, which is in the opposite direction to the gravitational acceleration, is suppressed, so that the total vertical acceleration component in consideration of the gravitational acceleration is prevented from vertically inverting. It becomes possible to do.

【0015】下側のスプロケツトでは、重力加速度と同
じ向きである、周回運動に伴う下向きの垂直加速度成分
が抑えられることにより、重力加速度を加味したトータ
ルの垂直加速度成分のピークを低減することかできる。
In the lower sprocket, the downward vertical acceleration component due to the orbiting motion, which is in the same direction as the gravitational acceleration, is suppressed, so that the peak of the total vertical acceleration component in consideration of the gravitational acceleration can be reduced. .

【0016】それにより、連結子に接続された摺動体に
加わる負荷が軽減される。
As a result, the load applied to the sliding body connected to the connector is reduced.

【0017】[0017]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。まず、図1〜図4によつて、第1実施例を説
明する。本第1実施例では、無端チエーン7の速度を、
連結子8が無端チエーン7の両直線走行部を走行する間
は、従来と同じ1.167 m/sとする一方、連結子8
がスプロケツト5、6を通過する間の速度V2 を、図2
の特性線Aに示すように、スプロケツト角度θが0゜付
近から80゜付近に向かつて次第に減速して、80゜か
ら100゜付近まで約0.787m/s の速度を保ち、
そこから180゜付近に向かつて次第に元の速度に戻る
ように制御した。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a first embodiment will be described with reference to FIGS. In the first embodiment, the speed of the endless chain 7 is
While the connector 8 travels on both straight running parts of the endless chain 7, the speed is 1.167 m / s, which is the same as the conventional one, while the connector 8
The velocity V 2 during the passage of the sprockets 5 and 6 as shown in FIG.
As shown by the characteristic line A, the sprocket angle θ gradually decelerates from about 0 ° to about 80 ° and maintains a speed of about 0.787 m / s from 80 ° to about 100 °.
From there, it was controlled to gradually return to the original speed toward 180 °.

【0018】このように減速制御された周速度V2 の垂
直成分V2aは、V2a=V2・cosθであつて、図3の特性
線Bのように変化する。
The vertical component V 2a of the peripheral velocity V 2 thus decelerated and controlled is V 2a = V 2 · cos θ and changes as shown by the characteristic line B in FIG.

【0019】そして、連結子8が上方の従動スプロケツ
ト6を周回するのに伴う加速度の変化は、図4(A)の
特性線Eのようになり、その周回運動によつて連結子8
に生ずる垂直加速度成分と重力加速度gの和α2 は、既
述した計算式に倣つて、α2=9.8−V2 2・sinθ/r
+V2′・cosθ(m/s2) で表されるから、その演算
結果をプロツトすると、同図の特性線Cが得られる。
The change in acceleration as the connector 8 orbits the upper driven sprocket 6 becomes as shown by the characteristic line E in FIG. 4 (A), and the orbiting motion causes the connector 8 to move.
The sum α 2 of the vertical acceleration component and the gravitational acceleration g that occurs in α is calculated by α 2 = 9.8−V 2 2 · sin θ / r according to the above-described calculation formula.
Since it is represented by + V 2 ′ · cos θ (m / s 2 ), the characteristic line C in the figure is obtained by plotting the calculation result.

【0020】同図から、本実施例の垂直加速度成分α2
の特性線Cと、従来の特性線cとを比較すると、従来の
特性線cでは、既述したように、途中で垂直加速度成分
α1の向きが上下反転するのに対して、本実施例では、
垂直加速度成分α2 のピーク値が略±0に抑えられて、
向きが反転するのが阻止されている。
From the figure, the vertical acceleration component α 2 of this embodiment is
Comparing the characteristic line C of 1 with the conventional characteristic line c, in the conventional characteristic line c, the direction of the vertical acceleration component α 1 is inverted up and down in the middle, as described above. Then
The peak value of the vertical acceleration component α 2 is suppressed to approximately ± 0,
The direction has been prevented from reversing.

【0021】これは、連結子8が従動スプロケツト6を
通過する際に上記のように減速制御することにより、周
回運動に伴う上向きの垂直加速度成分のピーク値が、重
力加速度gを超えることのない1g以内に抑えられた結
果である。
This is because by controlling the deceleration as described above when the connector 8 passes through the driven sprocket 6, the peak value of the upward vertical acceleration component accompanying the orbital motion does not exceed the gravitational acceleration g. This is the result of being suppressed within 1 g.

【0022】また、連結子8が下方の駆動スプロケツト
5を周回するのに伴う加速度の変化は図4(B)の特性
線Fのようになり、その周回運動によつて連結子8に生
ずる垂直加速度成分と重力加速度gの和α2 は、α2
9.8+V2 2・sinθ/r−V2′・cosθ(m/s2) と
なり、その演算結果をプロツトした特性線は、同図のD
のようになる。
Further, the change in acceleration as the connector 8 orbits the lower drive sprocket 5 becomes as shown by the characteristic line F in FIG. 4 (B), and the orbital motion causes a vertical change in the connector 8. The sum α 2 of the acceleration component and the gravitational acceleration g is α 2 =
9.8 + V 2 2 · sin θ / r−V 2 ′ · cos θ (m / s 2 ) and the characteristic line plotting the calculation result is D in the same figure.
become that way.

【0023】これを従来の特性線dと比較すると、減速
制御したことにより、重力加速度gと同じ向きに生ずる
周回運動に伴う垂直加速度成分のピーク値が抑えらて、
重力加速度gを加わえたトータルの垂直加速度成分α2
のピーク値が重力加速度gの2倍以内に抑えられてい
る。
Comparing this with the conventional characteristic line d, the deceleration control suppresses the peak value of the vertical acceleration component due to the orbiting motion occurring in the same direction as the gravitational acceleration g,
Total vertical acceleration component α 2 with gravitational acceleration g added
The peak value of is suppressed within twice the gravitational acceleration g.

【0024】このように、本実施例によれば、上方の従
動スプロケツト6側では、垂直加速度成分の向きが途中
で反転するのが阻止され、また、下方の駆動スプロケツ
ト5側では、下向きの垂直加速度成分のピーク値が抑え
られて、夫々摺動体8に加わる負荷が軽減される。
As described above, according to this embodiment, the upper driven sprocket 6 side is prevented from reversing the direction of the vertical acceleration component on the way, and the lower driven sprocket 5 side is directed downward. The peak value of the acceleration component is suppressed, and the load applied to the sliding body 8 is reduced.

【0025】なお、スプロケツト5、6を周回する場合
の所要時間が、従来の定速時には0.245秒であるの
に対して、本実施例のように減速制御すると、0.29
0秒に増大するが、その差は僅かに0.045秒であつ
て影響はきわめて小さい。
It should be noted that the time required to orbit the sprockets 5 and 6 is 0.245 seconds at the conventional constant speed, whereas the deceleration control as in the present embodiment is 0.29 seconds.
Although it increases to 0 seconds, the difference is only 0.045 seconds and the influence is extremely small.

【0026】続いて、第2実施例を図1及び図5〜図7
によつて説明する。本第2実施例では、無端チエーン7
の制御速度V2 を、図5の特性線A′に示すように、連
結子8がスプロケツト5、6を通過する少し手前のスプ
ロケツト角度θが−35゜付近から40゜付近に向かつ
て次第に減速して、40゜から140゜付近まで約0.
938m/s の速度を保ち、そこから連結子8がスプ
ロケツト5、6を超えた215゜付近に向かつて次第に
元の定速に戻るように制御した。この場合の周速度V2
の垂直成分V2aは、図6の特性線B′のように変化す
る。
Subsequently, the second embodiment will be described with reference to FIGS. 1 and 5 to 7.
Will be explained. In the second embodiment, the endless chain 7
As shown by the characteristic line A'in FIG. 5, the control speed V 2 of the sloping speed is gradually reduced from a sprocket angle θ of a little before the connector 8 passes the sprockets 5 and 6 to about 40 °. Then, from 40 ° to around 140 °, it is about 0.
The speed was maintained at 938 m / s, and from there, the connector 8 was controlled so as to gradually return to the original constant speed toward 215 ° beyond the sprockets 5 and 6. Peripheral speed V 2 in this case
The vertical component V 2a of V changes as shown by the characteristic line B ′ in FIG.

【0027】そして、連結子8が上方の従動スプロケツ
ト6とその付近を通過する際の加速度の変化は、図7
(A)の特性線E′のようになつて、その運動によつて
連結子8に生ずる垂直加速度成分と重力加速度gの和α
2 の特性線は、同図のC′のようになり、前記の第1実
施例と同様に、垂直加速度成分α2 のピーク値が略±0
に抑えられて、向きが反転するのが阻止されている。
The change in acceleration when the connector 8 passes through the upper driven sprocket 6 and its vicinity is shown in FIG.
As shown by the characteristic line E ′ in (A), the sum α of the vertical acceleration component and the gravitational acceleration g generated in the connector 8 due to the movement
The characteristic line 2 is as shown by C'in the figure, and the peak value of the vertical acceleration component α 2 is approximately ± 0, as in the first embodiment.
It is held down to prevent the direction from being reversed.

【0028】また、連結子8が下方の駆動スプロケツト
5とその付近を通過する際の加速度の変化は、図7
(B)の特性線F′のようになつて、その運動によつて
連結子8に生ずる垂直加速度成分と重力加速度gの和α
2 の特性線は、同図のD′のようになり、そのピーク値
が重力加速度gの2倍以内と小さく抑えられている。
The change in acceleration when the connector 8 passes through the lower drive sprocket 5 and its vicinity is shown in FIG.
As shown by the characteristic line F ′ in (B), the sum α of the vertical acceleration component and the gravitational acceleration g generated in the connector 8 due to the movement α
The characteristic line of No. 2 is as shown by D'in the figure, and its peak value is suppressed to be as small as twice the gravitational acceleration g or less.

【0029】本第2実施例でも、減速制御に伴つてスプ
ロケツト5、6とその付近を通過する場合の所要時間
が、従来の定速時の0.368秒から0.416秒に変わ
るが、その差は僅かに0.048秒であつて同様に影響
は小さい。
Also in the second embodiment, the time required to pass through the sprockets 5 and 6 and its vicinity in accordance with the deceleration control changes from 0.368 seconds at the conventional constant speed to 0.416 seconds. The difference is only 0.048 seconds, and the influence is small as well.

【0030】[0030]

【発明の効果】以上具体的に説明したように、本発明方
法によれば、上側のスプロケツトでは垂直加速度成分が
途中で上下反転するのを阻止でき、また、下側のスプロ
ケツトでは下向きの垂直加速度成分のピークを低減する
ことができて、夫々、連結子に接続された摺動体に加わ
る負荷を軽減することができる。
As described above in detail, according to the method of the present invention, it is possible to prevent the vertical acceleration component from being vertically inverted in the upper sprocket, and the vertical acceleration downward in the lower sprocket. The peak of the component can be reduced, and the load applied to the sliding body connected to the connector can be reduced.

【0031】それにより、従来と同じ構造のレシプロケ
ータに本発明方法を適用すれば、摺動体すなわちレシプ
ロケータの耐用寿命を延ばすことができ、あるいは、摺
動体への負荷が減る分搭載重量を増すことができる。
Therefore, if the method of the present invention is applied to a reciprocator having the same structure as the conventional one, the service life of the sliding body, that is, the reciprocator can be extended, or the load on the sliding body is reduced, and the mounting weight is increased. be able to.

【0032】また、新規構造とする場合には、摺動体の
構造を簡略化でき、あるいは、スプロケツトの小型化を
図ることができる効果がある。
Further, in the case of the new structure, there is an effect that the structure of the sliding member can be simplified or the sprocket can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を適用する縦型レシプロケータの構
成図である。
FIG. 1 is a configuration diagram of a vertical reciprocator to which the method of the present invention is applied.

【図2】第1実施例に係るチエーン速度のグラフであ
る。
FIG. 2 is a graph of chain velocity according to the first embodiment.

【図3】その垂直速度成分のグラフである。FIG. 3 is a graph of the vertical velocity component.

【図4】(A)その従動スプロケツト側の加速度のグラ
フである。
FIG. 4A is a graph of acceleration on the driven sprocket side.

【図4】(B)その駆動スプロケツト側の加速度のグラ
フである。
FIG. 4B is a graph of acceleration on the drive sprocket side.

【図5】第2実施例に係るチエーン速度のグラフであ
る。
FIG. 5 is a graph of chain velocity according to the second embodiment.

【図6】その垂直速度成分のグラフである。FIG. 6 is a graph of the vertical velocity component.

【図7】(A)その従動スプロケツト側の加速度のグラ
フである。
FIG. 7A is a graph of acceleration on the driven sprocket side.

【図7】(B)その駆動スプロケツト側の加速度のグラ
フである。
FIG. 7B is a graph of acceleration on the drive sprocket side.

【符号の説明】[Explanation of symbols]

1:ガイドレール 2:摺動体 4:スプレイガン
5:駆動スプロケツト 6:従動スプロケツト 7:無端チエーン 8:連結子
9:横溝 10:モータ
1: Guide rail 2: Sliding body 4: Spray gun
5: drive sprocket 6: driven sprocket 7: endless chain 8: connector 9: lateral groove 10: motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スプレイガンを取り付けた摺動体を昇降
自由に嵌装した縦向きのガイドレールの側方に、上下一
対の駆動スプロケツトと従動スプロケツトとの間に掛け
回された無端チエーンを配設して、該無端チエーンに突
設した連結子を前記摺動体に対して横向きの移動自由に
連結し、前記無端チエーンを一方向に循環走行させるこ
とにより、前記連結子を前記摺動体内で移動させつつ該
摺動体を前記ガイドレールに沿つて昇降させて、前記ス
プレイガンを一定のストロークで往復昇降させるように
した塗装用レシプロケータにおいて、 前記連結子が前記各スプロケツトを通過する際の速度
が、該連結子が前記無端チエーンの直線走行部を走行す
る際の速度に対して、該各スプロケツトの頂点部分の通
過時を最小値として次第に減速されるように、前記無端
チエーンの循環走行速度を制御することを特徴とする塗
装用レシプロケータの速度制御方法。
1. An endless chain hung between a pair of upper and lower drive sprockets and a driven sprocket is provided on the side of a vertically oriented guide rail in which a sliding body having a spray gun is fitted to freely move up and down. Then, the connector protruding from the endless chain is connected to the slide body so as to be movable laterally, and the endless chain is circulated in one direction to move the connector in the slide body. In the coating reciprocator, in which the sliding body is moved up and down along the guide rail while being reciprocally moved up and down with a constant stroke, the speed at which the connector passes through each sprocket is , The speed at which the connector travels along the straight running portion of the endless chain is gradually reduced with the minimum value when passing through the apex portion of each sprocket. Sea urchin, the speed control method of painting reciprocator, characterized by controlling the circulation speed of the endless chain.
JP4280785A 1992-09-24 1992-09-24 Speed control method of reciprocator for painting Expired - Fee Related JP2829467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4280785A JP2829467B2 (en) 1992-09-24 1992-09-24 Speed control method of reciprocator for painting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4280785A JP2829467B2 (en) 1992-09-24 1992-09-24 Speed control method of reciprocator for painting

Publications (2)

Publication Number Publication Date
JPH0699126A true JPH0699126A (en) 1994-04-12
JP2829467B2 JP2829467B2 (en) 1998-11-25

Family

ID=17629928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4280785A Expired - Fee Related JP2829467B2 (en) 1992-09-24 1992-09-24 Speed control method of reciprocator for painting

Country Status (1)

Country Link
JP (1) JP2829467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209217A (en) * 2014-08-15 2014-12-17 浙江德清莱恩斯涂装设备有限公司 Lifting connecting chain of lifter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001515A (en) * 2019-12-31 2020-04-14 徐州汉裕铝业有限公司 Graphite spraying device for aluminum casting and rolling production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174971A (en) * 1988-12-28 1990-07-06 Trinity Ind Corp Painting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174971A (en) * 1988-12-28 1990-07-06 Trinity Ind Corp Painting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209217A (en) * 2014-08-15 2014-12-17 浙江德清莱恩斯涂装设备有限公司 Lifting connecting chain of lifter
CN104209217B (en) * 2014-08-15 2017-03-15 嘉世达电梯有限公司 A kind of lifting long, rectangular bag sewn up at both ends with an opening in the middle of lift

Also Published As

Publication number Publication date
JP2829467B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US6011455A (en) Wall surface absorption type moving device and magnet driving method of the wall surface absorption type moving device
US4574941A (en) Workpiece conveying apparatus
DE69211054T2 (en) Device for rotating driven workpiece pallets
CN110844769A (en) Rigid anti-swing lifting device suitable for crane
JPH0699126A (en) Control of speed of painting reciprocator
JPH09142774A (en) Method and device for preventing swing of lifted load for container crane
CN107458160B (en) Active-passive variable-rigidity independent suspension supporting mechanism
KR950005841B1 (en) Reciprocating device
JPH06171877A (en) Guide mechanism for passenger conveyor
JP3054290B2 (en) Reciprocating coating equipment
JPH074562B2 (en) Reciprocator for painting
KR102640865B1 (en) Actuator of double speed transportable for belt type
US6216602B1 (en) Balance control mechanism for overhead traveling carrier
JPH08324716A (en) Speed control method for stacker crane
JPH034259B2 (en)
KR100224866B1 (en) Robot for handling workpiece
JPH02174971A (en) Painting method
CN115872114A (en) Traveling mechanism
KR20100123251A (en) Autonomous travelling device for hull
JPS6253814A (en) Lateral stretching machine
JPH062770Y2 (en) Automatic painting equipment
SU624836A1 (en) Stepping conveyer
JPH0439951Y2 (en)
JP2592185Y2 (en) Reciprocating coating equipment
SU601326A1 (en) Automatically operated electroplating line

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100925

LAPS Cancellation because of no payment of annual fees