JPH0697657B2 - Amorphous thin film forming equipment - Google Patents

Amorphous thin film forming equipment

Info

Publication number
JPH0697657B2
JPH0697657B2 JP61106313A JP10631386A JPH0697657B2 JP H0697657 B2 JPH0697657 B2 JP H0697657B2 JP 61106313 A JP61106313 A JP 61106313A JP 10631386 A JP10631386 A JP 10631386A JP H0697657 B2 JPH0697657 B2 JP H0697657B2
Authority
JP
Japan
Prior art keywords
thin film
amorphous thin
discharge
electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61106313A
Other languages
Japanese (ja)
Other versions
JPS62263234A (en
Inventor
寛 藤山
正義 村田
鷹司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61106313A priority Critical patent/JPH0697657B2/en
Priority to DE3750349T priority patent/DE3750349T2/en
Priority to EP87106535A priority patent/EP0244842B1/en
Priority to CA000536654A priority patent/CA1279411C/en
Priority to KR1019870004508A priority patent/KR910002819B1/en
Priority to US07/047,328 priority patent/US4901669A/en
Publication of JPS62263234A publication Critical patent/JPS62263234A/en
Priority to KR1019900021941A priority patent/KR910010168B1/en
Publication of JPH0697657B2 publication Critical patent/JPH0697657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,太陽電池,燃料電池,薄膜半導体,電子写真
感光体や光センサなどの,各種電子デバイスに使用され
る非晶質薄膜の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the production of amorphous thin films used in various electronic devices such as solar cells, fuel cells, thin film semiconductors, electrophotographic photoreceptors and photosensors. It relates to the device.

〔従来の技術〕[Conventional technology]

第2図には,従来より用いられている半導体薄膜の製造
装置を示しており,たとえば,特開昭57-04771号公報な
どに記載されている公知の技術である。
FIG. 2 shows a conventional semiconductor thin film manufacturing apparatus, which is a known technique described in, for example, JP-A-57-04771.

図において,気密の反応容器01内に放電空間を形成する
ための電極02,03が上下方向に設けてあり,この電極02,
03は高周波電源04に電気的に接続されている。上記反応
容器01の外周には,上記放電空間内の電界方向と平行な
磁界を発生させるためのコイル05が水平に配置されてお
り,交流電源06と電気的に接続されている。排気孔07は
図示しない真空ポンプに連通しており,反応ガス導入管
08は,モノシラン(SiH4)と水素ガス(H2)のボンベにそれ
ぞれ連通している。なお,09はヒータで,基板010を加熱
するものである。
In the figure, electrodes 02, 03 for forming a discharge space are provided vertically in an airtight reaction vessel 01.
03 is electrically connected to the high frequency power supply 04. A coil 05 for generating a magnetic field parallel to the electric field direction in the discharge space is horizontally arranged on the outer periphery of the reaction vessel 01, and is electrically connected to an AC power source 06. The exhaust hole 07 communicates with a vacuum pump (not shown), and a reaction gas introduction pipe
08 communicates with the monosilane (SiH 4 ) and hydrogen gas (H 2 ) cylinders, respectively. A heater 09 heats the substrate 010.

さて,電極03上に基板010を載せ,反応容器01内を1mmHg
程度に減圧した後,モノシランと水素ガスとの混合ガス
を反応ガス導入管08より反応容器01内に供給しつつ,電
極02,03間に13.5MHzの高周波電圧を印加する。
Now, place the substrate 010 on the electrode 03, and set the inside of the reaction vessel 01 to 1 mmHg.
After reducing the pressure to some extent, a high frequency voltage of 13.5 MHz is applied between the electrodes 02 and 03 while supplying a mixed gas of monosilane and hydrogen gas into the reaction container 01 through the reaction gas introduction pipe 08.

一方,コイル05には,50あるいは60Hzの商業用交流電圧
を印加し,電極02,03間に約100ガウスの磁界を発生させ
る。なお,基板010は,ヒータ09により300℃程度に加熱
しておく。
On the other hand, a commercial AC voltage of 50 or 60 Hz is applied to the coil 05 to generate a magnetic field of about 100 gauss between the electrodes 02 and 03. The substrate 010 is heated to about 300 ° C. by the heater 09.

反応ガス導入管08より反応容器01内に導入されたモノシ
ラン等のガスは,電極02,03間の放電空間で分解され,
コイル05により発生された変動する磁界により攪拌され
つつ基板010の表面に付着し,非晶質薄膜を形成する。
The gas such as monosilane introduced into the reaction vessel 01 through the reaction gas introduction pipe 08 is decomposed in the discharge space between the electrodes 02 and 03,
The amorphous magnetic thin film is formed by adhering to the surface of the substrate 010 while being stirred by the fluctuating magnetic field generated by the coil 05.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した従来の装置では,2枚の電極02,03間に発生する
電界の方向と平行にコイル05で発生させた変動磁界を印
加するので,電極02,03間の放電空間に存在するシリコ
ン等のイオンが攪拌され,基板010上に比較的均一な非
晶質薄膜が形成される。
In the above-mentioned conventional device, since the fluctuating magnetic field generated by the coil 05 is applied in parallel to the direction of the electric field generated between the two electrodes 02 and 03, silicon or the like existing in the discharge space between the electrodes 02 and 03 is applied. Ions are agitated to form a relatively uniform amorphous thin film on the substrate 010.

しかし, 基板010が置かれる場所は,電極03の上であり,電極0
2,03間の放電空間内に位置することになる。このため,
基本的に高エネルギーをもつイオンの直撃を受けること
になる。
However, the place where the substrate 010 is placed is on the electrode 03, and the electrode 0
It will be located in the discharge space between 2,03. For this reason,
Basically, you will be directly hit by ions with high energy.

すなわち,電極02,03間の電界Eにより電荷qのイオン
にはクーロン力F1=qEが働き,イオン粒子が基板010を
直撃して形成されつつある非晶質薄膜に損傷を与えるこ
とになる。
That is, due to the electric field E between the electrodes 02 and 03, the Coulomb force F 1 = qE acts on the ions of the charge q, and the ion particles directly hit the substrate 010 to damage the amorphous thin film that is being formed. .

コイル05により発生される変動磁界Bの方向が,放電
空間に発生した電界Eに平行なため,放電空間内にある
イオン,および電子はLarmor運動により旋回運動を引き
起こされるが,その旋回運動による攪拌作用は余り大き
くなく極めて大きな電力を必要とする。
Since the direction of the fluctuating magnetic field B generated by the coil 05 is parallel to the electric field E generated in the discharge space, the ions and electrons in the discharge space are swirled by the Larmor motion. The action is not very large and requires extremely high power.

基板010が一方の電極の上に載せられるので,一度に
処理される基板010の大きさも限定されることになり,
電極より面積の大きな基板010に非晶質薄膜を形成する
ことができない。
Since the substrate 010 is placed on one of the electrodes, the size of the substrate 010 processed at one time is also limited,
An amorphous thin film cannot be formed on the substrate 010 having a larger area than the electrodes.

基板010が一方の電極の上に載せられるので,放電自
続に必要な二次電子の供給が本質的となる直流放電や低
周波放電では大面積基板上に均一な成膜を行うことが困
難である。従って,高価な高周波電源がどうしても必要
となる。
Since the substrate 010 is placed on one of the electrodes, it is difficult to form a uniform film on a large-area substrate by DC discharge or low-frequency discharge in which secondary electrons necessary for self-sustaining the discharge are essential. Is. Therefore, an expensive high frequency power source is indispensable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は,グロー放電プラズマを用いて非晶質薄膜を形
成する装置であって,筒状の反応容器と,同容器内を減
圧し反応ガスを導入する手段と,上記反応容器内へ該容
器の軸芯に沿って,互いに平行に相対して収納された放
電用電極と,同放電用電極にグロー放電用電圧を供給す
る低周波電源と,上記容器の少なくとも一部分の壁面に
沿って磁極を交互に変えて並べられた複数個の永久磁石
と,上記反応容器の軸芯と平行な軸芯を有して該反応容
器を囲繞するコイルと,同コイルに磁界発生用の電流を
供給する交流電源と,上記放電電界空間外で該電界と平
行に非晶質薄膜形成用の基板を支持する支持手段とを有
するものである。
The present invention is an apparatus for forming an amorphous thin film by using glow discharge plasma, comprising a cylindrical reaction container, means for decompressing the inside of the container and introducing a reaction gas, and the container into the reaction container. A discharge electrode housed in parallel with each other along the axis of, a low-frequency power source for supplying a glow discharge voltage to the discharge electrode, and a magnetic pole along a wall surface of at least a part of the container. A plurality of permanent magnets that are alternately arranged, a coil that has an axis parallel to the axis of the reaction vessel and surrounds the reaction vessel, and an alternating current that supplies a current for generating a magnetic field to the coil It has a power source and a supporting means for supporting the substrate for forming the amorphous thin film outside the discharge electric field space in parallel with the electric field.

〔作用〕[Action]

本発明の装置でも,電極間に低周波電源を加えることに
よりグロー放電プラズマを発生させる訳であるが,電極
を収納する反応容器の壁に沿って永久磁石をその磁極を
交互に変えて並べたので,グロー放電プラズマは表面磁
界により反応容器内に封じ込められ,容器壁での荷電粒
子の表面再結合が防止されることになり,ラジカル粒子
の発生率が増加する。
Even in the apparatus of the present invention, glow discharge plasma is generated by applying a low-frequency power supply between the electrodes. Permanent magnets are arranged alternately with their magnetic poles along the wall of the reaction vessel accommodating the electrodes. Therefore, the glow discharge plasma is confined in the reaction vessel by the surface magnetic field, the surface recombination of charged particles on the vessel wall is prevented, and the generation rate of radical particles increases.

また,電極間の放電用電界と直交する方向にコイルによ
り磁界を印加した。従って,荷電粒子は,放電用電界よ
り与えられたクーロン力と,磁界により与えられたロー
レンツ力に初速を与えられた形で電界と直交する方向に
ドリフトするが,電界空間を出たところでクーロン力は
弱まりローレンツ力によるサイクロトロン運動によるLa
rmor軌道を描いて飛んでいく。
A magnetic field was applied by a coil in the direction perpendicular to the electric field for discharge between the electrodes. Therefore, the charged particles drift in the direction orthogonal to the electric field in a form in which the Coulomb force given by the electric field for discharge and the Lorentz force given by the magnetic field are given an initial velocity, but the Coulomb force leaves the electric field space. Is weakened La by cyclotron motion due to Lorentz force
rmor Orbit and fly.

一方,電気的に中性であるラジカル粒子は荷電粒子群の
軌道からそれて直進するが,荷電粒子(特にイオン)と
衝突しその進路を修正させられる。しかも,この磁界は
変動しており,ラジカル粒子は均一に飛散する。
On the other hand, electrically neutral radical particles move straight from the orbit of the charged particle group, but collide with charged particles (particularly ions) to correct their path. Moreover, this magnetic field is fluctuating, and the radical particles are evenly scattered.

従って,放電電界空間外へ該電界と平行的に支持された
基板の表面には,均一な非晶質薄膜が形成されることに
なる。
Therefore, a uniform amorphous thin film is formed on the surface of the substrate supported outside the discharge electric field space in parallel with the electric field.

〔実施例〕〔Example〕

以下,本発明を第1図に示す一実施例の装置に基づき説
明する。
The present invention will be described below based on the apparatus of one embodiment shown in FIG.

1は反応容器で,その中にグロー放電プラズマを発生さ
せるための電極2・3が平行に配置されている。4は低
周波電源で,例えば60Hzの商用周波数を用い放電抵抗12
を介して上記電極2・3に接続されている。コイル5
は,上記反応容器1を囲繞するもので,交流電源6に接
続されている。7は反応ガス導入管で,図示しないボン
ベに連通し,モノシランとアルゴンの混合ガスを上記反
応容器1に供給するものである。排気孔8は,真空ポン
プ9に連通しており,反応容器1内のガスを排気するも
のである。
Reference numeral 1 is a reaction vessel in which electrodes 2 and 3 for generating glow discharge plasma are arranged in parallel. 4 is a low frequency power supply, for example, a commercial frequency of 60 Hz
It is connected to the electrodes 2 and 3 via. Coil 5
Surrounds the reaction vessel 1 and is connected to an AC power supply 6. Reference numeral 7 denotes a reaction gas introduction pipe, which is connected to a cylinder (not shown) and supplies a mixed gas of monosilane and argon to the reaction container 1. The exhaust hole 8 communicates with the vacuum pump 9 and exhausts the gas in the reaction vessel 1.

11は永久磁石で,上記反応容器1の外面にその隣り合う
もの同士の磁極が異なるように(市松模様のように)張
り付けられている。
Reference numeral 11 denotes a permanent magnet, which is attached to the outer surface of the reaction container 1 so that the magnetic poles of adjacent ones are different (like a checkerboard pattern).

さて,図示しない支持手段により基板10を電極2・3の
面と直交する方向で,かつ,電極2・3が形成する放電
空間の外側に支持する。真空ポンプ9を駆動して反応容
器1内を排気した後,反応ガス導入管7からモノシラン
とアルゴンの混合ガスを供給する。上記混合ガスを反応
容器1内に充満させて圧力を0.05ないし0.5Torrに保
ち,低周波電源4から電極2・3に電圧を印加するとグ
ロー放電プラズマが電極2・3間に発生する。このプラ
ズマは反応容器1の外面に取り付けた永久磁石11により
反応容器1内に封じ込められ,反応容器1の内壁での荷
電粒子の表面再結合が防止され,プラズマ密度が増大す
るためラジカル粒子の発生率が増加する。
Now, the substrate 10 is supported by a supporting means (not shown) in the direction orthogonal to the surface of the electrodes 2 and 3 and outside the discharge space formed by the electrodes 2 and 3. After the vacuum pump 9 is driven to exhaust the inside of the reaction vessel 1, a mixed gas of monosilane and argon is supplied from the reaction gas introduction pipe 7. When the mixed gas is filled in the reaction vessel 1 to maintain the pressure at 0.05 to 0.5 Torr and a voltage is applied from the low frequency power source 4 to the electrodes 2 and 3, glow discharge plasma is generated between the electrodes 2 and 3. This plasma is confined in the reaction vessel 1 by the permanent magnet 11 attached to the outer surface of the reaction vessel 1, the surface recombination of charged particles on the inner wall of the reaction vessel 1 is prevented, and the plasma density increases, so that radical particles are generated. The rate increases.

一方,コイル5にはたとえば100Hzの交流電圧を印加
し,電極2・3間に発生する電界Eと直交する方向の磁
界Bを発生させる。なお,その磁界密度は10ガウス程度
で良い。
On the other hand, an AC voltage of 100 Hz, for example, is applied to the coil 5 to generate a magnetic field B in a direction orthogonal to the electric field E generated between the electrodes 2 and 3. The magnetic field density may be about 10 gauss.

反応ガス導入管7から供給されたガスのうちモノシラン
ガスは,電極2・3の間に生じるグロー放電プラズマで
ラジカルSiに分解され,基板10の表面に付着し薄膜を形
成する。
Of the gas supplied from the reaction gas introduction pipe 7, monosilane gas is decomposed into radical Si by glow discharge plasma generated between the electrodes 2 and 3, and adheres to the surface of the substrate 10 to form a thin film.

このとき,アルゴンイオン等の荷電粒子は,電極2・3
間で電界Eによるクーロン力F1=qEとローレンツ力F2
q(V×B)によっていわゆるE×Bドリフトの運動を
起こす。
At this time, charged particles such as argon ions will be absorbed by the electrodes 2 and 3.
Coulomb force F 1 = qE and Lorentz force F 2 = due to electric field E between
A so-called E × B drift motion is caused by q (V × B).

なお,Vは荷電粒子の速度である。V is the velocity of the charged particles.

すなわち,E×Bドリフトにより初速を与えられた形で,
電極2・3と直交する方向に飛び出し,基板10に向けて
飛んでいく。しかし,電極2・3間に生じる電界Eの影
響が小さい放電空間の外側では,コイル6により生じた
磁界Bによるサイクロトロン運動によりLarmor軌道を描
いて飛んでいく。
That is, in the form in which the initial velocity is given by the E × B drift,
It jumps out in a direction orthogonal to the electrodes 2 and 3 and flies toward the substrate 10. However, outside the discharge space where the influence of the electric field E generated between the electrodes 2 and 3 is small, the magnetic field B generated by the coil 6 causes a cyclotron motion to fly along a Larmor trajectory.

従って,アルゴンイオン等の荷電粒子が基板10を直撃す
ることはなくなる。
Therefore, charged particles such as argon ions do not hit the substrate 10 directly.

一方,電気的に中性であるラジカルSiは磁界Bの影響を
受けず,上記荷電粒子群の軌道よりそれて基板10に至
り,その表面に非晶質薄膜を形成する。この時,ラジカ
ルSiはLarmor軌道を飛んでゆく荷電粒子と衝突するた
め,電極2・3の前方だけでなく左あるいは右に広がっ
た形で非晶薄膜が形成される。しかも,磁界Bを変動さ
せているので,基板10の表面に均一に非晶質薄膜を形成
させることが可能となる。
On the other hand, the electrically neutral radicals Si are not affected by the magnetic field B, and deviate from the orbits of the charged particle groups to reach the substrate 10 and form an amorphous thin film on the surface thereof. At this time, since the radical Si collides with the charged particles flying in the Larmor orbit, an amorphous thin film is formed not only in front of the electrodes 2 and 3 but also to the left or right. Moreover, since the magnetic field B is changed, an amorphous thin film can be uniformly formed on the surface of the substrate 10.

なお,電極2・3の長さは,反応容器1の長さの許す限
り長くしても何等問題がないので,長尺な基板であって
もその表面に均一な非晶質薄膜を形成することが可能と
なる。
There is no problem if the lengths of the electrodes 2 and 3 are as long as the length of the reaction container 1 allows, so that a uniform amorphous thin film is formed on the surface of a long substrate. It becomes possible.

また,図示は省略するが,基板10を電極2・3の両側に
配置することにより,一度に2枚の大面積の非晶質薄膜
を形成することも可能であり,処理能率も向上する。
Although not shown, by disposing the substrate 10 on both sides of the electrodes 2 and 3, it is possible to form two large-area amorphous thin films at one time and the processing efficiency is improved.

〔発明の効果〕〔The invention's effect〕

本発明によれば,太陽電池・燃料電池・電子写真感光体
などの各種ディバイスの製造において,均一な非晶質薄
膜が,しかも,大面積のものが形成されることになるの
で,産業上きわめて価値がある。
According to the present invention, a uniform amorphous thin film having a large area can be formed in the production of various devices such as a solar cell, a fuel cell, and an electrophotographic photosensitive member. worth it.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る一実施例を示す装置の横断面図,
第2図は従来装置を示す側断面図である。 1……反応容器,2,3……電極,4……低周波電源,5……コ
イル,6……交流電源,7……反応ガス導入管,8……排気
孔,9……真空ポンプ,10……基板,11……永久磁石,12…
…放電抵抗。
FIG. 1 is a cross-sectional view of an apparatus showing one embodiment according to the present invention,
FIG. 2 is a side sectional view showing a conventional device. 1 …… Reaction container, 2,3 …… Electrode, 4 …… Low frequency power supply, 5 …… Coil, 6 …… AC power supply, 7 …… Reaction gas introduction pipe, 8 …… Exhaust hole, 9 …… Vacuum pump , 10 ... Substrate, 11 ... Permanent magnet, 12 ...
… Discharge resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】筒状の反応容器と、同容器内を減圧し反応
ガスを導入する手段と、上記反応容器内へ該容器の軸芯
に沿って互いに平行に相対して収納された放電用電極
と、同放電用電極にグロー放電用電圧を供給する低周波
電源と、上記容器の少なくとも一部分の壁面に沿って磁
極を交互に変えて並べられた複数個の永久磁石と、上記
反応容器の軸芯と平行な軸芯を有して該反応容器を囲繞
するコイルと、同コイルに磁界発生用の電流を供給する
交流電源と、上記放電電界空間外で該電界と平行に非晶
質薄膜形成用の基板を支持する支持手段とを有すること
を特徴とする非晶質薄膜形成装置。
1. A cylindrical reaction vessel, means for decompressing the inside of the vessel and introducing a reaction gas, and a discharge vessel housed in the reaction vessel parallel to each other along the axis of the vessel. An electrode, a low-frequency power source for supplying a glow discharge voltage to the discharge electrode, a plurality of permanent magnets arranged with alternating magnetic poles along the wall surface of at least a portion of the container, and the reaction container A coil having an axis parallel to the axis and surrounding the reaction vessel, an AC power supply for supplying a current for generating a magnetic field to the coil, and an amorphous thin film parallel to the electric field outside the discharge electric field space. An amorphous thin film forming apparatus comprising: a supporting unit that supports a substrate for formation.
JP61106313A 1986-05-09 1986-05-09 Amorphous thin film forming equipment Expired - Fee Related JPH0697657B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61106313A JPH0697657B2 (en) 1986-05-09 1986-05-09 Amorphous thin film forming equipment
DE3750349T DE3750349T2 (en) 1986-05-09 1987-05-06 Arrangement for the production of thin layers.
EP87106535A EP0244842B1 (en) 1986-05-09 1987-05-06 Apparatus for forming thin film
CA000536654A CA1279411C (en) 1986-05-09 1987-05-08 Method and apparatus for forming thin film
KR1019870004508A KR910002819B1 (en) 1986-05-09 1987-05-08 Forming method and device of amorphous thin film
US07/047,328 US4901669A (en) 1986-05-09 1987-05-08 Method and apparatus for forming thin film
KR1019900021941A KR910010168B1 (en) 1986-05-09 1990-12-27 Amorphous thin film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106313A JPH0697657B2 (en) 1986-05-09 1986-05-09 Amorphous thin film forming equipment

Publications (2)

Publication Number Publication Date
JPS62263234A JPS62263234A (en) 1987-11-16
JPH0697657B2 true JPH0697657B2 (en) 1994-11-30

Family

ID=14430493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106313A Expired - Fee Related JPH0697657B2 (en) 1986-05-09 1986-05-09 Amorphous thin film forming equipment

Country Status (1)

Country Link
JP (1) JPH0697657B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637006B2 (en) * 2011-02-23 2014-12-10 凸版印刷株式会社 Method for producing gas barrier film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742118A (en) * 1980-08-27 1982-03-09 Mitsubishi Electric Corp Plasma cvd device
JPS59187136U (en) * 1983-05-30 1984-12-12 三洋電機株式会社 Semiconductor thin film forming equipment

Also Published As

Publication number Publication date
JPS62263234A (en) 1987-11-16

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
US4891095A (en) Method and apparatus for plasma treatment
JP2989279B2 (en) Plasma CVD equipment
JPH0812856B2 (en) Plasma processing method and apparatus
JP2785442B2 (en) Plasma CVD equipment
TWI259037B (en) Neutral particle beam processing apparatus
EP0639939A1 (en) Fast atom beam source
KR910002819B1 (en) Forming method and device of amorphous thin film
JPH0760798B2 (en) Method and apparatus for forming amorphous thin film
JPH0697657B2 (en) Amorphous thin film forming equipment
KR0141465B1 (en) Plasma generating method & apparatus
JPH0670978B2 (en) Amorphous thin film forming equipment
KR910010168B1 (en) Amorphous thin film manufacturing device
JP2689419B2 (en) Ion doping equipment
JPH0576549B2 (en)
JPH0760797B2 (en) Amorphous thin film forming equipment
JPH07130497A (en) Plasma processing device
JPH07118463B2 (en) Plasma CVD equipment
JPH10172793A (en) Plasma generator
JP3368790B2 (en) Ion source device
JPH0633680Y2 (en) Electron cyclotron resonance plasma generator
JPH01230782A (en) Plasma cvd device
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPH0745540A (en) Chemical plasma evaporating device
JPS62260837A (en) Method of forming amorphous thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees