JPH0697533A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPH0697533A
JPH0697533A JP4243735A JP24373592A JPH0697533A JP H0697533 A JPH0697533 A JP H0697533A JP 4243735 A JP4243735 A JP 4243735A JP 24373592 A JP24373592 A JP 24373592A JP H0697533 A JPH0697533 A JP H0697533A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic field
small
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4243735A
Other languages
Japanese (ja)
Inventor
Koichiro Inomata
浩一郎 猪俣
Susumu Hashimoto
進 橋本
Yoshiaki Saito
好昭 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4243735A priority Critical patent/JPH0697533A/en
Publication of JPH0697533A publication Critical patent/JPH0697533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a magnetoresistance effect element wherein magnetoresistance change ratio is large, and saturation magnetic field and hysteresis are small, by alternately laminating magnetic layers of Co group or Ni group having magnetic anisolropy of cubic symmetry in a film surface and nonmagnetic layers. CONSTITUTION:A laminate 4 wherein magnetic layers 3 of Co group or Ni group having magnetic anisotropy of cubic symmetry in film surface and nonmagnetic layer 2 are alternately laminated is provided. When the magnetic layer 3 has magnetic anisotropy of cubic aymmetry in a film surface, two axes of easy magnetization exist in the film surface. By applying magnetic field to either axis direction, antiferromagnetic coupling is obtained via the nonmagnetic layer 2. Hence saturation magnetic field H2 becomes small as compared with the case of uniaxial magnetic anisotropy, and hysterisis also becomes small. That is, by providing the laminate 4 constituted of the magnetic films 3 and the nonmagnetic films 2, a magnetoresistance effect element wherein magnetoresistance change ratio is large and saturation magnetic field and hysteresis are small can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超薄膜の積層体、い
わゆる人工格子膜を利用した磁気抵抗効果素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element using an ultrathin film laminate, a so-called artificial lattice film.

【0002】[0002]

【従来の技術】磁気抵抗効果は、印加磁界の強度により
抵抗が変化する効果である。このような磁気抵抗効果を
利用した磁気抵抗効果素子は、高感度であり比較的大き
な出力を得ることができるため、磁界センサや磁気ヘッ
ドとして広く利用されている。
2. Description of the Related Art The magnetoresistive effect is an effect in which the resistance changes depending on the strength of an applied magnetic field. A magnetoresistive effect element utilizing such a magnetoresistive effect is widely used as a magnetic field sensor or a magnetic head because it has high sensitivity and can obtain a relatively large output.

【0003】従来、磁気抵抗効果型素子としてはパ−マ
ロイ合金薄膜が広く用いられている。しかし、パ−マロ
イ合金薄膜の磁気抵抗変化率(ΔR/R:Rは無磁場で
の電気抵抗、ΔRはRと飽和磁界印加時の電気抵抗RS
との差)は2〜3%程度であり、印加磁界に対する感度
が十分ではないという問題点がある。
Conventionally, permalloy alloy thin films have been widely used as magnetoresistive elements. However, the rate of change in magnetoresistance of the permalloy alloy thin film (ΔR / R: R is the electric resistance without a magnetic field, ΔR is R and the electric resistance R S when a saturation magnetic field is applied.
Is about 2 to 3%, and there is a problem that the sensitivity to an applied magnetic field is not sufficient.

【0004】一方、最近、新しい磁気抵抗効果素子とし
て、数オングストロ−ムから数十オングストロ−ムの厚
さの磁性層と非磁性層とを交互に積層させた積層体、い
わゆる人工格子膜が注目されている。このような人工格
子膜としては、 (Fe/Cr)n (Phys.Re
v.Lett.vol 61(21)(1988)2472)、(パ−マロイ/ C
u/Co/Cu)n (J.Phys.SOC.Jap.vol 59(9)(1990)
3061)、 (Co/Cu)n (J.Mag.Mag.Mat.
94(1991)L1,Phys.Rev.Lett.66(1991)2152)が知られて
いる。
On the other hand, recently, as a new magnetoresistive effect element, a so-called artificial lattice film in which a magnetic layer and a non-magnetic layer having a thickness of several angstroms to several tens of angstroms are alternately laminated has attracted attention. Has been done. As such an artificial lattice film, (Fe / Cr) n (Phys.Re
v.Lett.vol 61 (21) (1988) 2472), (Permalloy / C
u / Co / Cu) n (J.Phys.SOC.Jap.vol 59 (9) (1990)
3061), (Co / Cu) n (J.Mag.Mag.Mat.
94 (1991) L1, Phys. Rev. Lett. 66 (1991) 2152) are known.

【0005】このような人工格子膜は磁気抵抗変化率が
数10%と大きくこの点からすると磁気抵抗効果素子と
して適しているといえる。しかし、飽和磁界HS がパー
マロイの数Oe に対し、数kOe 〜数十kOe と大き
く、またヒステリシスが存在するため、磁気センサや磁
気ヘッドなどの小さな磁界を検出する用途に用いる場合
には十分な感度を得ることができない。
Such an artificial lattice film has a large magnetoresistance change rate of several tens%, and from this point, it can be said that it is suitable as a magnetoresistance effect element. However, since the saturation magnetic field H S is as large as several kOe to several tens of kOe with respect to the number Oe of permalloy, and there is hysteresis, it is sufficient when it is used for detecting a small magnetic field such as a magnetic sensor or a magnetic head. I can't get the sensitivity.

【0006】すなわち、磁気センサや磁気ヘッドなどの
用途を考慮した場合、飽和磁界を小さくして小さい磁界
で大きい磁気抵抗変化を得ること、およびヒステリシス
が小さいことが要求されるのである。
That is, in consideration of applications such as magnetic sensors and magnetic heads, it is required to reduce the saturation magnetic field to obtain a large magnetic resistance change with a small magnetic field and to have a small hysteresis.

【0007】[0007]

【発明が解決しようとする課題】この発明はこのような
状況を考慮してなされたものであり、磁気抵抗変化率が
大きく、飽和磁界およびヒステリシスが小さい磁気抵抗
効果素子を提供することを目的とする。
The present invention has been made in consideration of such a situation, and an object thereof is to provide a magnetoresistive effect element having a large rate of change in magnetoresistance, a small saturation magnetic field and a small hysteresis. To do.

【0008】[0008]

【課題を解決するための手段及び作用】この発明は、上
記課題を解決するために、膜面内で立方対称の磁気異方
性を有するCo基またはNi基の磁性層と、非磁性層と
が交互に積層された積層体を具備することを特徴とする
磁気抵抗効果素子を提供する。
In order to solve the above problems, the present invention provides a Co-based or Ni-based magnetic layer having a magnetic anisotropy of cubic symmetry in the film plane, and a non-magnetic layer. There is provided a magnetoresistive effect element comprising a laminated body in which the layers are alternately laminated.

【0009】このように、磁性層が膜面内に立方対称の
磁気異方性を有する場合、磁化容易軸が膜面内に2つ存
在するが、そのいずれかの方向に磁界を印加すれば、非
磁性層を介して反強磁性結合が得られることになるの
で、一軸磁気異方性を有する時より飽和磁界HS が小さ
くなり、かつヒステリシスも小さくなる。すなわち、こ
のような磁性膜と非磁性膜との積層体を具備することに
より、磁気抵抗変化率が大きく、飽和磁界及びヒステリ
シスが小さい磁気抵抗効果素子が得られる。このような
素子を磁気ヘッド、磁界センサなどとして用いる場合に
は、積層体に電極を形成し、積層体の電気抵抗を測定す
ることができるように構成すれば良い。
As described above, when the magnetic layer has cubic magnetic anisotropy in the film plane, there are two easy axes of magnetization in the film plane. If a magnetic field is applied in either direction, Since antiferromagnetic coupling is obtained through the non-magnetic layer, the saturation magnetic field H S becomes smaller and hysteresis also becomes smaller than when uniaxial magnetic anisotropy is provided. That is, by providing such a laminated body of a magnetic film and a non-magnetic film, a magnetoresistive effect element having a large rate of change in magnetoresistance, a small saturation magnetic field and a small hysteresis can be obtained. When such an element is used as a magnetic head, a magnetic field sensor, or the like, an electrode may be formed on the laminated body so that the electrical resistance of the laminated body can be measured.

【0010】この発明に係る磁気抵抗効果素子は、磁性
層と非磁性層とを交互に積層してなる積層体を具備する
ものであり、例えば図1に示すように、基板1上に非磁
性層2と磁性層3とのペアをn回積層してなる積層体4
を形成する。
The magnetoresistive effect element according to the present invention comprises a laminated body in which magnetic layers and nonmagnetic layers are alternately laminated. For example, as shown in FIG. Laminate 4 formed by laminating a pair of the layer 2 and the magnetic layer 3 n times
To form.

【0011】磁性層3は、膜面内に立方対称の磁気異方
性を有し、Co又はNiをベ−スとする。これら単体で
も、これらをベースとする合金でも良く、合金の場合に
は他の元素が含まれていても良い。例えば、Co単体、
Co1-x Fex 、Co1-x-yFex Niy などのCoを
主体としたもの、Ni1-x Fex 、Ni1-x-y Fex
y などのNiを主体としたものが好ましい。この場合
に、Co1-x Fex およびNi1-x Fex ではx<0.
5が好ましく、x≦0.3が一層好ましい。また、Co
1-x-y Fex Niy およびNi1-x-y Fex Coy では
x+y<0.5が好ましく、x+y≦0.3が一層好ま
しい。CoまたはNiをベースとする磁性層中の少量の
Feは磁気抵抗変化率の向上、飽和磁界の低減などに寄
与し、1原子%程度の少量からその効果を発揮する。な
お、このような磁気異方性は、所望の結晶配向により得
られるが、この配向は完全である必要はなく、優先的に
配向していれば良い。
The magnetic layer 3 has a magnetic anisotropy of cubic symmetry in the film plane, and is based on Co or Ni. These may be simple substances or alloys based on them, and in the case of alloys, other elements may be contained. For example, Co alone,
Co 1-x Fe x, those mainly composed of Co, such as Co 1-xy Fe x Ni y , Ni 1-x Fe x, Ni 1-xy Fe x C
which was mainly composed of Ni, such as o y is preferable. In this case, Co 1-x Fe x and Ni 1-x Fe x In x <0.
5 is preferable, and x ≦ 0.3 is more preferable. Also, Co
Preferably 1-xy Fe x Ni y and Ni 1-xy Fe x Co y in x + y <0.5, x + y ≦ 0.3 is more preferred. A small amount of Fe in the magnetic layer based on Co or Ni contributes to the improvement of the magnetoresistance change rate, the reduction of the saturation magnetic field, etc., and exerts its effect from a small amount of about 1 atomic%. Note that such magnetic anisotropy is obtained by a desired crystal orientation, but this orientation does not have to be perfect and may be preferentially oriented.

【0012】非磁性層2は、上記磁性層3と共に積層体
4を形成した際に磁気抵抗効果を発揮できる非磁性材料
で形成されていれば特に限定されない。非磁性層の例と
しては、Cu,Au,Agなどが挙げられ、これら単体
でも、これらを含む合金でも良い。この非磁性層2は磁
性層3の種類に応じて最適なものを選択すれば良い。磁
性層3がCoを主体とする場合はCu、Ag、Auを主
体としたものを選択することが好ましく、最も好ましい
のはCuである。
The non-magnetic layer 2 is not particularly limited as long as it is made of a non-magnetic material capable of exhibiting a magnetoresistive effect when the laminated body 4 is formed together with the magnetic layer 3. Examples of the non-magnetic layer include Cu, Au, Ag and the like, which may be a simple substance thereof or an alloy containing them. The optimum non-magnetic layer 2 may be selected according to the type of the magnetic layer 3. When the magnetic layer 3 is mainly composed of Co, it is preferable to select one mainly composed of Cu, Ag, and Au, and Cu is most preferable.

【0013】磁性層3の膜厚は適宜設定すれば良いが、
おおよそ2〜100オングストローム(以下、Aと記
す)が好ましく、さらには20〜40Aが好ましい。ま
た、非磁性層2はその厚さによりMR値が振動するた
め、そのピーク付近好ましくは第2、第3ピーク付近で
適宜設定すれば良いが、おおよそ2〜100Aが好まし
く、さらには10〜30Aが好ましい。
The thickness of the magnetic layer 3 may be set appropriately,
Approximately 2 to 100 Å (hereinafter referred to as A) is preferable, and 20 to 40 A is further preferable. Since the MR value of the non-magnetic layer 2 oscillates depending on its thickness, it may be appropriately set near its peak, preferably near the second and third peaks, but it is preferably about 2 to 100 A, and more preferably 10 to 30 A. Is preferred.

【0014】磁性層3と非磁性層2との積層数nは2以
上、一般的には5〜数10程度であり、磁気抵抗効果を
考慮すると大きいほうがよいが、余り大きくても磁気抵
抗効果が飽和してしまうため、飽和する範囲までの間で
適宜設定することが好ましい。
The number n of laminated layers of the magnetic layer 3 and the non-magnetic layer 2 is 2 or more, generally about 5 to several tens, and it is better to consider the magnetoresistive effect. Is saturated, so it is preferable to appropriately set a value within the saturated range.

【0015】基板1は積層体4を支持するものであり、
その材料は特に限定されるものではない。しかし、立方
対称の磁気異方性を導入しやすくする観点からは、少な
くとも表面部が立方晶構造を有していることが好まし
く、単結晶体や表面に単結晶膜を有するものを用いるこ
とができる。面方位としては膜面が(100)面である
ことが好ましい。この場合に完全な単結晶でなくとも表
面が(100)面について高配向性を示すものを用いる
こともできる。基板1の材料としては、例えば、Mg
O,GaAs,Si,Co,Ni,LiF,CaF2
挙げられる。
The substrate 1 supports the laminated body 4,
The material is not particularly limited. However, from the viewpoint of facilitating the introduction of cubic symmetric magnetic anisotropy, at least the surface portion preferably has a cubic crystal structure, and a single crystal body or one having a single crystal film on the surface is used. it can. As for the plane orientation, the film plane is preferably the (100) plane. In this case, it is possible to use a crystal whose surface is highly oriented with respect to the (100) plane, even if it is not a perfect single crystal. As the material of the substrate 1, for example, Mg
O, GaAs, Si, Co, Ni, LiF, CaF 2 can be mentioned.

【0016】基板1に直接形成される層は磁性層3でも
非磁性層2でも構わないが、図1に示すように磁性層3
を基板1に直接形成することが好ましい。この場合には
非磁性層2が基板に直接形成される場合よりも磁気抵抗
効果が大きく、立方対称の磁気異方性が誘起されやすい
傾向がある。
The layer directly formed on the substrate 1 may be either the magnetic layer 3 or the non-magnetic layer 2, but as shown in FIG.
Is preferably formed directly on the substrate 1. In this case, the magnetoresistive effect is larger than that in the case where the nonmagnetic layer 2 is directly formed on the substrate, and cubic anisotropy tends to be induced.

【0017】図2に示すように、基板1と積層体4との
間に、パーマロイなどのfcc構造のバッファ層5を介
在させても良い。このバッファ層5を形成した後、磁性
層から成膜すると飽和磁界を低減することができる、ま
た、バッファ層5を成膜した後、非磁性層から成膜する
と、バッファ層を成膜しないで非磁性層から成膜した場
合に比べて、磁気抵抗変化率が大きくなるという傾向が
ある。このバッファ層5は3A程度の厚さから効果を発
揮する。厚さの上限は特性上特にないが、数百A程度が
通常上限となる。
As shown in FIG. 2, a buffer layer 5 having an fcc structure such as permalloy may be interposed between the substrate 1 and the laminated body 4. The saturation magnetic field can be reduced by forming the buffer layer 5 from the magnetic layer after the buffer layer 5 is formed. Also, when forming the buffer layer 5 from the non-magnetic layer after forming the buffer layer 5, the buffer layer is not formed. The rate of change in magnetoresistance tends to be higher than in the case of forming a film from a nonmagnetic layer. The buffer layer 5 is effective from a thickness of about 3A. The upper limit of the thickness is not particularly limited due to the characteristics, but the upper limit is usually about several hundred A.

【0018】各層の成膜方法としては、従来から用いら
れている超高真空スパッタリング法、分子線エピタキシ
ー法、RFマブネトロンスパッタリング法、イオンビー
ムスパッタリング法、蒸着法などの各種の方法を採用す
ることができる。
As a method for forming each layer, various methods such as an ultra-high vacuum sputtering method, a molecular beam epitaxy method, an RF mabnetron sputtering method, an ion beam sputtering method and a vapor deposition method, which have been conventionally used, can be adopted. You can

【0019】なお、積層する磁性層、非磁性層は同一で
ある必要はなく、積層方向に沿って組成、膜厚を変調し
ても良い。
The magnetic layer and the nonmagnetic layer to be laminated do not have to be the same, and the composition and film thickness may be modulated along the laminating direction.

【0020】[0020]

【実施例】以下に、この発明の実施例について説明す
る。
Embodiments of the present invention will be described below.

【0021】(実施例1)この実施例においては、磁性
層をCo0.9 Fe0.1 とし、非磁性層をCuとし、バッ
ファ層をパーマロイとして、イオンビ−ムスパッタ法を
用いて積層体を成膜した例について示す。
(Embodiment 1) In this embodiment, a magnetic layer is made of Co 0.9 Fe 0.1 , a nonmagnetic layer is made of Cu, a buffer layer is made of permalloy, and an ion beam sputtering method is used to form a laminate. About.

【0022】先ず、チャンバ−内にMgO(100)単
結晶基板をセットし、チャンバ−内を5×10-7Torrま
で排気した後、Arガスを1×10-4Torrになるまで導
入し、700V−30mAの加速条件にてスパッタリン
グを実施した。タ−ゲットとしてCo0.9 Fe0.1
金、Cuおよびパーマロイ(Ni80Fe20)を用意し、
MgO(100)単結晶基板上に、最初にバッファ層と
してパーマロイを50A形成し、その後Co0.9 Fe
0.1 層(膜厚10A)、次にCu層(膜厚10A)とい
う順番で交互に積層し、Co0.9 Fe0.1 層とCu層と
のペアを16回積層(積層数n=16)して、図2に示
す構造を有し、(Cu10A/Co0.9 Fe0.1 10
A)16/パーマロイ50A/MgO(100)の構造の
磁気抵抗効果素子を作製した。なお、この実施例は磁性
層が直接バッファ層上に形成されている例である。
First, a MgO (100) single crystal substrate was set in the chamber, the chamber was evacuated to 5 × 10 -7 Torr, and then Ar gas was introduced to 1 × 10 -4 Torr. Sputtering was performed under an acceleration condition of 700 V-30 mA. Co 0.9 Fe 0.1 alloy, Cu and permalloy (Ni 80 Fe 20 ) are prepared as targets.
On a MgO (100) single crystal substrate, 50 A of permalloy was first formed as a buffer layer, and then Co 0.9 Fe was formed.
0.1 layer (film thickness 10A), then Cu layer (film thickness 10A) are alternately laminated in this order, and a pair of Co 0.9 Fe 0.1 layer and Cu layer is laminated 16 times (lamination number n = 16), It has a structure shown in FIG. 2 and has (Cu10A / Co 0.9 Fe 0.1 10
A) A magnetoresistive effect element having a structure of 16 / permalloy 50A / MgO (100) was produced. In this embodiment, the magnetic layer is directly formed on the buffer layer.

【0023】このようにして製造された素子のトルク曲
線を図3に示す。図3から明らかなように、この素子の
トルク曲線は4回対称であり、このことから立方対称の
磁気異方性が生じていることが確認された。また、この
素子の磁気抵抗効果を測定した結果を図4に示す。図4
は磁化容易軸方向の磁気抵抗効果を示すものであるが、
この図から、磁化容易軸方向に磁界を印加した場合に、
直線的に磁気抵抗が変化し、しかもヒステリシスがほと
んどなく、飽和磁界が200 Oeと著しく小さいこと
が確認された。また、磁気抵抗変化率は38%であっ
た。なお、上記積層体をSiO2 基板などに形成した場
合の飽和磁界は7 kOeであり、MgO(100)単
結晶基板を用いることにより飽和磁界が大幅に低減され
ることが確認された。
FIG. 3 shows the torque curve of the element manufactured in this way. As is clear from FIG. 3, the torque curve of this element has 4-fold symmetry, which confirms that cubic magnetic anisotropy occurs. The result of measuring the magnetoresistive effect of this element is shown in FIG. Figure 4
Shows the magnetoresistive effect in the direction of easy axis,
From this figure, when applying a magnetic field in the direction of easy axis of magnetization,
It was confirmed that the magnetic resistance changed linearly, there was almost no hysteresis, and the saturation magnetic field was as small as 200 Oe. The rate of change in magnetic resistance was 38%. The saturation magnetic field was 7 kOe when the laminated body was formed on a SiO 2 substrate or the like, and it was confirmed that the saturation magnetic field was significantly reduced by using the MgO (100) single crystal substrate.

【0024】また、図4から抵抗変化が直線的でヒステ
リシスがほとんどないことに加えて、その傾きが非常に
急峻であることがわかる。従って、この領域を使用すれ
ば、極めて高感度の磁界測定が可能となる。
Further, it can be seen from FIG. 4 that the resistance change is linear and there is almost no hysteresis, and the slope is very steep. Therefore, use of this region enables extremely sensitive magnetic field measurement.

【0025】参考のため、バッファ層を用いずに、積層
順を逆にして非磁性層を先に形成した場合の磁気抵抗効
果を図5に示す。この図から明らかなように、磁気抵抗
変化率が15.5%と実施例の38%に比較して小さい
ものであった。また、飽和磁界は2.3 kOeと実施
例の200 Oeに比較して大きい値であった。
For reference, FIG. 5 shows the magnetoresistive effect when the stacking order is reversed and the nonmagnetic layer is formed first without using the buffer layer. As is clear from this figure, the rate of change in magnetoresistance was 15.5%, which was small compared to 38% in the example. The saturation magnetic field was 2.3 kOe, which was a large value compared to 200 Oe of the example.

【0026】(実施例2)この実施例においては、磁性
層をCoとし、非磁性層をCuとして、バッファ層を用
いずに、実施例1と同様にイオンビ−ムスパッタ法を用
いて積層体を成膜した例について示す。
(Embodiment 2) In this embodiment, a magnetic layer is made of Co, a non-magnetic layer is made of Cu, a buffer layer is not used, and an ion beam sputtering method is used in the same manner as in Embodiment 1 to form a laminated body. An example of film formation will be shown.

【0027】実施例1と同一の成膜条件で、MgO(1
00)単結晶基板上に、最初にCo層(膜厚10A)、
次にCu層(膜厚10A)という順番で交互に積層し、
Co層とCu層とのペアを16回積層(積層数n=1
6)して、図1に示す構造を有し、(Cu10A/Co
10A)16/MgO(100)の構造の磁気抵抗効果素
子を作製した。
Under the same film forming conditions as in Example 1, MgO (1
00) First, a Co layer (film thickness 10A) on a single crystal substrate,
Next, Cu layers (film thickness 10 A) are alternately laminated in this order,
A pair of a Co layer and a Cu layer is laminated 16 times (the number of laminated layers n = 1)
6) and has the structure shown in FIG.
10A) A magnetoresistive element having a structure of 16 / MgO (100) was produced.

【0028】このようにして製造された素子のトルク曲
線を図6に示す。この図から磁性層が立方対称の磁気異
方性を有していることがわかる。また、この素子の磁気
抵抗効果を測定した結果を図7に示す。図7は磁化容易
軸方向の磁気抵抗効果を示すものであるが、この図か
ら、飽和磁界HS が180Oeと極めて小さく、ヒステ
リシスがほとんどないことが確認された。なお、上記積
層体をSiO2 基板などに形成した場合の飽和磁界は
6.5 kOeであり、MgO(100)単結晶基板を
用いることにより飽和磁界が大幅に低減されることが確
認された。また、磁気抵抗変化率は31%であった。
FIG. 6 shows a torque curve of the element manufactured in this way. From this figure, it can be seen that the magnetic layer has cubic symmetric magnetic anisotropy. Moreover, the result of having measured the magnetoresistive effect of this element is shown in FIG. FIG. 7 shows the magnetoresistive effect in the direction of the easy axis of magnetization. From this figure, it was confirmed that the saturation magnetic field H S was extremely small at 180 Oe and that there was almost no hysteresis. The saturation magnetic field was 6.5 kOe when the laminated body was formed on a SiO 2 substrate or the like, and it was confirmed that the saturation magnetic field was significantly reduced by using the MgO (100) single crystal substrate. The rate of change in magnetic resistance was 31%.

【0029】参考のため、積層順を逆にして非磁性層を
先に形成した場合の磁気抵抗効果を図8に示す。この図
から明らかなように、磁気抵抗変化率が12%と実施例
の31%に比較して小さいものであった。また、飽和磁
界は2.0 kOeと大きい値であった。
For reference, FIG. 8 shows the magnetoresistive effect when the stacking order is reversed and the nonmagnetic layer is formed first. As is clear from this figure, the rate of change in magnetoresistance was 12%, which was smaller than 31% of the example. The saturation magnetic field was a large value of 2.0 kOe.

【0030】(実施例3)この実施例においては、磁性
層をCo0.75Fe0.25としとした以外は、実施例2と同
様にして積層体を成膜した。すなわち、MgO(10
0)単結晶基板上に、最初にCo0.75Fe0.25層(膜厚
10A)、次にCu層(膜厚10A)という順番で交互
に積層し、Co層とCu層とのペアを16回積層(積層
数n=16)して、図1に示す構造を有し、(Cu10
A/Co0.75Fe0.2510A)16/MgO(100)の
構造の磁気抵抗効果素子を作製した。
Example 3 In this example, a laminated body was formed in the same manner as in Example 2 except that the magnetic layer was Co 0.75 Fe 0.25 . That is, MgO (10
0) First, a Co 0.75 Fe 0.25 layer (film thickness 10 A) and then a Cu layer (film thickness 10 A) are alternately laminated on a single crystal substrate, and a pair of Co layer and Cu layer is laminated 16 times. (The number of stacked layers n = 16), and the structure shown in FIG.
A magnetoresistive element having a structure of A / Co 0.75 Fe 0.25 10A) 16 / MgO (100) was produced.

【0031】このようにして製造された素子のトルク曲
線を図9に示す。この図から磁性層が立方対称の磁気異
方性を有していることがわかる。また、この素子の磁気
抵抗効果を測定した結果を図10に示す。図10は磁化
容易軸方向の磁気抵抗効果を示すものであるが、この図
から、飽和磁界HS が150 Oeと極めて小さく、ヒ
ステリシスがほとんどないことが確認された。また、磁
気抵抗変化率は23.1%であった。なお、上記積層体
をSiO2 基板などに形成した場合の飽和磁界は7 k
Oeであり、MgO(100)単結晶基板を用いること
により飽和磁界が大幅に低減されることが確認された。
FIG. 9 shows a torque curve of the element manufactured in this way. From this figure, it can be seen that the magnetic layer has cubic symmetric magnetic anisotropy. The results of measuring the magnetoresistive effect of this element are shown in FIG. FIG. 10 shows the magnetoresistive effect in the direction of easy axis of magnetization. From this figure, it was confirmed that the saturation magnetic field H S was as small as 150 Oe and that there was almost no hysteresis. The rate of change in magnetic resistance was 23.1%. When the above laminated body is formed on a SiO 2 substrate or the like, the saturation magnetic field is 7 k.
It was Oe, and it was confirmed that the saturation magnetic field was significantly reduced by using the MgO (100) single crystal substrate.

【0032】参考のため、積層順を逆にして非磁性層を
先に形成した場合の磁気抵抗効果を図11に示す。この
図から明らかなように、磁気抵抗変化率が11%と小さ
く、飽和磁界は2.0 kOeと大きい値であった。
For reference, FIG. 11 shows the magnetoresistive effect when the stacking order is reversed and the nonmagnetic layer is formed first. As is clear from this figure, the magnetoresistance change rate was as small as 11% and the saturation magnetic field was as large as 2.0 kOe.

【0033】(実施例4)この実施例においては、磁性
層をCo0.8 Fe0.1 Ni0.1 とし、非磁性層をCuと
して、実施例2と同様にして積層体を成膜した例につい
て示す。
(Embodiment 4) In this embodiment, an example in which a magnetic layer is made of Co 0.8 Fe 0.1 Ni 0.1 and a non-magnetic layer is made of Cu and a laminated body is formed in the same manner as in the embodiment 2 will be described.

【0034】実施例2と同一の成膜条件で、MgO(1
00)単結晶基板上に、最初にCo0.8 Fe0.1 Ni
0.1 層(膜厚15A)、次にCu層(膜厚10A)とい
う順番で交互に積層し、Co0.8 Fe0.1 Ni0.1 層と
Cu層とのペアを16回積層(積層数n=16)して、
図1に示す構造を有し、(Cu10A/Co0.8 Fe
0.1 Ni0.1 15A)16/MgO(100)の構造の磁
気抵抗効果素子を作製した。
Under the same film forming conditions as in Example 2, MgO (1
00) On a single crystal substrate, first Co 0.8 Fe 0.1 Ni
0.1 layer (film thickness 15A) and then Cu layer (film thickness 10A) are alternately laminated in this order, and a pair of Co 0.8 Fe 0.1 Ni 0.1 layer and Cu layer is laminated 16 times (the number of laminated layers n = 16). hand,
It has the structure shown in FIG. 1 and has (Cu10A / Co 0.8 Fe
A magnetoresistive effect element having a structure of 0.1 Ni 0.1 15 A) 16 / MgO (100) was produced.

【0035】このようにして製造された素子のトルク曲
線を図12に示す。この図から磁性層が立方対称の磁気
異方性を有していることがわかる。また、この素子の磁
気抵抗効果を測定した結果を図13に示す。図13は磁
化容易軸方向の磁気抵抗効果を示すものであるが、この
図から、飽和磁界HS が170 Oeと極めて小さく、
ヒステリシスがほとんどないことが確認された。また、
磁気抵抗変化率は18%であった。なお、上記積層体を
SiO2 基板などに形成した場合の飽和磁界は4kOe
であり、MgO(100)単結晶基板を用いることによ
り飽和磁界が大幅に低減されることが確認された。
FIG. 12 shows the torque curve of the element manufactured in this way. From this figure, it can be seen that the magnetic layer has cubic symmetric magnetic anisotropy. The result of measuring the magnetoresistive effect of this element is shown in FIG. FIG. 13 shows the magnetoresistive effect in the direction of the easy axis of magnetization. From this figure, the saturation magnetic field H S is as small as 170 Oe,
It was confirmed that there was almost no hysteresis. Also,
The rate of change in magnetic resistance was 18%. When the above laminated body is formed on a SiO 2 substrate or the like, the saturation magnetic field is 4 kOe.
It was confirmed that the saturation magnetic field was significantly reduced by using the MgO (100) single crystal substrate.

【0036】参考のため、積層順を逆にして非磁性層を
先に形成した場合の磁気抵抗効果を図14に示す。この
図から明らかなように、磁気抵抗変化率が9.5%と小
さく、飽和磁界は1.8 kOeと大きい値であった。
For reference, FIG. 14 shows the magnetoresistive effect when the stacking order is reversed and the nonmagnetic layer is formed first. As is clear from this figure, the magnetoresistance change rate was as small as 9.5% and the saturation magnetic field was as large as 1.8 kOe.

【0037】(実施例5)この実施例においては、基板
としてSi(100)単結晶を用い、磁性層をCo0.9
Fe0.1 とし、非磁性層をCuとし、バッファ層をCu
およびパーマロイとして、イオンビ−ムスパッタ法を用
いて積層体を成膜した例について示す。
(Embodiment 5) In this embodiment, a Si (100) single crystal is used as a substrate and Co 0.9 is used as a magnetic layer.
Fe 0.1 , non-magnetic layer Cu, buffer layer Cu
And as Permalloy, an example of forming a laminated body by using an ion beam sputtering method is shown.

【0038】Si(100)単結晶基板上に、最初にC
uを50A、次いでパーマロイを50A形成して、2層
構造のバッファ層とした。その後バッファ層の上に先ず
Cu層(膜厚10A)、次にCo0.9 Fe0.1 層(膜厚
10A)という順番で交互に積層し、これらのペアを1
5回積層(積層数n=15)して、(Cu10A/Co
0.9 Fe0.1 10A)15/パーマロイ50A/Cu50
A/Si(100)の構造の磁気抵抗効果素子を作製し
た。
On a Si (100) single crystal substrate, first C
50 u of u and then 50 A of permalloy were formed to form a buffer layer having a two-layer structure. Then, a Cu layer (film thickness 10A) and then a Co 0.9 Fe 0.1 layer (film thickness 10A) are alternately laminated on the buffer layer in this order.
After stacking five times (stacking number n = 15), (Cu10A / Co
0.9 Fe 0.1 10A) 15 / Permalloy 50A / Cu50
A magnetoresistive effect element having a structure of A / Si (100) was produced.

【0039】このようにして製造された素子のトルク曲
線を図15に示す。この図から磁性層が立方対称の磁気
異方性を有していることがわかる。また、この素子の磁
気抵抗効果を測定した結果を図16に示す。図16は磁
化容易軸方向の磁気抵抗効果を示すものであるが、この
図から、磁化容易軸方向に磁界を印加した場合に、直線
的に磁気抵抗が変化し、磁気抵抗効果は36%と大き
く、ヒステリシスがほとんどなく、飽和磁界が200
Oeと著しく小さいことが確認された。
FIG. 15 shows the torque curve of the element manufactured in this way. From this figure, it can be seen that the magnetic layer has cubic symmetric magnetic anisotropy. 16 shows the result of measuring the magnetoresistive effect of this element. FIG. 16 shows the magnetoresistive effect in the easy magnetization axis direction. From this figure, when a magnetic field is applied in the easy magnetization axis direction, the magnetic resistance changes linearly and the magnetoresistive effect is 36%. Large, almost no hysteresis, saturated magnetic field of 200
It was confirmed to be remarkably small as Oe.

【0040】[0040]

【発明の効果】本発明によれば、磁気抵抗変化率が大き
く、飽和磁界およびヒステリシスが小さい磁気抵抗効果
素子が提供される。本磁気抵抗効果素子は、高密度記録
用の高感度の磁気ヘッド、磁界センサなどに極めて有効
である。
According to the present invention, there is provided a magnetoresistive element having a large magnetoresistance change rate, a small saturation magnetic field and a small hysteresis. The magnetoresistive effect element is extremely effective for a high-sensitivity magnetic head for high density recording, a magnetic field sensor, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一態様に係る磁気抵抗効果素子を示
す断面図。
FIG. 1 is a sectional view showing a magnetoresistive effect element according to one embodiment of the present invention.

【図2】この発明の他の態様に係る磁気抵抗効果素子を
示す断面図。
FIG. 2 is a sectional view showing a magnetoresistive effect element according to another embodiment of the present invention.

【図3】実施例1の素子のトルク曲線を示す図。FIG. 3 is a diagram showing a torque curve of the device of Example 1.

【図4】実施例1の素子の磁気抵抗曲線を示す図。FIG. 4 is a diagram showing a magnetoresistive curve of the element of Example 1;

【図5】実施例1と積層順を逆にした素子の磁気抵抗曲
線を示す図。
FIG. 5 is a diagram showing a magnetoresistive curve of an element in which the stacking order is reversed from that in Example 1.

【図6】実施例2の素子のトルク曲線を示す図。FIG. 6 is a diagram showing a torque curve of the element of Example 2;

【図7】実施例2の素子の磁気抵抗曲線を示す図。FIG. 7 is a diagram showing a magnetoresistive curve of the element of Example 2;

【図8】実施例2と積層順を逆にした素子の磁気抵抗曲
線を示す図。
FIG. 8 is a diagram showing a magnetoresistive curve of an element in which the stacking order is reversed from that of the second embodiment.

【図9】実施例3の素子のトルク曲線を示す図。FIG. 9 is a diagram showing a torque curve of the element of Example 3;

【図10】実施例3の素子の磁気抵抗曲線を示す図。FIG. 10 is a diagram showing a magnetoresistance curve of the element of Example 3;

【図11】実施例3と積層順を逆にした素子の磁気抵抗
曲線を示す図。
FIG. 11 is a diagram showing a magnetoresistive curve of an element in which the stacking order is reversed from that in Example 3;

【図12】実施例4の素子のトルク曲線を示す図。FIG. 12 is a diagram showing a torque curve of the element of Example 4;

【図13】実施例4の素子の磁気抵抗曲線を示す図。FIG. 13 is a diagram showing a magnetoresistance curve of the element of Example 4;

【図14】実施例4と積層順を逆にした素子の磁気抵抗
曲線を示す図。
FIG. 14 is a diagram showing a magnetoresistive curve of an element in which the stacking order is reversed from that in Example 4.

【図15】実施例5の素子のトルク曲線を示す図。FIG. 15 is a diagram showing a torque curve of the element of Example 5;

【図16】実施例5の素子の磁気抵抗曲線を示す図。16 is a diagram showing a magnetoresistance curve of the element of Example 5. FIG.

【符号の説明】[Explanation of symbols]

1……基板、2……非磁性層、3……磁性層、4……積
層体、5……バッファ層。
1 ... Substrate, 2 ... Non-magnetic layer, 3 ... Magnetic layer, 4 ... Laminated body, 5 ... Buffer layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 膜面内で立方対称の磁気異方性を有する
Co基またはNi基の磁性層と、非磁性層とが交互に積
層された積層体を具備することを特徴とする磁気抵抗効
果素子。
1. A magnetoresistive device comprising a laminated body in which a Co-based or Ni-based magnetic layer having a cubic magnetic anisotropy in the film plane and a non-magnetic layer are alternately laminated. Effect element.
JP4243735A 1992-09-11 1992-09-11 Magnetoresistance effect element Pending JPH0697533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4243735A JPH0697533A (en) 1992-09-11 1992-09-11 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4243735A JPH0697533A (en) 1992-09-11 1992-09-11 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPH0697533A true JPH0697533A (en) 1994-04-08

Family

ID=17108214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4243735A Pending JPH0697533A (en) 1992-09-11 1992-09-11 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPH0697533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033181A1 (en) * 1996-03-06 1997-09-12 Siemens Aktiengesellschaft Magnetic field-sensitive sensor with a thin-film structure and use of the sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033181A1 (en) * 1996-03-06 1997-09-12 Siemens Aktiengesellschaft Magnetic field-sensitive sensor with a thin-film structure and use of the sensor

Similar Documents

Publication Publication Date Title
JP3088478B2 (en) Magnetoresistive element
EP0681338B1 (en) Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
JP3207477B2 (en) Magnetoresistance effect element
US5578385A (en) Magnetoresistance effect element
JPH08127864A (en) Magneto resistance effect film and its production
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
JPH05183212A (en) Magneto-resistance effect element
JP3088519B2 (en) Magnetoresistive element
JPH10188235A (en) Magneto-resistive film and its production
EP0624868B1 (en) Magnetoresistance effect elements and method of fabricating the same
KR100266518B1 (en) Megnetoresistive Effect Film and Manufacturing Method Therefor
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JP3684005B2 (en) Magnetoresistive element, magnetoresistive head, and magnetoresistive magnetic field sensor
JPH08235540A (en) Multilayered magnetoresistance effect film and magnetic head
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP2610376B2 (en) Magnetoresistance effect element
JP3337732B2 (en) Magnetoresistance effect element
JPH0697533A (en) Magnetoresistance effect element
JPH08316033A (en) Magnetic laminate
JPH0794326A (en) Magnetoresistance effect film and manufacture thereof
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same