JPH0697532A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPH0697532A
JPH0697532A JP4022935A JP2293592A JPH0697532A JP H0697532 A JPH0697532 A JP H0697532A JP 4022935 A JP4022935 A JP 4022935A JP 2293592 A JP2293592 A JP 2293592A JP H0697532 A JPH0697532 A JP H0697532A
Authority
JP
Japan
Prior art keywords
film
magnetization
soft
hard
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4022935A
Other languages
Japanese (ja)
Inventor
Hideo Fujiwara
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4022935A priority Critical patent/JPH0697532A/en
Publication of JPH0697532A publication Critical patent/JPH0697532A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To obtain a magnetoresistance effect element of high magnetic sensitivity, by making the direction of the axis of easy magnetization of a magnetically soft film intersect the direction of the axis of easy magnetization of a hard film. CONSTITUTION:In a magnetoresistance element wherein a specified number of magnetically soft films composed of, e.g. Ni-Fe alloy and magnetically hard films composed of, e.g. Co, are laminated, the direction of the axis of easy magnetization of the soft films is made to intersect the direction of the axis of easy magnetization of the hard films, in the range from 0 deg. to + or -180 deg.. Thereby the magnetic coupling force to the hard film is decreased, and the magnetization direction of the soft film becomes easy to be changed by an external magnetic field, so that a magnetoresistance effect element of high magnetic sensitivity can be obtained. The figure shows the directions of the axes of easy magnetization of the soft film (Ni-Fe alloy film) and the hard film (Co film) just after film formation, during application of high intensity magnetic field, and after removal of the high intensity magnetic field. Finally an element is obtained in which the direction of the axis of easy magnetization of the soft film intersects that of the hard film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば磁気ヘツドある
いは磁気センサなどに使用する磁気抵抗効果素子(所
謂、MR素子)に係り、特に磁気的にハードな膜とソフ
トな膜とを交互に積層した人工格子膜からなる積層磁気
抵抗効果素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element (so-called MR element) used in, for example, a magnetic head or a magnetic sensor, and in particular, magnetically hard films and soft films are alternately laminated. The present invention relates to a laminated magnetoresistive effect element including the artificial lattice film.

【0002】[0002]

【従来の技術】例えばNi−Fe合金(パーマロイ)な
どのように磁気的にソフトな磁性材料は、弱い磁場の変
化を電気的に検出することができるから、例えば磁気ヘ
ツドや磁気センサなどに使用でき、その研究、開発が進
められている。
2. Description of the Related Art A magnetically soft magnetic material such as a Ni--Fe alloy (permalloy) is capable of electrically detecting a weak magnetic field change and is therefore used for, for example, a magnetic head or a magnetic sensor. Yes, research and development are underway.

【0003】MR素子として高性能化するためにはさら
に高い磁界感度を有する材料の研究、開発が望まれ、最
近、Fe/CrやCo/Cuなどの人工格子膜におい
て、所謂、巨大磁気抵抗効果が発見されている。
In order to improve the performance of MR elements, research and development of materials having higher magnetic field sensitivity are desired, and recently, in artificial lattice films such as Fe / Cr and Co / Cu, so-called giant magnetoresistive effect has been obtained. Has been discovered.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の人工格
子膜では、まだ十分に高い磁界感度(変調度)を有する
材料は得られていない。その主要な原因は、外部磁界が
零のときの磁化の安定状態として、隣接する磁性層の磁
化が互いに反対の方向に向く、所謂、反強磁性的配置を
実現させるために、相互間に反強磁性的結合が生じる膜
厚条件を選んでいることにある。
However, in the conventional artificial lattice film, a material having a sufficiently high magnetic field sensitivity (modulation degree) has not been obtained yet. The main reason for this is that as a stable state of the magnetization when the external magnetic field is zero, the magnetizations of the adjacent magnetic layers are directed in opposite directions, so that the so-called antiferromagnetic arrangement is realized. This is because the film thickness condition that causes ferromagnetic coupling is selected.

【0005】本発明の目的は、このような問題点を解消
し、さらに磁界感度の高い磁気抵抗効果素子を提供する
ことにある。
An object of the present invention is to solve the above problems and to provide a magnetoresistive element having a high magnetic field sensitivity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、例えばNi−Fe合金などからなる磁気
的にソフトな膜と、例えばCoなどからなる磁気的にハ
ードな膜とが、所定層数積層された磁気抵抗効果素子に
おいて、前記ソフトな膜の磁化容易軸方向がハードな膜
の磁化容易軸方向と±0°から±180°の範囲内で交
差していることを特徴とするものである。
In order to achieve the above object, the present invention provides a magnetically soft film made of, for example, a Ni--Fe alloy and a magnetically hard film made of, for example, Co. In the magnetoresistive effect element having a predetermined number of laminated layers, the easy axis of magnetization of the soft film intersects the easy axis of magnetization of the hard film within a range of ± 0 ° to ± 180 °. It is what

【0007】[0007]

【作用】本発明は前述のように、ソフトな膜の磁化容易
軸方向をハードな膜の磁化容易軸方向と所定の角度をも
つて交差させることにより、ハードな膜との磁気的な結
合力を弱め、ソフトな膜の磁化方向が外部の磁界によつ
て変化し易くなり、そのために高磁界感度の磁気抵抗効
果素子を提供することができる。
As described above, according to the present invention, the direction of easy magnetization of the soft film intersects with the direction of easy magnetization of the hard film at a predetermined angle so that the magnetic coupling force with the hard film is increased. And the magnetization direction of the soft film is easily changed by an external magnetic field, so that a magnetoresistive effect element having high magnetic field sensitivity can be provided.

【0008】[0008]

【実施例】次に本発明の実施例を図とともに説明する。
図1は実施例に係る磁気ヘツドの斜視図、図2はその磁
気ヘツドに使用する積層磁気抵抗効果素子の拡大断面図
である。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a perspective view of a magnetic head according to an embodiment, and FIG. 2 is an enlarged cross-sectional view of a laminated magnetoresistive effect element used for the magnetic head.

【0009】本発明の実施例に係る磁気ヘツドは図1に
示すように、短冊状をした積層磁気抵抗効果素子1と、
それの両端に接合された電極2、2とから主に構成され
ている。
As shown in FIG. 1, a magnetic head according to an embodiment of the present invention includes a strip-shaped laminated magnetoresistive effect element 1,
It is mainly composed of electrodes 2 and 2 joined to both ends thereof.

【0010】前記積層磁気抵抗効果素子1は図2に示す
ように、ガラスやセラミツクからなる基板3と、その上
に形成されたNi−Fe/Cu/Co/Cu系からなる
多層膜4とから構成されている。
As shown in FIG. 2, the laminated magnetoresistive effect element 1 comprises a substrate 3 made of glass or ceramic and a multilayer film 4 made of Ni--Fe / Cu / Co / Cu system formed thereon. It is configured.

【0011】この多層膜4を具体的に説明すると、膜厚
が30ÅのNi−Fe合金(パーマロイ)からなる磁気
的にソフトな膜5と、膜厚が60ÅのCuからなる磁気
的な絶縁膜6と、膜厚が30ÅのCoからなる磁気的に
ハードな膜7と、膜厚が60ÅのCuからなる磁気的な
絶縁膜8とから構成される最小単位の積層体9が数層〜
数十層繰り返して形成されている。
The multilayer film 4 will be described in detail. A magnetically soft film 5 made of a Ni--Fe alloy (permalloy) having a film thickness of 30Å and a magnetic insulating film made of Cu having a film thickness of 60Å. 6, a magnetically hard film 7 made of Co having a film thickness of 30 Å, and a magnetic insulating film 8 made of Cu having a film thickness of 60 Å have a minimum unit laminate 9 of several layers or more.
It is formed by repeating several tens of layers.

【0012】これら多層膜4は例えば超高真空の電子ビ
ーム蒸着によつて順次所定の膜厚に堆積して形成される
が、例えばスパツタリングなどの他の薄膜形成技術をも
つて形成してもよい。
The multi-layer film 4 is formed by sequentially depositing it to a predetermined film thickness by, for example, ultra-high vacuum electron beam evaporation, but it may be formed by using another thin film forming technique such as sputtering. .

【0013】ところで前記ソフト膜5ならびにハード膜
7を製膜するときに、それぞれの磁化容易軸方向に対し
てある角度をもつた方向に磁界を印加した状態で製膜さ
れる。このときの磁界の印加方向の例を図3とともに説
明する。
By the way, when the soft film 5 and the hard film 7 are formed, they are formed in a state in which a magnetic field is applied in a direction having a certain angle with respect to the respective easy magnetization axis directions. An example of the magnetic field application direction at this time will be described with reference to FIG.

【0014】すなわち同図の(a)に示すように、最
初、第1番目のソフト膜5(Ni−Fe合金膜)を形成
するとき、それの磁化容易軸方向Reに対してある角度
(+θ)をもつた方向に磁界を印加しながら製膜する。
That is, as shown in (a) of the figure, when the first soft film 5 (Ni-Fe alloy film) is first formed, an angle (+ θ) with respect to the easy axis direction Re of the soft film 5 is formed. ) Is applied while a magnetic field is applied in the direction.

【0015】次に第1番目のハード膜7(Co膜)を形
成するとき同図の(b)に示すように、それの磁化容易
軸方向Reに対して直交する方向に磁界を印加しながら
製膜する。
Next, when forming the first hard film 7 (Co film), as shown in (b) of the same drawing, while applying a magnetic field in a direction orthogonal to the easy axis direction Re of the magnetization direction. Form a film.

【0016】次に第2番目のソフト膜5(Ni−Fe合
金膜)を形成するときには同図の(c)に示すように、
それの磁化容易軸方向Reに対してある角度(−θ)を
もつた方向に磁界を印加しながら製膜する。
Next, when the second soft film 5 (Ni-Fe alloy film) is formed, as shown in FIG.
The film is formed while applying a magnetic field in a direction having a certain angle (−θ) with respect to the easy magnetization axis direction Re thereof.

【0017】次に第2番目のハード膜7(Co膜)を形
成するとき、同図の(d)に示すようにそれの磁化容易
軸方向Reに対して直交する方向に磁界を印加しながら
製膜する。
Next, when the second hard film 7 (Co film) is formed, a magnetic field is applied in a direction orthogonal to the easy axis direction Re of the magnetization as shown in (d) of FIG. Form a film.

【0018】次に第3番目のソフト膜5は同図の(a)
と同様に+θの角度をもつた方向に、第4番目のソフト
膜5は同図の(c)と同様に−θの角度をもつた方向
に、というようにソフト膜5は+θ、−θ交互に角度を
変えて磁界を印加しながら製膜を行い、一方、ハード膜
7の方は、常に磁化容易軸方向Reに対して直交する方
向に磁界を印加しながら製膜する。ソフト膜5ならびに
ハード膜7の製膜における磁界は、例えば数百Oe以上
で行なわれる。
Next, the third soft film 5 is shown in FIG.
In the same direction as + θ, the fourth soft film 5 has a −θ angle in the same manner as in (c) of FIG. The film is formed by alternately changing the angle and applying the magnetic field, while the hard film 7 is always formed by applying the magnetic field in the direction orthogonal to the easy axis direction Re. The magnetic field in forming the soft film 5 and the hard film 7 is, for example, several hundred Oe or more.

【0019】このようにして所定の層数を有する多層膜
4を形成したのち、図1に示すように磁化容易軸方向R
eに対して面内に垂直な方向(矢印X方向)に一度強磁
界を印加し、その後に強磁界を除去する。
After the multilayer film 4 having a predetermined number of layers is formed in this way, the easy magnetization axis direction R is obtained as shown in FIG.
A strong magnetic field is applied once in a direction perpendicular to the plane e (direction of arrow X), and then the strong magnetic field is removed.

【0020】このようにすることにより、磁気抵抗効果
素子としたときにソフト膜5とハード膜7の磁化容易軸
方向(外部磁界が零のときの磁化の安定な方向)の間に
ある角度αをもたせることができる。この角度αは、±
0°から±180°の範囲内で適当に選択することがで
き、特に角度αが30°以上、好ましくは角度αが45
°以上、さらに好ましくは60〜120°になると、さ
らに高い磁界感度が得られる。
By doing so, the angle α between the directions of the easy axis of magnetization of the soft film 5 and the hard film 7 (the direction of stable magnetization when the external magnetic field is zero) when used as a magnetoresistive effect element. Can have This angle α is ±
It can be appropriately selected within the range of 0 ° to ± 180 °, and in particular, the angle α is 30 ° or more, preferably the angle α is 45.
When it is at least 0 °, more preferably at 60 to 120 °, even higher magnetic field sensitivity can be obtained.

【0021】前記実施例では、ソフト膜5の製膜時にそ
れの磁化容易軸方向Reに対して+θ、−θというよう
に交互に角度を変えて磁界を印加したが、本発明はこれ
に限定されるものではなく、例えば第1番目のソフト膜
5から第m番目のソフト膜5までは、磁化容易軸方向R
eに対して+θの角度をもつた方向に磁界を印加しなが
ら製膜し、第m+1番目のソフト膜5から第n番目のソ
フト膜5までは、磁化容易軸方向Reに対して−θの角
度をもつた方向に磁界を印加しながら製膜するなどし
て、複数のグループ毎(この場合、2つのグループ毎)
で磁界の印加方向を異にすることもできる。
In the above-mentioned embodiment, when the soft film 5 was formed, the magnetic field was applied by alternately changing the angles such as + θ and -θ with respect to the easy magnetization axis direction Re thereof, but the present invention is not limited to this. However, for example, the first soft film 5 to the mth soft film 5 have a magnetization easy axis direction R
The film is formed while applying a magnetic field in a direction having an angle of + θ with respect to e, and from the (m + 1) th soft film 5 to the nth soft film 5 of −θ with respect to the easy magnetization axis direction Re. A plurality of groups (in this case, every two groups), such as when forming a film while applying a magnetic field in an angled direction
It is also possible to change the direction of application of the magnetic field.

【0022】このようにソフト膜とハード膜の磁化容易
軸方向の間にある角度αをもたせることにより、図4に
示すようにソフト膜5の磁化は、ハード膜7と磁気的に
強く結合しないことに加えて、外部磁界Yの方向が磁化
容易軸方向Reと面内で垂直になるので、磁化Mの方向
が外部磁界Yによつて変化し易く、そのために高磁界感
度を有する磁気抵抗効果素子が得られる。なお、図4に
おいて矢印Eは、電流の方向であるる。
By making an angle α between the easy magnetization axis directions of the soft film and the hard film in this way, the magnetization of the soft film 5 is not magnetically strongly coupled to the hard film 7 as shown in FIG. In addition, since the direction of the external magnetic field Y is perpendicular to the easy magnetization axis direction Re in the plane, the direction of the magnetization M is easily changed by the external magnetic field Y, and therefore the magnetoresistive effect having high magnetic field sensitivity is obtained. The device is obtained. Note that arrow E in FIG. 4 indicates the direction of current.

【0023】前記ハード膜を補償温度が磁気抵抗効果素
子を使用する温度付近にあるフエリ性の強磁性遷移金属
−希土類金属合金で構成して、初期化をフエリ性磁性材
料の補償温度から外れた比較的保磁力の小さい温度で行
なうとよい。そうすれば、例えば磁気抵抗効果素子を磁
気ヘツドなどとして使用する際、その使用温度が前述の
ように補償温度付近であるため、その温度でのトータル
磁化が小さいため、ハード膜の磁化による磁気記録媒体
への悪影響を排除することがてきるという特長を有して
いる。
The hard film is composed of a ferrimagnetic ferromagnetic transition metal-rare earth metal alloy whose compensation temperature is around the temperature at which the magnetoresistive effect element is used, and the initialization is deviated from the compensation temperature of the ferrimagnetic material. It is recommended to carry out at a temperature at which the coercive force is relatively small. By doing so, for example, when the magnetoresistive effect element is used as a magnetic head or the like, the operating temperature is near the compensation temperature as described above, and the total magnetization at that temperature is small. It has the feature that adverse effects on the medium can be eliminated.

【0024】前述のようにソフト膜とハード膜とを交互
に積層してなる巨大磁気抵抗効果人工格子膜において
は、ソフト膜とハード膜の間に反強磁性的結合が生じる
性質が強いため、ソフト膜内の磁化容易軸方向(外部磁
界が零のときの磁化の安定方向)を任意の方向にコント
ロールすることが困難なことがある。
As described above, in the giant magnetoresistive artificial lattice film in which the soft film and the hard film are alternately laminated, the property that antiferromagnetic coupling is generated between the soft film and the hard film is strong. It may be difficult to control the easy axis of magnetization in the soft film (the stable direction of magnetization when the external magnetic field is zero) to an arbitrary direction.

【0025】ところで、磁気抵抗効果素子としたときの
ソフト膜の磁化容易軸方向とハード膜の磁化容易軸方向
との交差角をαとしたとき、αがΔαだけ変化するとき
の抵抗Rの変化ΔRは、下式で与えられる。
By the way, when the crossing angle between the easy axis of magnetization of the soft film and the easy axis of magnetization of the hard film in the case of a magnetoresistive effect element is α, the change of the resistance R when α changes by Δα ΔR is given by the following equation.

【0026】ΔR/平均値R=K・sinα・Δα K:素子の材料、構造で定まる定数 磁気抵抗効果素子が十分な磁界感度を得るためには、交
差角αを前述のように±0°から±180°の範囲での
任意の値にする必要がある。
ΔR / average value R = K · sin α · Δα K: constant determined by the material and structure of the element In order for the magnetoresistive effect element to obtain sufficient magnetic field sensitivity, the crossing angle α is ± 0 ° as described above. Must be an arbitrary value within the range from ± 180 °.

【0027】ここで、前記ソフト膜とハード膜との磁気
的相互作用を交互に強磁性的および反強磁性的にするこ
とにより、上下のハード膜の中間に配置されるソフト膜
には両側から反対方向の磁気的相互作用が働き、互いに
打ち消すことになる。したがつて前述のようにソフト膜
に磁界を印加して磁気異方性を付与する際、それの磁化
容易軸方向を任意の方向に設定することが容易になる。
Here, the magnetic interaction between the soft film and the hard film is alternately made ferromagnetic and antiferromagnetic so that the soft film disposed in the middle of the upper and lower hard films has both sides. Magnetic interactions in opposite directions work and cancel each other out. Therefore, when the magnetic field is applied to the soft film to give the magnetic anisotropy as described above, it becomes easy to set the easy axis of magnetization of the soft film to an arbitrary direction.

【0028】これの実施例を図5とともに説明する。同
図に示すように、ガラスなどの基板3上に、Cr膜10
とCo膜11とを形成した後、(Cu/Ni−Fe/C
u/Co)の最小単位の積層体12が所定層数繰り返し
て数Å〜数十Åの膜厚で形成される。
An embodiment of this will be described with reference to FIG. As shown in the figure, a Cr film 10 is formed on a substrate 3 such as glass.
And the Co film 11 are formed, (Cu / Ni-Fe / C
The laminated body 12 of the minimum unit of (u / Co) is formed with a film thickness of several Å to several tens of Å by repeating a predetermined number of layers.

【0029】具体的に説明すると、まず、基板3上に膜
厚が30ÅのCr膜10と30ÅのCo膜とを形成す
る。しかる後、膜厚がt1 のCuからなる磁気的な絶縁
膜8と、膜厚が30ÅのNi−Fe合金(パーマロイ)
からなる磁気的にソフトな膜5と、膜厚がt2 のCuか
らなる磁気的な絶縁膜6と、膜厚が30ÅのCoからな
る磁気的にハードな膜7とから構成される最小単位の積
層体12が、所定数繰り返して形成されている。
More specifically, first, the Cr film 10 having a film thickness of 30Å and the Co film having a film thickness of 30Å are formed on the substrate 3. Thereafter, a magnetic insulating film 8 made of Cu having a film thickness of t 1 and a Ni-Fe alloy (permalloy) having a film thickness of 30 Å
A minimum unit composed of a magnetically soft film 5 made of Cu, a magnetic insulating film 6 made of Cu having a film thickness of t 2 and a magnetically hard film 7 made of Co having a film thickness of 30Å. The laminated body 12 of is formed by repeating a predetermined number of times.

【0030】前述の絶縁膜8の膜厚がt1 ならびに絶縁
膜6の膜厚がt2 は、これらを介してソフト膜5とハー
ド膜7の磁気的相互作用が強磁性的ならびに反強磁性的
になるような値に設定される。この絶縁膜6、8の膜厚
1 、t2 の具体例を示せば次の表の通りである。
When the thickness of the insulating film 8 is t 1 and the thickness of the insulating film 6 is t 2 , the magnetic interaction between the soft film 5 and the hard film 7 is ferromagnetic and antiferromagnetic. Is set to a value that will Specific examples of the thicknesses t 1 and t 2 of the insulating films 6 and 8 are shown in the following table.

【0031】 表 絶縁膜8の膜厚t1 絶縁膜6の膜厚t2 0〜 5Å 6〜12Å 12〜17Å 18〜25Å 25〜30Å 31Å以上 ソフト膜5ならびにハード膜7の磁化容易軸方向は各膜
の堆積中に印加した磁界の方向と殆ど同じ方向を向いた
状態となり、特にソフト膜5内にはその方向に一軸磁気
異方性が誘起される。
The thickness t 1 of the insulating film 8 is t 2 0 to 5Å 6 to 12 Å 12 to 17 Å 18 to 25 Å 25 to 30 Å 31 Å or more The soft axis direction of the soft film 5 and the hard film 7 is The films are oriented in almost the same direction as the direction of the magnetic field applied during the deposition of each film, and in particular, uniaxial magnetic anisotropy is induced in the soft film 5 in that direction.

【0032】次に、面内の任意の方向に十分強い磁界
(ハード膜7の磁化容易軸方向を印加する磁界の方向に
向けられる程度、望ましくは数千Oe以上)の磁界を印
加して、ハード膜7の磁化容易軸方向を希望する方向に
向ける。このときソフト膜5の磁化容易軸方向も印加し
た磁界の方向に向けられるが、その磁界を除去するとハ
ード膜7の磁化容易軸方向は印加した磁界の方向に留ま
るが、ソフト膜5の磁化容易軸方向は上下のハード膜7
との相互作用が互いに殆ど打ち消されるから、ソフト膜
5自体の磁化容易軸方向に向いて安定する。
Next, a magnetic field of a sufficiently strong magnetic field (to the extent of being oriented in the direction of the magnetic field that applies the easy axis of magnetization of the hard film 7, preferably several thousand Oe or more) is applied in an arbitrary direction within the plane, The axis of easy magnetization of the hard film 7 is oriented in a desired direction. At this time, the easy axis of magnetization of the soft film 5 is also oriented in the direction of the applied magnetic field, but if the magnetic field is removed, the easy axis of magnetization of the hard film 7 remains in the direction of the applied magnetic field, but the easy axis of magnetization of the soft film 5 is easy. The upper and lower hard films 7 in the axial direction
Since the interaction with and is almost cancelled, the soft film 5 stabilizes in the direction of the easy axis of magnetization.

【0033】こうしてソフト膜5の磁化容易軸方向は、
それに誘起されている一軸磁気異方性に支配されること
になるから、垂直方向の外部磁界に対して極めて鋭敏に
反応して、その磁化の向きが変化する。
Thus, the direction of the easy axis of magnetization of the soft film 5 is
Since it is governed by the uniaxial magnetic anisotropy induced by it, it reacts extremely sensitively to an external magnetic field in the vertical direction, and its magnetization direction changes.

【0034】図6は、ソフト膜(Ni−Fe合金膜)な
らびにハード膜(Co膜)の製膜直後、強磁界印加中な
らびに強磁界を除去したのちのそれぞれの磁化容易軸方
向をまとめて示した図である。この図に示すように最終
的にはソフト膜(Ni−Fe合金膜)の磁化容易軸方向
がハード膜(Co膜)の磁化容易軸方向と交差したもの
が得られる。
FIG. 6 shows the easy axis directions of magnetization immediately after the formation of the soft film (Ni-Fe alloy film) and the hard film (Co film), during the application of the strong magnetic field and after the removal of the strong magnetic field. It is a figure. As shown in this figure, finally, a film in which the easy axis of magnetization of the soft film (Ni—Fe alloy film) intersects the easy axis of magnetization of the hard film (Co film) is obtained.

【0035】本発明に係る磁気抵抗効果素子を磁気ヘツ
ドとして使用する場合、ハード膜の磁化による磁気記録
媒体への擾乱作用を避けるため、ハード膜の磁化容易軸
方向が媒体の記録面に対してほぼ水平方向になるように
すると有利である。
When the magnetoresistive effect element according to the present invention is used as a magnetic head, in order to avoid a disturbing effect on the magnetic recording medium due to the magnetization of the hard film, the easy axis of magnetization of the hard film is directed to the recording surface of the medium. It is advantageous to make it approximately horizontal.

【0036】ところで、ハード膜の磁化容易軸方向が媒
体の記録面に対してほぼ水平方向になるようにして、か
つ、ソフト膜の磁化容易軸方向を媒体の記録面に対して
ほぼ垂直方向に向けると、磁気記録媒体からの漏洩磁界
に対するソフト膜の磁界感度が弱くなつてしまう。これ
に対して、ハード膜の磁化容易軸方向が媒体の記録面に
対してほぼ水平方向になるようにして、、かつ、ソフト
膜のハード膜に対するの磁化容易軸方向の交差角度を1
5°〜45°、好ましくは30°前後にしておけば、磁
気記録媒体からの漏洩磁界に対しても十分に反応し、し
かも磁気抵抗効果の大きい磁気ヘツドを製作することが
できる。
By the way, the easy axis of magnetization of the hard film is made substantially horizontal to the recording surface of the medium, and the easy axis of magnetization of the soft film is made substantially perpendicular to the recording surface of the medium. If oriented, the magnetic field sensitivity of the soft film to the leakage magnetic field from the magnetic recording medium becomes weak. On the other hand, the easy axis of magnetization of the hard film is made substantially horizontal to the recording surface of the medium, and the crossing angle of the easy axis of magnetization of the soft film with respect to the hard film is set to 1
If the angle is set to 5 ° to 45 °, preferably about 30 °, it is possible to manufacture a magnetic head which sufficiently reacts to the leakage magnetic field from the magnetic recording medium and has a large magnetoresistive effect.

【0037】磁気抵抗効果素子を磁気ヘツドとして使用
する場合、磁気記録媒体の記録面に垂直な磁束を検出す
ることになる。したがつて、ソフト膜の磁化容易軸方向
は外部磁界が零のとき記録面に対して垂直になるように
設定するのが効率的である。
When the magnetoresistive effect element is used as a magnetic head, a magnetic flux perpendicular to the recording surface of the magnetic recording medium is detected. Therefore, it is efficient to set the easy axis of magnetization of the soft film so as to be perpendicular to the recording surface when the external magnetic field is zero.

【0038】前述のようにソフト膜の磁化容易軸方向と
ハード膜の磁化容易軸方向との間に適当な交差角度を設
けるためには、ハード膜の磁化に記録面に対する垂直成
分をもたせなければならない。そのときハード膜の磁化
容易軸方向をすべて同一方向に平行にしておくと、磁気
ヘツド(積層磁気抵抗効果素子)の端面から発生する磁
束が磁気記録媒体の磁化に擾乱を与え易くなる。
As described above, in order to provide an appropriate crossing angle between the easy axis of magnetization of the soft film and the easy axis of magnetization of the hard film, the magnetization of the hard film must have a perpendicular component to the recording surface. I won't. At this time, if all the easy magnetization axis directions of the hard film are set parallel to the same direction, the magnetic flux generated from the end face of the magnetic head (multilayer magnetoresistive effect element) easily disturbs the magnetization of the magnetic recording medium.

【0039】磁気ヘツド(積層磁気抵抗効果素子)の実
効的全層厚teffが、磁気ヘツド(積層磁気抵抗効果
素子)と磁気記録媒体の間の実効的スペーシングhfに
比較して小さければ、その影響は少ない。その基準は図
7に示す式(1)で与えられる。
If the effective total layer thickness teff of the magnetic head (multilayer magnetoresistive effect element) is smaller than the effective spacing hf between the magnetic head (multilayer magnetoresistive effect element) and the magnetic recording medium, then Little impact. The criterion is given by the equation (1) shown in FIG.

【0040】前記式(1)において、hfは磁気記録再
生装置などによつて異なるが、磁気ヘツドと磁気記録媒
体が接触するタイプでは一般的に10〜50nmであ
る。
In the above formula (1), hf varies depending on the magnetic recording / reproducing apparatus and the like, but is generally 10 to 50 nm for the type in which the magnetic head and the magnetic recording medium are in contact with each other.

【0041】前記式(1)中の各項目を図8に示すよう
な値に設定すると同図の式(3)のようになり、この値
は磁気記録媒体における垂直方向の保磁力を超えてしま
う。
When each item in the equation (1) is set to a value as shown in FIG. 8, it becomes equation (3) in the figure, and this value exceeds the coercive force in the perpendicular direction in the magnetic recording medium. I will end up.

【0042】この問題を解決するため、本発明の実施例
ではハード膜をグループ分けして、その磁化の垂直成分
が互いに打ち消す合うようにしている。
In order to solve this problem, in the embodiment of the present invention, the hard films are divided into groups so that the perpendicular components of the magnetization thereof cancel each other out.

【0043】この状態を模式的に示したのが図9で、図
中において14は例えばプラスチツクスなどからなる電
気絶縁層、15は媒体対向面である。同図に示されてい
るように、この例ではハード膜(H)5と、磁気的な絶
縁膜6と、ソフト膜(S)7と、磁気的な絶縁膜8と、
ハード膜(H)5と、磁気的な絶縁膜6と、ソフト膜
(S)7とから最小単位の積層体15が構成されてい
る。そしてこの積層体15が所定数繰り返して配置さ
れ、各積層体15間に前記電気絶縁層13が介在され
て、各積層体15間が電気的に絶縁される。
FIG. 9 schematically shows this state. In FIG. 9, 14 is an electric insulating layer made of, for example, plastics, and 15 is a medium facing surface. As shown in the figure, in this example, a hard film (H) 5, a magnetic insulating film 6, a soft film (S) 7, a magnetic insulating film 8,
The hard film (H) 5, the magnetic insulating film 6, and the soft film (S) 7 constitute a minimum unit laminate 15. The laminated bodies 15 are repeatedly arranged a predetermined number of times, and the electrical insulating layers 13 are interposed between the laminated bodies 15 to electrically insulate the laminated bodies 15.

【0044】そして図に示す如く、第1の積層体15
(A1)においてはハード膜(H)5の磁化の垂直成分
が矢印で示すように下向きに、その隣の第2の積層体1
5(B1)においてはハード膜(H)5の磁化の垂直成
分が上向きになつており、グループ毎に磁化の垂直成分
が互いに打ち消す合うようになつている。なおこのと
き、図10に示す関係式が成立するようにしなければな
らない。この第3の実施例では、ハード膜の磁化容易軸
方向をソフト膜とハード膜の複数対毎に交互に反対にし
て、その複数対毎に電気的絶縁層を設けたが、ハード膜
の磁化容易軸方向をソフト膜とハード膜の一対毎に交互
に反対にして、その一対毎に電気的絶縁層を設けてもよ
い。
Then, as shown in FIG.
In (A1), the perpendicular component of the magnetization of the hard film (H) 5 faces downward as shown by the arrow, and the second laminated body 1 adjacent to the perpendicular direction.
5 (B1), the perpendicular components of the magnetization of the hard film (H) 5 are directed upward, and the perpendicular components of the magnetization cancel each other for each group. At this time, the relational expression shown in FIG. 10 must be satisfied. In the third embodiment, the easy axis of magnetization of the hard film is alternately reversed for every plural pairs of the soft film and the hard film, and the electrically insulating layer is provided for every plural pairs thereof. The easy axis direction may be alternately reversed for each pair of the soft film and the hard film, and the electrically insulating layer may be provided for each pair.

【0045】図11はこのように構成された磁気ヘツド
の電気回路図で、端子16にはハード膜の磁化の垂直成
分が下向きになつているAグループ(A1,A2……A
n)がそれぞれ接続され、端子17にはハード膜の磁化
の垂直成分が上向きになつているBグループ(B1,B
2……Bn)がそれぞれ接続されている。
FIG. 11 is an electric circuit diagram of the magnetic head constructed as described above. A group A (A1, A2 ... A) in which the perpendicular component of the magnetization of the hard film is directed downward at the terminal 16 is shown.
n) are connected to each other, and the group 17 (B1, B1) in which the perpendicular component of the magnetization of the hard film is directed upward to the terminal 17.
2 ... Bn) are connected respectively.

【0046】前述のようにハード膜の磁化の垂直成分が
グループ毎に反対になつているから、抵抗の変化の仕方
が反対となるため、同図のような回路構成になつてお
り、コンパレータ19からはAグループとBグループの
抵抗の差に比例した出力が得られる。なお、図中の18
は磁気ヘツドの感磁部でトラツク幅に対応している。
As described above, since the perpendicular components of the magnetization of the hard film are opposite for each group, the way of changing the resistance is opposite, so that the circuit configuration as shown in FIG. From, an output proportional to the resistance difference between the A group and the B group is obtained. In addition, 18 in the figure
Is the magnetic sensitive part of the magnetic head and corresponds to the track width.

【0047】なお、前記実施例ではNi−Fe/Cu/
Co系の材料について説明したが、本発明はこれに限定
されるものではなく、例えば Cu/Cu/Co系,F
e/Cr系,Ag/Co系,Ni/Ag系,Fe/Co
/Cu/Fe系,Co/Cu系,Cu/Co系/Cu/
Ni−Fe系などのような材料を使用することも可能で
ある。
In the above embodiment, Ni-Fe / Cu /
Although the Co-based material has been described, the present invention is not limited to this. For example, Cu / Cu / Co-based, F
e / Cr system, Ag / Co system, Ni / Ag system, Fe / Co
/ Cu / Fe system, Co / Cu system, Cu / Co system / Cu /
It is also possible to use a material such as Ni-Fe system.

【0048】[0048]

【発明の効果】本発明は前述のように、ソフトな膜の磁
化容易軸方向をハードな膜の磁化容易軸方向と所定の角
度をもつて交差させることにより、ハードな膜との磁気
的な結合力を弱め、ソフトな膜の磁化方向が外部の磁界
によつて変化し易くなり、そのために高磁界感度の磁気
抵抗効果素子を提供することができる。
As described above, according to the present invention, the easy axis of magnetization of the soft film is crossed with the easy axis of magnetization of the hard film at a predetermined angle so as to be magnetically coupled with the hard film. The binding force is weakened, and the magnetization direction of the soft film is likely to change due to an external magnetic field. Therefore, a magnetoresistive effect element having high magnetic field sensitivity can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る磁気ヘツドの斜視
図である。
FIG. 1 is a perspective view of a magnetic head according to a first embodiment of the present invention.

【図2】その磁気ヘツドに使用する積層磁気抵抗効果素
子の拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a laminated magnetoresistive effect element used for the magnetic head.

【図3】その積層磁気抵抗効果素子における各膜の磁界
の印加方向を説明するための説明図である。
FIG. 3 is an explanatory diagram for explaining a magnetic field application direction of each film in the laminated magnetoresistive effect element.

【図4】その積層磁気抵抗効果素子の使用態様を説明す
るための説明図である。
FIG. 4 is an explanatory diagram for explaining a usage mode of the laminated magnetoresistive effect element.

【図5】第2の実施例に係る積層磁気抵抗効果素子の拡
大断面図である。
FIG. 5 is an enlarged sectional view of a laminated magnetoresistive effect element according to a second embodiment.

【図6】その積層磁気抵抗効果素子における各膜の製膜
直後、強磁界印加中ならびに磁界除去後の磁化容易軸方
向を示す説明図である。
FIG. 6 is an explanatory view showing the easy axis direction of magnetization immediately after film formation of each film in the laminated magnetoresistive effect element, during application of a strong magnetic field and after removal of the magnetic field.

【図7】数式を表す図である。FIG. 7 is a diagram showing mathematical expressions.

【図8】式中の具体的数値と式を表す図である。FIG. 8 is a diagram showing specific numerical values and expressions in the expressions.

【図9】第3の実施例に係る積層磁気抵抗効果素子の拡
大断面図である。
FIG. 9 is an enlarged sectional view of a laminated magnetoresistive effect element according to a third embodiment.

【図10】数式を表す図である。FIG. 10 is a diagram illustrating a mathematical formula.

【図11】第3の実施例に係る磁気ヘツドの電気回路図
である。
FIG. 11 is an electric circuit diagram of the magnetic head according to the third embodiment.

【符号の説明】[Explanation of symbols]

1 積層磁気抵抗効果素子 4 多層膜 5 ソフト膜 6、8 磁気的絶縁膜 7 ハード膜 9、12、15 最小単位積層体 13 電気的絶縁膜 1 Multilayer Magnetoresistive Element 4 Multilayer Film 5 Soft Film 6, 8 Magnetic Insulating Film 7 Hard Film 9, 12, 15 Minimum Unit Laminate 13 Electrical Insulating Film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁気的にソフトな膜とハードな膜とが所
定層数積層された磁気抵抗効果素子において、 前記ソフトな膜の磁化容易軸方向がハードな膜の磁化容
易軸方向と交差していることを特徴とする磁気抵抗効果
素子。
1. In a magnetoresistive element in which a predetermined number of layers of a magnetically soft film and a hard film are laminated, the easy axis of magnetization of the soft film intersects the easy axis of magnetization of the hard film. A magnetoresistive effect element characterized in that
【請求項2】 請求項1記載において、前記ソフトな膜
の磁化容易軸方向がその膜の積層方向において交互に異
なつていることを特徴とする磁気抵抗効果素子。
2. The magnetoresistive effect element according to claim 1, wherein the easy axis of magnetization of the soft film alternates in the stacking direction of the films.
【請求項3】 請求項1記載において、前記ソフトな膜
の磁化容易軸方向がその膜の積層方向においてグループ
毎に異なつていることを特徴とする磁気抵抗効果素子。
3. The magnetoresistive element according to claim 1, wherein the easy axis of magnetization of the soft film is different for each group in the laminating direction of the film.
【請求項4】 請求項1記載において、前記ソフトな膜
とハードな膜との磁気的相互作用を交互に強磁性的およ
び反強磁性的にしたことを特徴とする磁気抵抗効果素
子。
4. The magnetoresistive effect element according to claim 1, wherein the magnetic interaction between the soft film and the hard film is alternately made ferromagnetic and antiferromagnetic.
【請求項5】 請求項1記載において、前記ハードな膜
の磁化容易軸方向をソフトな膜とハードな膜の一対毎あ
るいは複数対毎に交互に反対になつており、その一対毎
あるいは複数対毎に電気的絶縁層を設けたことを特徴と
する磁気抵抗効果素子。
5. The magnetic film according to claim 1, wherein the easy magnetization axis directions of the hard film and the soft film and the hard film are alternately reversed for each pair or plural pairs. A magnetoresistive effect element characterized in that an electrical insulating layer is provided for each.
JP4022935A 1992-02-07 1992-02-07 Magnetoresistance effect element Withdrawn JPH0697532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022935A JPH0697532A (en) 1992-02-07 1992-02-07 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022935A JPH0697532A (en) 1992-02-07 1992-02-07 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPH0697532A true JPH0697532A (en) 1994-04-08

Family

ID=12096490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022935A Withdrawn JPH0697532A (en) 1992-02-07 1992-02-07 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPH0697532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600297A (en) * 1994-08-28 1997-02-04 U.S. Philips Corporation Magnetic field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600297A (en) * 1994-08-28 1997-02-04 U.S. Philips Corporation Magnetic field sensor

Similar Documents

Publication Publication Date Title
US5390061A (en) Multilayer magnetoresistance effect-type magnetic head
US5991125A (en) Magnetic head
US6914761B2 (en) Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer
US5891586A (en) Multilayer thin-film for magnetoresistive device
CN100435372C (en) Magnetic resistant element deposited with oxide magnetic layer and metal magnetic film
GB2387711A (en) Magnetic sensing element with multi-layer free layer
JPH08279117A (en) Gigantic magnetoresistance effect material film and its production and magnetic head using the same
EP1181693A1 (en) Magnetic device with a coupling layer and method of manufacturing and operation of such device
JPH1041132A (en) Magnetic resistance effect film
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP3276264B2 (en) Magnetoresistive multilayer film and method of manufacturing the same
JP2002151757A (en) Thin film magnetic element and its manufacturing method
JPH10188235A (en) Magneto-resistive film and its production
JP3455055B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JP3190193B2 (en) How to use thin film magnetic head
JPH0697532A (en) Magnetoresistance effect element
JPH0992904A (en) Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JPH10294217A (en) Spin valve type magnetoresistance effect film and magnetic head having the same
JPH0661050A (en) Laminated magnetic film and magnetic head and magnetic recording/reproducing apparatus using the film
JP3260735B2 (en) Magnetoresistance effect element, magnetoresistance effect head, magnetic recording reproducing device and production of magnetoresistance effect head
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH05226725A (en) Mangetoresistance effect device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518