JPH0697472A - Semiconductor optical energy conversion apparatus - Google Patents

Semiconductor optical energy conversion apparatus

Info

Publication number
JPH0697472A
JPH0697472A JP4243709A JP24370992A JPH0697472A JP H0697472 A JPH0697472 A JP H0697472A JP 4243709 A JP4243709 A JP 4243709A JP 24370992 A JP24370992 A JP 24370992A JP H0697472 A JPH0697472 A JP H0697472A
Authority
JP
Japan
Prior art keywords
semiconductor
light
insulating film
energy conversion
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4243709A
Other languages
Japanese (ja)
Other versions
JP3314958B2 (en
Inventor
Yoshinori Nakato
義禮 中戸
Yoshinori Nishikitani
禎範 錦谷
Nobuyuki Kuroda
信行 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP24370992A priority Critical patent/JP3314958B2/en
Publication of JPH0697472A publication Critical patent/JPH0697472A/en
Application granted granted Critical
Publication of JP3314958B2 publication Critical patent/JP3314958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To permit fine holes or grooves to conduct a current therethrough without lowering open circuit photo electric voltage by providing the fine holes or the fine grooves in an insulating film and directly joinning a semiconductor and an optically transparent conductive material. CONSTITUTION:An insulating film 3 is joinned with a light incident surface of a semiconductor 2, and includes fine holes and/or fine grooves 6 provided for keeping conductivity between the semiconductor 2 and an optically transparent conductive material 4. Diameters of these fine holes and the width of the grooves are specified to be 10-1000Angstrom whereby electric charges produced by light irradiation can be moved without lowering the open circuit photo electric voltage Voc the fine grooves in such a manner, the semiconductor is prevented from being deteriorated to ensure a long if of the same and further ensure a greater phoptoelectric conversion eficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光エネルギーを電気エネ
ルギーに変換する半導体光エネルギー変換装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light energy conversion device for converting light energy into electric energy.

【0002】[0002]

【従来の技術】昨今の地球環境問題に対する関心の高ま
りとともに、太陽エネルギーの有効利用が叫ばれるよう
になってきた。例えば太陽電池は、太陽光エネルギーを
効率よく電気エネルギーに変換する装置として期待され
ており、現在使用されているものは、主として単結晶シ
リコンを用いるpn接合太陽電池とアモルファス・シリ
コンを用いるpin接合太陽電池である。単結晶シリコ
ンを用いたpn接合太陽電池では20%を越える効率の
ものが発表されており、またpin接合を用いたアモル
ファス・シリコン太陽電池においても12%程度の効率
のものが作製されている。しかし、一般の電力用として
実用化するためには、さらなる効率の向上とともに、コ
ストの大幅な低減が必要である。このような太陽電池の
候補の一つとして、表面バリア型のMIS接合太陽電池
が考えられている。この太陽電池は接合形成が容易で、
多結晶薄膜、アモルファス薄膜、粒状膜のような安価な
半導体材料を利用することが可能であり、コストの大幅
な低減が期待される。しかしながら、MIS接合太陽電
池では接合形成のためにPtなどの金属薄膜が表面に蒸
着されており、効率が低下するという問題がある。そこ
で、Ptなどの超微細な金属アイランドを施した全く新
しいタイプの太陽電池が提案されている(特開昭62−
76166)。この太陽電池開回路光電圧Vocは0.
63〜0.68Vと、通常のpn接合シリコン太陽電池
と比較してかなり高くなっており、効率の向上が期待さ
れる。
2. Description of the Related Art With the recent increasing interest in global environmental problems, the effective use of solar energy has been called for. For example, a solar cell is expected as a device for efficiently converting sunlight energy into electric energy, and currently used ones are a pn junction solar cell mainly using single crystal silicon and a pin junction solar cell using amorphous silicon. It is a battery. It has been announced that a pn junction solar cell using single crystal silicon has an efficiency of more than 20%, and an amorphous silicon solar cell using a pin junction has an efficiency of about 12%. However, in order to put it into practical use for general electric power, it is necessary to further improve the efficiency and significantly reduce the cost. As one of the candidates for such a solar cell, a surface barrier type MIS junction solar cell is considered. This solar cell is easy to form a junction,
It is possible to use inexpensive semiconductor materials such as polycrystalline thin films, amorphous thin films, and granular films, and it is expected that the cost will be significantly reduced. However, in the MIS-junction solar cell, a metal thin film such as Pt is vapor-deposited on the surface for forming a junction, and there is a problem that efficiency is reduced. Therefore, a completely new type of solar cell having an ultrafine metal island such as Pt has been proposed (Japanese Patent Laid-Open No. 62-62).
76166). This solar cell open circuit light voltage Voc is 0.
The voltage is 63 to 0.68 V, which is considerably higher than that of a normal pn junction silicon solar cell, and improvement in efficiency is expected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、微細な
金属アイランドを使用しているため、MIS接合太陽電
池同様に、その金属により太陽光が吸収・反射され、効
率の低下が起こる。
However, since the fine metal islands are used, sunlight is absorbed and reflected by the metal as in the MIS junction solar cell, resulting in a decrease in efficiency.

【0004】本発明は、上記のような課題を解決するた
めになされたもので、微細な金属アイランドを使用せず
に、効率が高く、コストの大幅な低減がはかれる新規な
半導体光エネルギー変換装置を提供することを目的とす
る。
The present invention has been made in order to solve the above problems, and is a novel semiconductor light energy conversion device which is highly efficient and can significantly reduce the cost without using fine metal islands. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明は、半導体、該半導体の光入射面に設けた絶縁性膜、
該絶縁性膜上に設けた光透過性導電物質、及び前記半導
体の他面側にオーミック性接合された導体を備え、前記
光透過性導電物質を通して前記半導体へ光を入射させて
電気エネルギーを得る半導体光エネルギー変換装置にお
いて、前記絶縁性膜が微小な細孔及び/または微小な溝
を有し、該細孔及び/または溝を介して前記半導体と光
透過性導電物質が直接接合することを特徴とする半導体
光エネルギー変換装置である。
The present invention which solves the above-mentioned problems provides a semiconductor, an insulating film provided on the light incident surface of the semiconductor,
A light-transmitting conductive material provided on the insulating film and a conductor ohmic-bonded to the other surface of the semiconductor are provided, and light is incident on the semiconductor through the light-transmitting conductive material to obtain electric energy. In the semiconductor light energy conversion device, the insulating film has minute pores and / or minute grooves, and the semiconductor and the light-transmissive conductive material are directly bonded through the pores and / or grooves. It is a characteristic semiconductor light energy conversion device.

【0006】[0006]

【作用】本発明における微小な細孔及び/または微小な
溝は、開回路光電圧Vocを低下させることなく電流を
通す働きをする。
The micropores and / or microgrooves in the present invention function to pass an electric current without lowering the open circuit photovoltage Voc.

【0007】図1は、本発明の一実施例による半導体光
エネルギー変換装置を示す断面図である。図において、
3は半導体2の光入射面に接合された絶縁性膜であり、
半導体2と光透過性導電物質4との間の通電性を保持す
るために設けられる微小な細孔及び/または微小な溝6
を有する。この細孔の径、溝の幅を10〜1000Åに
規定することにより、開回路光電圧Vocを低下させる
ことなく容易に光照射により発生した電荷の移動を行わ
せることができる。
FIG. 1 is a sectional view showing a semiconductor light energy conversion device according to an embodiment of the present invention. In the figure,
3 is an insulating film bonded to the light incident surface of the semiconductor 2,
Micropores and / or microgrooves 6 provided to maintain the electrical conductivity between the semiconductor 2 and the light-transmissive conductive material 4.
Have. By defining the diameter of the fine pores and the width of the grooves to be 10 to 1000Å, it is possible to easily move the charges generated by the light irradiation without lowering the open circuit photovoltage Voc.

【0008】本発明における半導体の例としては、例え
ば、Si,GaAs,GaP,GaAsx1-x,In
P,AlAs,AlP,CdTe,CdSe,CdS,
Cu2S,ZnTe,ZnSe,Zn32,MoTe2
MoSe2,MoS2,WTe2,WSe2,WS2,Fe
2,RuS2,FePS3,ZrTe2,ZrS2,Cu
InS2,CuInSe2などが挙げられる。
Examples of the semiconductor in the present invention include, for example, Si, GaAs, GaP, GaAs x P 1-x , In.
P, AlAs, AlP, CdTe, CdSe, CdS,
Cu 2 S, ZnTe, ZnSe, Zn 3 P 2 , MoTe 2 ,
MoSe 2 , MoS 2 , WTe 2 , WSe 2 , WS 2 , Fe
S 2 , RuS 2 , FePS 3 , ZrTe 2 , ZrS 2 , Cu
InS 2 , CuInSe 2 and the like can be mentioned.

【0009】この素子の構成は基本的にはMIS型太陽
電池に類似しており、従来のpn,pin接合等の高価
・複雑な工程を行う必要がなく、コストの低減が図れ
る。さらにまた、pn,pin接合を有する太陽電池で
は、光入射面に存在するp層ないしはn層におけるキヤ
リアの再結合が光電流を減少させるという問題があった
が、本発明の半導体では光入射面にこのようなp層ある
いはn層は存在せず、大きな光電流が得られる。
The structure of this element is basically similar to that of the MIS type solar cell, and it is not necessary to perform the expensive and complicated steps such as the conventional pn and pin junction, and the cost can be reduced. Furthermore, in the solar cell having the pn, pin junction, there is a problem that the recombination of carriers in the p layer or the n layer existing in the light incident surface reduces the photocurrent, but in the semiconductor of the present invention, the light incident surface is reduced. No such p-layer or n-layer exists, and a large photocurrent can be obtained.

【0010】絶縁性膜に10〜1000Å径の細孔及び
/または10〜1000Åの幅を有する溝を設ける方法
としては、例えば、ゾル−ゲル法、多孔質膜を用いたエ
ッチング法、また場合によっては従来より知られている
フォトレジスト法、X線レジスト法、電子線レジスト法
等を用いることができる。
The insulating film may be provided with pores having a diameter of 10 to 1000Å and / or grooves having a width of 10 to 1000Å by, for example, a sol-gel method, an etching method using a porous film, or in some cases. Can use a conventionally known photoresist method, X-ray resist method, electron beam resist method, or the like.

【0011】[0011]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれにより限定されるものではない。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto.

【0012】実施例1 厚さ0.5mmのn型シリコン単結晶(n−Si)ウエ
ーハー(ドナー濃度約1×1016cm-3)のエッチング
を、フッ化水素酸、硝酸及び少量の臭素を含むエッチン
グ溶液(CPD−2)で行った。続いて、ポリビニルピ
ロリドン(Mw=120×104)1g、エチルシリケ
ート2g、エタノール50gを混合した溶液に1N塩酸
をピペットで2滴滴下し、ディップコーティング用溶液
の調製を行った。調製された溶液を48時間室温で放置
し、その後、先にエッチングしたシリコン単結晶上にデ
ィップコーティングを行った。さらに室温で192時間
放置し、ポリビニルピロリドンを含有したSiO2膜の
作製を行った。得られたSiO2の膜厚は40Åであっ
た。続いて、SiO2膜付きシリコン単結晶を電気炉の
中にいれ、600℃で焼成する事により、ポリビニルピ
ロリドンの除去を行った。その結果、50Å程度の細孔
径を有するSiO2膜が得られた。続いて、この上に酸
化インジウム錫(ITO)を5,000Å蒸着した。こ
の上にマスクを用いて金を網状に蒸着し、ここに銀ペー
ストを用いて銅線を結合させた。上記の酸化インジウム
錫は光透過性導電物質である。
Example 1 A 0.5 mm thick n-type silicon single crystal (n-Si) wafer (donor concentration: about 1 × 10 16 cm -3 ) was etched with hydrofluoric acid, nitric acid and a small amount of bromine. It carried out with the etching solution containing (CPD-2). Subsequently, 2 drops of 1N hydrochloric acid were dropped by a pipette into a solution obtained by mixing 1 g of polyvinylpyrrolidone (Mw = 120 × 10 4 ), 2 g of ethyl silicate, and 50 g of ethanol to prepare a dip coating solution. The prepared solution was left at room temperature for 48 hours, and then dip-coated on the previously etched silicon single crystal. Further, it was left at room temperature for 192 hours to prepare a SiO 2 film containing polyvinylpyrrolidone. The film thickness of the obtained SiO 2 was 40Å. Subsequently, the silicon single crystal with the SiO 2 film was placed in an electric furnace and baked at 600 ° C. to remove polyvinylpyrrolidone. As a result, a SiO 2 film having a pore size of about 50Å was obtained. Subsequently, indium tin oxide (ITO) was vapor-deposited on this by 5,000 liters. A mask was used to deposit gold in a net-like pattern on this, and a copper wire was bonded thereto using a silver paste. The indium tin oxide is a light transmissive conductive material.

【0013】一方、このn−Siウエーハーの裏面に、
インジウム・ガリウム合金でオーミック性接合された導
体を形成し、銀ペーストで銅線を結合させた。
On the other hand, on the back surface of this n-Si wafer,
An indium-gallium alloy was used to form a conductor that was ohmic-bonded, and a copper wire was bonded with a silver paste.

【0014】このようにして作製した太陽電池につい
て、上記の2本の銅線を可変抵抗を介してつなぎ、30
0Wハロゲンランプを光源として矢印イより光照射しな
がら光電流−電圧特性を測定したところ、図2に示すよ
うに、閉回路光電流25mAcm-2、開回路光電圧0.
60V、曲線因子0.67を得、また光電流は200時
間以上安定であった。
In the solar cell thus manufactured, the above-mentioned two copper wires were connected via a variable resistor,
The photocurrent-voltage characteristics were measured while irradiating light from a 0 W halogen lamp as a light source from the arrow a. As a result, as shown in FIG. 2, a closed circuit photocurrent of 25 mAcm -2 , an open circuit photovoltage of 0.
60V, fill factor 0.67 was obtained, and the photocurrent was stable for 200 hours or more.

【0015】実施例2 実施例1で用いたものと同じn−Siウエーハーを実施
例1と同様の方法でエッチング溶液(CPD−2)を用
いてエッチングし、続いて、水蒸気を含む酸素気流下4
00℃で1時間加熱して表面に薄い酸化膜を生成させ
た。この上に金を約100Åの厚さに蒸着し、10%フ
ッ化水素水溶液に約30秒浸漬した。これにより、金薄
膜中に存在する微小な割れ目(幅50〜100Å)の部
分において、Si上の酸化物が取り除かれた。さらに王
水中に約8時間浸漬して表面の金を取り除いた。続い
て、実施例1と同様な方法で光透過性物質及びオーミッ
ク性接合された導体の形成を行い太陽電池を完成させ
た。このようにして作製された太陽電池の特性は、閉回
路光電流23mAcm-2、開回路光電圧0.56V、曲
線因子0.63であり、また光電流は200時間以上安
定であった。
Example 2 The same n-Si wafer as that used in Example 1 was etched with an etching solution (CPD-2) in the same manner as in Example 1, and subsequently, in an oxygen stream containing water vapor. Four
It was heated at 00 ° C. for 1 hour to form a thin oxide film on the surface. Gold was vapor-deposited thereon to a thickness of about 100 Å and immersed in a 10% hydrogen fluoride aqueous solution for about 30 seconds. As a result, the oxide on Si was removed at the minute cracks (width 50 to 100 Å) existing in the gold thin film. Further, it was immersed in aqua regia for about 8 hours to remove the gold on the surface. Subsequently, a light transmissive material and a conductor that was ohmic-bonded were formed in the same manner as in Example 1 to complete a solar cell. The characteristics of the solar cell thus manufactured were a closed circuit photocurrent of 23 mAcm -2 , an open circuit photovoltage of 0.56 V and a fill factor of 0.63, and the photocurrent was stable for 200 hours or more.

【0016】実施例3 実施例2と同様な方法でSiO2膜付きn−Siウエー
ハーの作製を行った。続いて、1,2,3,4,5-ペンタフェニ
ルシクロペンタジエンを50Åの膜厚に蒸着し、さらに
電気炉の中にいれ200℃で結晶化を進行させた。得ら
れた蒸着膜は50〜100Åの微小な細孔を有してい
た。このようにして得られた素子を10%フッ化水素水
溶液に約30秒浸漬し、微小な細孔部分に存在するシリ
コンウエーハー上の酸化物を取り除いた。さらにニトロ
ベンゼンに浸漬することにより、1,2,3,4,5-ペンタフェ
ニルシクロペンタジエンを取り除き、微小な細孔を有す
るSiO2膜付きn−Siウエーハーを作製した。続い
て、実施例1と同様な方法で光透過性物質及びオーミッ
ク性接合された導体の形成を行い太陽電池を完成させ
た。このようにして作製された太陽電池の特性は、閉回
路光電流24mAcm-2、開回路光電圧0.54V、曲
線因子0.62であり、また光電流は200時間以上安
定であった。
Example 3 An n-Si wafer with a SiO 2 film was prepared in the same manner as in Example 2. Then, 1,2,3,4,5-pentaphenylcyclopentadiene was vapor-deposited to a film thickness of 50 Å, and then put in an electric furnace to proceed with crystallization at 200 ° C. The vapor deposition film thus obtained had fine pores of 50 to 100 liters. The device thus obtained was immersed in a 10% hydrogen fluoride aqueous solution for about 30 seconds to remove the oxide on the silicon wafer existing in the minute pores. Further, it was immersed in nitrobenzene to remove 1,2,3,4,5-pentaphenylcyclopentadiene, and an n-Si wafer with a SiO 2 film having fine pores was produced. Subsequently, a light transmissive material and a conductor that was ohmic-bonded were formed in the same manner as in Example 1 to complete a solar cell. The characteristics of the solar cell thus produced were a closed circuit photocurrent of 24 mAcm -2 , an open circuit photovoltage of 0.54 V and a fill factor of 0.62, and the photocurrent was stable for 200 hours or more.

【0017】[0017]

【発明の効果】以上のように、本発明によれば、半導
体、該半導体の光入射面に設けた絶縁性膜、該絶縁性膜
上に設けた光透過性導電物質、及び前記半導体の他面側
にオーミック性接合された導体を備え、前記光透過性導
電物質を通して前記半導体へ光を入射させて電気エネル
ギーを得る半導体光エネルギー変換装置において、半導
体の光入射面部に設けた絶縁性膜に微小な細孔および/
または微小な溝を設けたことにより、半導体の劣化を抑
えて寿命を長くでき、さらに大きな光電変換効率を得ら
れる半導体光エネルギー変換装置を提供できる。
As described above, according to the present invention, the semiconductor, the insulating film provided on the light incident surface of the semiconductor, the light-transmissive conductive material provided on the insulating film, and the semiconductor In a semiconductor light energy conversion device having a conductor that is ohmic-bonded on the surface side and injecting light into the semiconductor through the light transmissive conductive material to obtain electric energy, an insulating film provided on a light incident surface portion of the semiconductor Minute pores and /
Alternatively, by providing the minute groove, it is possible to provide a semiconductor light energy conversion device which can suppress the deterioration of the semiconductor, prolong the life thereof, and obtain a further large photoelectric conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体光エネルギー変
換装置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor light energy conversion device according to an embodiment of the present invention.

【図2】本発明の一実施例に係わる電流−電圧曲線の測
定結果を示すグラフである。
FIG. 2 is a graph showing a measurement result of a current-voltage curve according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 オーミック接合された導体 2 半導体 3 絶縁性膜 4 光透過性物質 5 可変抵抗 6 微小な細孔および/または微小な溝 1 Ohmic-Joined Conductor 2 Semiconductor 3 Insulating Film 4 Light-Transmissive Material 5 Variable Resistance 6 Micropores and / or Microgrooves

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 信行 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuyuki Kuroda 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Nippon Petroleum Co., Ltd. Central Technology Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体、該半導体の光入射面に設けた絶
縁性膜、該絶縁性膜上に設けた光透過性導電物質、及び
前記半導体の他面側にオーミック性接合された導体を備
え、前記光透過性導電物質を通して前記半導体へ光を入
射させて電気エネルギーを得る半導体光エネルギー変換
装置において、前記絶縁性膜が微小な細孔及び/または
微小な溝を有し、該細孔及び/または溝を介して前記半
導体と光透過性導電物質が直接接合することを特徴とす
る半導体光エネルギー変換装置。
1. A semiconductor, an insulating film provided on a light-incident surface of the semiconductor, a light-transmissive conductive material provided on the insulating film, and a conductor ohmic-bonded to the other surface of the semiconductor. In the semiconductor light energy conversion device for obtaining electric energy by injecting light into the semiconductor through the light transmissive conductive material, the insulating film has fine pores and / or fine grooves, A semiconductor light energy conversion device, wherein the semiconductor and the light-transmissive conductive material are directly bonded via a groove.
【請求項2】 前記絶縁性膜の微小な細孔の径が10〜
1000Åであることを特徴とする請求項1の半導体光
エネルギー変換装置。
2. The diameter of the fine pores of the insulating film is 10 to 10.
The semiconductor light energy conversion device according to claim 1, wherein the device is 1000 Å.
【請求項3】 前記絶縁性膜の微小な溝の幅が10〜1
000Åであることを特徴とする請求項1の半導体光エ
ネルギー変換装置。
3. The width of the minute groove of the insulating film is 10 to 1
The semiconductor light energy conversion device according to claim 1, wherein the semiconductor light energy conversion device is 000Å.
JP24370992A 1992-09-11 1992-09-11 Semiconductor light energy converter Expired - Fee Related JP3314958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24370992A JP3314958B2 (en) 1992-09-11 1992-09-11 Semiconductor light energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24370992A JP3314958B2 (en) 1992-09-11 1992-09-11 Semiconductor light energy converter

Publications (2)

Publication Number Publication Date
JPH0697472A true JPH0697472A (en) 1994-04-08
JP3314958B2 JP3314958B2 (en) 2002-08-19

Family

ID=17107820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24370992A Expired - Fee Related JP3314958B2 (en) 1992-09-11 1992-09-11 Semiconductor light energy converter

Country Status (1)

Country Link
JP (1) JP3314958B2 (en)

Also Published As

Publication number Publication date
JP3314958B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP6689456B2 (en) Photovoltaic device with transparent tunnel junction
Bhushan et al. Polycrystalline Zn3P2 Schottky barrier solar cells
US4593151A (en) Photoelectric conversion device
JP4456107B2 (en) Photoelectric conversion device and substrate for photoelectric conversion device
US4818337A (en) Thin active-layer solar cell with multiple internal reflections
US20110312120A1 (en) Absorber repair in substrate fabricated photovoltaics
JPH08500210A (en) Photovoltaic cell and manufacturing method thereof
CN109314152B (en) Solar cell, method for manufacturing same, and solar cell module
US20100252094A1 (en) High-Efficiency Solar Cell and Method of Manufacturing the Same
US20120097236A1 (en) Solar cell
EP0537730B1 (en) Solar cell
JP2986875B2 (en) Integrated solar cell
US20130152999A1 (en) Photovoltaic component for use under concentrated solar flux
US9859451B2 (en) Thin film photovoltaic cell with back contacts
JP2001203376A (en) Solar cell
EP2717327A2 (en) Solar cell and method for manufacturing same
US4764476A (en) Method of making photoelectric conversion device
CN115411125A (en) Thin-film solar cell and preparation method thereof, photovoltaic module and power generation equipment
JPH0221664B2 (en)
JP3314958B2 (en) Semiconductor light energy converter
CN115425146B (en) Backside illuminated microstructure array wide-spectrum imaging detector and preparation method thereof
JPS5825283A (en) Photodetector
Williams Gold in solar cells: A review of current work
JPH06283738A (en) Photovoltaic device
JP2005079143A (en) Crystal silicon and photoelectric converter employing it

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees