JPH069733B2 - Judgment method of steel slab excellent in hydrogen-induced cracking resistance - Google Patents

Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Info

Publication number
JPH069733B2
JPH069733B2 JP61161916A JP16191686A JPH069733B2 JP H069733 B2 JPH069733 B2 JP H069733B2 JP 61161916 A JP61161916 A JP 61161916A JP 16191686 A JP16191686 A JP 16191686A JP H069733 B2 JPH069733 B2 JP H069733B2
Authority
JP
Japan
Prior art keywords
hydrogen
segregation
induced cracking
slab
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61161916A
Other languages
Japanese (ja)
Other versions
JPS6320142A (en
Inventor
義盛 福田
庄三 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61161916A priority Critical patent/JPH069733B2/en
Publication of JPS6320142A publication Critical patent/JPS6320142A/en
Publication of JPH069733B2 publication Critical patent/JPH069733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造によって得られた鋼鋳片が油井管そ
の他に用いられる耐水素誘起割れ性に優れた鋼鋳片とし
て相応しいか否かを判定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) Whether the present invention is suitable for a steel slab obtained by continuous casting as a steel slab excellent in hydrogen-induced cracking resistance used for oil country tubular goods and the like. It relates to a method of determining.

(従来の技術) 従来連続鋳造によって得られた鋼鋳片(以下連鋳鋳片と
いう)の品質評価法には、サルファープリント法、マク
ロエッチ法等があり、一般的には、前者の方利用されて
いる。
(Prior art) Quality evaluation methods for steel cast pieces (hereinafter referred to as continuous cast pieces) obtained by conventional continuous casting include the sulfur print method and the macro etching method. Generally, the former method is used. Has been done.

このサルファープリント法によれば、鋳片の特に中心部
近傍の偏析状態が簡便に評価できるため、品種別の判定
基準として連鋳鋳片では広く利用されてきた。特に一般
構造物、造船材等の鋼板を製造する場合には、この方法
がきわめて優れていた。
According to the sulfur print method, the segregation state of the cast piece, particularly in the vicinity of the central portion, can be easily evaluated, so that it has been widely used in continuous cast pieces as a criterion for judging by product type. This method was extremely excellent especially when manufacturing steel plates for general structures and shipbuilding materials.

しかしながら、耐水素誘起割れ性を評価しようとする場
合には前記の品質評価法が有効な手段とならないのが現
状であった。なぜならば水素誘起割れは、S以外の元素
であるP,Mn等の最終凝固部近傍で起こる偏析と極め
て関係が強く、従来のサルファ〇プリント法、マクロエ
ッチ法による評価では、どうしても不正確になるためで
ある。
However, the present situation is that the above-mentioned quality evaluation method is not an effective means for evaluating hydrogen-induced cracking resistance. This is because hydrogen-induced cracking has a strong relation with the segregation of elements other than S, such as P and Mn, that occur near the final solidified portion, and is inaccurate by the conventional sulfaprint method and macroetching method. This is because.

従って現状では、上記のような割れが問題となる鋼種に
ついては、鋳片段階で圧延後の水素誘起割れ性を評価す
ることは困難であるため、均熱拡散処理あるいはブレイ
クダウン均熱拡散処理等を実施し、全ての元素の拡散処
理を行なった後に圧延するという過剰な対応がとられて
きた。
Therefore, at present, it is difficult to evaluate the hydrogen-induced cracking property after rolling at the slab stage for steel types in which cracking as described above poses a problem, so soaking diffusion treatment or breakdown soaking diffusion treatment, etc. Has been carried out, diffusion treatment of all the elements has been carried out, and then rolling has been taken as an excessive measure.

(発明が解決しようとする課題) 上記のような水素誘起割れとP,Mn等の偏析量との関
係はいまだ明らかにされておらず、従って、成分調整、
ロールピッチの短縮化、凝固組織の等軸晶化を実施して
いるが、必ずしも目的の鋼鋳片を得るに至っていない。
(Problems to be Solved by the Invention) The relationship between the hydrogen-induced cracking and the segregation amount of P, Mn, etc. as described above has not been clarified yet, and therefore, the composition adjustment,
Although the roll pitch has been shortened and the solidification structure has been equiaxed, the desired steel slab has not necessarily been obtained.

本発明者らは、鋳片におけるP,Mnの偏析状態と割れ
特性の関係を調査した。その結果、P≧0.04重量%(以
下単に「%」と記載する)、Mn≧1.5%の濃度部分の
面積率と、割れ特性に密接な関係があることを知った。
The present inventors investigated the relationship between the segregation state of P and Mn in a slab and the crack characteristics. As a result, it was found that there is a close relationship between the area ratio of the concentration portion where P ≧ 0.04 wt% (hereinafter simply referred to as “%”) and Mn ≧ 1.5% and the cracking property.

即ち本発明は、耐水素誘起割れ性に優れた均熱拡散処理
型連鋳鋳片を、圧延後にNACE基準による水素誘起割
れテストを行うことなく、鋳片段階で判定する方法を提
供するものである。
That is, the present invention provides a method for determining a soaking and diffusion treatment type continuous cast slab excellent in hydrogen-induced cracking resistance at the slab stage without performing a hydrogen-induced cracking test according to the NACE standard after rolling. is there.

(課題を解決するための手段) 本発明者らは、後述するような溶鋼成分の連鋳鋳片を、
新たな偏析評価方法に基づいて評価し、これを圧延して
成品としたものの水素誘起割れ特性を調査した。その結
果、第1図に示すように、P及びMnの偏析と成品の割
れ特性との間に一定の関係を見い出した。
(Means for Solving the Problem) The present inventors have made continuous cast slabs of molten steel components as described below,
Evaluation was made based on a new segregation evaluation method, and the hydrogen-induced cracking characteristics of the rolled product was investigated. As a result, as shown in FIG. 1, a certain relationship was found between the segregation of P and Mn and the cracking property of the product.

図中○印は割れなし、×印は割れありを示す。すなわ
ち、割れが発生しないための条件は、第1図においてP
の偏析状態とMnの偏析状態によって、(1)式のごとく
決定され、占有面積率AP及びAMnを(1)式が満たさ
れるように制御することにより、水素誘起割れが発生し
ないことを見い出した。
In the figure, ○ indicates no cracking and × indicates cracking. That is, the condition for preventing cracks is P in FIG.
It has been found that hydrogen-induced cracking does not occur by controlling the occupied area ratio AP and AMn so as to satisfy the equation (1), which is determined by the segregation state of Mn and the segregation state of Mn. .

log(AP)≦−0.4×log(AMn)−1.2…(1) ここにいう占有面積率AP,AMnとは、連鋳鋳片の鋳
造方向の断面において、厚み方向の最終凝固部を含む鋳
造方向40mm、厚み方向20mmの試片を採取したとき、この
試片中P≧0.04%の面積の占める比率(占有面積率)お
よびMn≧1.5%の面積の占める比率を示す。
log (AP) ≦ −0.4 × log (AMn) −1.2 (1) The occupied area ratios AP and AMn referred to here are the final solidifications in the thickness direction in the cross section of the continuous cast slab in the casting direction. When a sample with 40 mm in the casting direction and 20 mm in the thickness direction including the part is sampled, the ratio of the area of P ≧ 0.04% (occupied area ratio) and the ratio of the area of Mn ≧ 1.5% in the sample are shown. .

ところで、本発明において、P,Mnの偏析による占有
面積率の算定方法は、特に限定されないが、たとえば特
開昭57−142551号公報によるマイクロアナライザー処
理、すなわちマッピング・アナライザー処理で行なうの
が便利である。
In the present invention, the method of calculating the occupied area ratio by the segregation of P and Mn is not particularly limited, but it is convenient to perform it by the microanalyzer process, that is, the mapping analyzer process according to JP-A-57-142551. is there.

このマッピング・アナライザーは、EPMA(Electro
probe micro analyzer)とデータ記憶装置とを組合わせ
たもので、各座標における元素の特性X線強度を、同時
に数元素について測定することができる。測定原理は、
鏡面研磨された試料に電子を照射し、試料表面から発生
する元素特有の特性X線を分光結晶で検出する点にあ
り、分光結晶の設置台数により多元素の同時検出が可能
となる。データ記憶装置に取り込まれた特性X線強度値
は、検量線によって濃度(重量%)に変換される。第1
図の縦軸及び横軸は、この濃度データを画像解析して求
めたものである。
This mapping analyzer is based on EPMA (Electro
This is a combination of a probe micro analyzer) and a data storage device, and the characteristic X-ray intensity of an element at each coordinate can be simultaneously measured for several elements. The measurement principle is
This is in that the specularly polished sample is irradiated with electrons and characteristic X-rays peculiar to the element generated from the sample surface are detected by the dispersive crystal, and simultaneous detection of multiple elements is possible depending on the number of dispersive crystals installed. The characteristic X-ray intensity value captured in the data storage device is converted into a concentration (% by weight) by a calibration curve. First
The ordinate and abscissa of the figure are obtained by image analysis of this density data.

即ち、本発明は、連続鋳造によって得られた鋼鋳片の幅
方向の中央部または幅方向の中心偏析と偏析を共通にも
つ領域で断面を切出し、該断面内に前記鋳造方向に少な
くとも40mmの長さを有し、且つ厚み方向にその最終凝固
部を含む20mmの幅を有する視野を設定したのち、マッピ
ング・アナライザー処理により該視野におけるPとMn
とを分析して、0.04%以上のPの占有面積率APと、
1.5%以上のMnの占有面積率AMnとが、式log(A
P)≦−0.4×log(AMn)−1.2を満足していると
き、該鋳片は耐水素誘起割れ性に優れていると判定する
ことを特徴とする耐水素誘起割れ性に優れた鋼鋳片の判
定方法である。
That is, the present invention, a cross-section is cut out in a region having a center segregation in the width direction or a center segregation and a segregation in the width direction of a steel slab obtained by continuous casting, and at least 40 mm in the casting direction in the cross section. After setting a visual field having a length and a width of 20 mm including the final solidified portion in the thickness direction, P and Mn in the visual field are processed by a mapping analyzer process.
And the occupied area ratio AP of P of 0.04% or more,
The occupied area ratio AMn of Mn of 1.5% or more is expressed by the formula log (A
P) ≦ −0.4 × log (AMn) −1.2 is satisfied, the slab is judged to be excellent in hydrogen-induced cracking resistance. This is an excellent method for judging steel slabs.

(作 用) 第1図からMn偏析部の面積が小さくなれば、P偏析部
の面積は多少大きくなってもよいことがわかる。
(Operation) It can be seen from FIG. 1 that the area of the P segregation portion may be slightly increased if the area of the Mn segregation portion is decreased.

本発明によると、連鋳鋳片の中心部(最終凝固部)から
試片(40×20mm)を採取し、この部分を例えば、特開昭
57−142551号公報による50μmビーム径のマッピング・
アナライザーで全面分析し、試片内のP,Mnの偏析状
況を評価することが望ましい。また、Pの測定誤差を加
味し、10%以内の誤差にするため、X線照射時間を、1
測定点あたり100msec以上にすることが望ましい。
According to the present invention, a sample (40 × 20 mm) is sampled from the central part (final solidified part) of the continuous cast slab, and this part is for example disclosed in
Mapping of 50μm beam diameter according to 57-142551
It is desirable to analyze the entire surface with an analyzer to evaluate the segregation state of P and Mn in the sample. In addition, the X-ray irradiation time is set to 1 in order to make the error within 10%, considering the measurement error of P.
It is desirable to set at least 100 msec per measurement point.

即ち第2図に示すように、連鋳鋳片10の鋳造長手方向
(以下L方向という)の断面において、通常厚み方向の
最終凝固部を含む所望面積12の試料を採取する。試片12
は、連鋳鋳片のL方向断面で40×20mm以上の面積をもつ
ものとするが、好ましくは第3図に示すように中心偏析
とV偏析を共通にもつ領域にすると効率的で好ましい。
That is, as shown in FIG. 2, in a cross section of the continuous cast slab 10 in the casting longitudinal direction (hereinafter referred to as L direction), a sample having a desired area 12 including the final solidified portion in the normal thickness direction is taken. Specimen 12
Has an area of 40 × 20 mm or more in the L-direction cross section of the continuous cast slab, but it is preferable to make it a region having common center segregation and V segregation as shown in FIG.

ここで、試片の大きさを40×20mmとしたのは以下の理由
による。
Here, the size of the test piece was set to 40 × 20 mm for the following reason.

マッピング・アナライザーの測定条件として、ビーム径
Dを50μm、1測定点あたりのX線照射時間tを100mse
c、X線照射電流Iを5μAとした。このときの測定時
間Tは、(2)式で表わされ、測定視野の大きさに比例し
て長くなる。
As the measurement conditions of the mapping analyzer, the beam diameter D is 50 μm, and the X-ray irradiation time t per measurement point is 100 mse.
c, X-ray irradiation current I was set to 5 μA. The measurement time T at this time is expressed by the equation (2) and becomes longer in proportion to the size of the measurement visual field.

T=(1000×A/D)×(1000×B/D)×(t/1000) ……(2) ただし、T;測 定 時 間 (sec) A;厚み方向の測定長さ(mm) B;幅方向の測定長さ(mm) D;ビーム径 (μm) t;1測定点あたりの X線照射時間 (msec) NACE基準による水素誘起割れテストを行なうと、割
れが中心偏析部およびV偏析部で発生しており、厚み方
向と幅方向の双方を含む視野とする。必要がある。この
点を考慮し、測定時間Tを最小限にするため、測定視野
を特定することとした。
T = (1000 x A / D) x (1000 x B / D) x (t / 1000) (2) However, T: measurement time (sec) A: thickness-direction measurement length (mm) B: Measured length in the width direction (mm) D: Beam diameter (μm) t: X-ray irradiation time per measurement point (msec) When a hydrogen-induced cracking test according to the NACE standard is performed, cracks are found at the center segregation part and V The field of view is generated in the segregation part and includes both the thickness direction and the width direction. There is a need. Considering this point, in order to minimize the measurement time T, the measurement visual field is specified.

まず厚み方向は、中心偏析、V偏析、逆V偏析等を同一
視野に含むように、測定視野を中心偏析より上面側に15
mm、下面側に5mmとり、合わせて20mmとした。
First, in the thickness direction, the measurement field of view is located on the upper side of the center segregation so that center segregation, V segregation, reverse V segregation, etc.
mm, 5 mm on the lower surface side, totaling 20 mm.

また、鋳造方向は、少なくとも視野内にV偏析3本を含
む視野がマクロ的に鋳片の実態をよく表わしており、そ
の長さを40mmとした。このとき、視野変更による差異は
10重量%以内であった。
In the casting direction, a visual field including at least three V segregations within the visual field macroscopically represents the actual condition of the slab, and the length was set to 40 mm. At this time, the difference due to changing the field of view
It was within 10% by weight.

こうして、厚み方向に20mm、鋳造方向に40mmの長さを測
定することにより、1個の試片を10時間以内と短時間で
測定できるようになるとともに、鋳片の偏析をバラツキ
少なく、かつマクロ的に評価、定量化できることとなっ
た。
By measuring a length of 20 mm in the thickness direction and 40 mm in the casting direction in this way, one sample can be measured within 10 hours in a short time, and the segregation of the slab is small and the macro It became possible to evaluate and quantify it.

第4図は取鍋P=0.005%で鋳造された鋳片の測定例で
あるが、40×20mmの試片を6倍に拡大したものである。
図中で黒色のマーキングAは、P=0.01%の等偏析P濃
度域、斜線のマーキングBは、P=0.02%の等偏析P濃
度域、マーキングCは、P=0.04%の等偏析P濃度域で
ある。
FIG. 4 shows an example of measurement of a slab cast with a ladle P of 0.005%, which is a 40 × 20 mm test piece magnified 6 times.
In the figure, the black marking A is the P = 0.01% equi-segregated P concentration range, the shaded marking B is the P = 0.02% equi-segregated P concentration region, and the marking C is the P = 0.04% equi-segregated P concentration region. Area.

即ちこのケースでは、40×20mmの試片全面積中で、偏析
P濃度0.04%以上の面積率が0.002%、0.02%以上の面
積率が0.27%、0.01%以上の面積率が5.67%の例を示し
ている。この結果より、偏析P濃度0.01%以上の面積率
をP偏析の占有面積率とするのが有為差をつける上で好
ましいと考えられる。
That is, in this case, the area ratio of the segregated P concentration of 0.04% or more is 0.002%, the area ratio of 0.02% or more is 0.27%, and the area ratio of 0.01% or more is 5.67% in the total area of 40 × 20 mm. Is shown. From this result, it is considered preferable to set the area ratio of the segregated P concentration of 0.01% or more as the occupied area ratio of P segregation in order to make a significant difference.

第1図の供試鋼の溶鋼成分は、主としてC0.5%以
下、Si.01〜1.0%、Mn0.7〜1.5%、P0.0
2%以下、S0.005以下、O0.004%を基本成分とし、さ
らに基本成分に必要に応じてCa70ppm以下、REM0.0
4以下、Nb0.01〜0.5%、V0.01〜0.5%、Cu
1%以下、Cr1%以下、Mo1%以下、Zr0.01〜
0.5%、Ni1%以下、Ti0.01〜0.3%等を1種
以上適宜含んだものである。
The molten steel components of the sample steel of FIG. 1 are mainly C 0.5% or less, Si.01 to 1.0%, Mn 0.7 to 1.5%, P0.0.
2% or less, S0.005 or less, O0.004% as a basic component, and if necessary, Ca70ppm or less, REM0.0
4 or less, Nb0.01-0.5%, V0.01-0.5%, Cu
1% or less, Cr 1% or less, Mo 1% or less, Zr0.01-
0.5%, 1% or less of Ni, 0.01 to 0.3% of Ti, etc. are appropriately contained.

一方、Mnは、材料に要求される強度を確保するため、
0.7%乃至1.5%添加されるが、1.5%以上添加
されると、著しく割れ感受性を強めるため、耐水素誘起
割れ性を考慮して、Pとの相関により制限される。従っ
て、偏析Mn濃度1.5%以上の面積率をMn偏析の占
有面積率とするのが適当である。
On the other hand, Mn is necessary to secure the strength required for the material,
0.7% to 1.5% is added, but if 1.5% or more is added, cracking susceptibility is remarkably strengthened, so that hydrogen-induced cracking resistance is taken into consideration, so that it is limited by the correlation with P. Therefore, it is appropriate to set the area ratio of the segregated Mn concentration of 1.5% or more as the occupied area ratio of Mn segregation.

ところで、前述してきたようなP≧0.04%、Mn≧1.5
%の占有面積率に影響を与える因子は、溶鋼成分では当
然取鍋P%、取鍋Mn%であり、次にその溶鋼が固まる
連続鋳造時の凝固条件(タンディシュ加熱度ΔT、ロー
ルピッチlp、最終凝固部での溶鋼静圧P、鋳片界面温
度〔℃〕(シェル厚み))である。
By the way, as described above, P ≧ 0.04%, Mn ≧ 1.5
The factors that affect the occupied area ratio are, of course, the ladle P% and the ladle Mn% in the molten steel component, and the solidification conditions (tandish heating degree ΔT, roll pitch lp, It is the molten steel static pressure P in the final solidification part, and the slab interface temperature [° C] (shell thickness).

従って、上述のP及びMnの占有面積率を考慮して、前
記連続鋳造時の凝固条件と溶鋼成分を選択することによ
り、耐水素誘起割れ性に誘れた鋳片を製造できる。特に
ロールピッチや最終凝固部での溶鋼静圧等は、P,Mn
の占有面積率を小さくするために重要であり、そのため
特開昭62−33048号公報に示された稠密ロールや、特開
昭62-89555号公報に示されたウォーキングバーによる最
適な凝固末期圧下が有効である。
Therefore, by considering the above-mentioned occupied area ratios of P and Mn and selecting the solidification conditions and molten steel components at the time of continuous casting, it is possible to manufacture a slab with induced hydrogen-induced cracking resistance. Especially for the roll pitch and the molten steel static pressure at the final solidification part, P, Mn
It is important to reduce the occupying area ratio of the sheet, and therefore, the optimal end-stage coagulation reduction by the dense roll shown in JP-A-62-33048 and the walking bar shown in JP-A-62-89555. Is effective.

(実 施 例) C=0.075%、Mn=1.03%、Si=0.256%、P
=00029%、S=0.0015%、V=0.31%、Nb=0.041
%、Ca/S=1.53の溶鋼を、1.05R連鋳機にて、最終
凝固部近傍をウォーキングバーで面支持しながら鋳造し
た。
(Example) C = 0.075%, Mn = 1.03%, Si = 0.256%, P
= 00029%, S = 0.015%, V = 0.31%, Nb = 0.041
%, Ca / S = 1.53 molten steel was cast by a 1.05R continuous casting machine while surface supporting near the final solidified portion with a walking bar.

得られた鋳片の中心部近傍より40×20mmの試片を取り出
し、前記マッピング・アナライザー処理をほどこして、
P≧0.04%、Mn≧1.5%の占有面積率を求めた所、
それぞれ0.05%,0.3%であったので、拡散熱処理を
施すことなく、そのまま圧延工程に送り、圧延後NAC
E基準による水素誘起割れテストを実施した。その結
果、全て合格であり、マッピング・アナライザーにより
鋳片段階で、圧延後の試料のNACE基準による水素誘
起割れの判定ができた。
Take out a 40 × 20 mm sample from the vicinity of the center of the obtained slab, and subject it to the mapping analyzer treatment,
When the occupied area ratio of P ≧ 0.04% and Mn ≧ 1.5% is obtained,
Since they were 0.05% and 0.3% respectively, they were sent to the rolling process as they were without being subjected to diffusion heat treatment, and NAC after rolling was performed.
A hydrogen induced cracking test according to the E standard was carried out. As a result, all were acceptable, and hydrogen-induced cracking of the sample after rolling could be judged by the NACE standard in the cast piece stage by the mapping analyzer.

(発明の効果) 本発明は、鋳造装置を評価し、最適鋳造条件を把握する
ための判定基準として有効である。また、鋳造ままの状
態でNACE基準による水素誘起割れ判定が可能である
ため、鋳片の均熱拡散の必要性を判断でき、圧延までの
適切な処理が施された後に製板工程へ送られるので、水
素誘起割れのない製造条件を確立できる。
(Effects of the Invention) The present invention is effective as a criterion for evaluating a casting apparatus and grasping optimum casting conditions. In addition, since hydrogen-induced cracking can be determined based on the NACE standard in the as-cast state, it is possible to determine the need for soaking and diffusion of the slab, and the product is sent to the plate-making process after being appropriately processed until rolling. Therefore, manufacturing conditions without hydrogen-induced cracking can be established.

【図面の簡単な説明】[Brief description of drawings]

第1図はAP−AMn相関のグラフ、第2図は本発明の
試片採取の説明図、第3図は評価のための判定視野の説
明図、第4図(a)はP占有面積率算定のためのマイクロ
アナライザーによる解析図、第4図(b)は第4図(a)の部
分拡大図である。
FIG. 1 is a graph of AP-AMn correlation, FIG. 2 is an explanatory view of sampling of the present invention, FIG. 3 is an explanatory view of a judgment visual field for evaluation, and FIG. 4 (a) is a P occupied area ratio. An analysis diagram by a microanalyzer for calculation, and FIG. 4 (b) is a partially enlarged view of FIG. 4 (a).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−73162(JP,A) 特開 昭58−6961(JP,A) 特開 昭60−228655(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-57-73162 (JP, A) JP-A-58-6961 (JP, A) JP-A-60-228655 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造によって得られた鋼鋳片の幅方向
の中央部または幅方向の中心偏析とV偏析を共通にもつ
領域で鋳造方向の断面を切出し、該断面内に、前記鋳造
方向に少なくとも40mmの長さを有し、且つ厚み方向にそ
の最終凝固部を含む20mmの幅を有する視野を設定したの
ち、EPMAとデータ記憶装置とを組合わせたマッピン
グ・アナライザー処理により該視野におけるPとMnと
を分析して、0.04重量%以上のPの占有面積率APと、
1.5重量%以上のMnの占有面積率AMnとが、式lo
g(AP)≦−0.4×log(AMn)−1.2を満足している
とき、該鋳片は耐水素誘起割れ性に優れていると判定す
ることを特徴とする耐水素誘起割れ性に優れた鋼鋳片の
判定方法。
1. A cross section in the casting direction is cut out at a central portion in the width direction of a steel slab obtained by continuous casting or in a region having a center segregation and V segregation in the width direction in common, and the casting direction is cut in the cross section. After setting a visual field having a length of at least 40 mm and a width of 20 mm including the final solidified portion in the thickness direction, the P / P in the visual field is processed by a mapping analyzer process combining an EPMA and a data storage device. And Mn are analyzed, and the occupied area ratio AP of P is 0.04% by weight or more,
The occupied area ratio AMn of Mn of 1.5% by weight or more is expressed by the formula lo
When the g (AP) ≦ −0.4 × log (AMn) −1.2 is satisfied, it is determined that the slab has excellent hydrogen-induced cracking resistance. A method for determining steel slabs with excellent properties.
JP61161916A 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance Expired - Lifetime JPH069733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161916A JPH069733B2 (en) 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161916A JPH069733B2 (en) 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Publications (2)

Publication Number Publication Date
JPS6320142A JPS6320142A (en) 1988-01-27
JPH069733B2 true JPH069733B2 (en) 1994-02-09

Family

ID=15744462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161916A Expired - Lifetime JPH069733B2 (en) 1986-07-11 1986-07-11 Judgment method of steel slab excellent in hydrogen-induced cracking resistance

Country Status (1)

Country Link
JP (1) JPH069733B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320791B2 (en) * 2008-03-28 2013-10-23 Jfeスチール株式会社 Center segregation evaluation method
JP6043217B2 (en) * 2013-03-08 2016-12-14 株式会社神戸製鋼所 How to change the destination by judging the quality of the sour steel slab
JP6126503B2 (en) * 2013-09-20 2017-05-10 株式会社神戸製鋼所 Redirecting method based on quality judgment of sour line pipe steel slabs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773162A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Steel products with superior hydrogen induced cracking resistance
JPS586961A (en) * 1981-07-03 1983-01-14 Kawasaki Steel Corp Steel products with superior hydrogen induced cracking resistance
JPS60228655A (en) * 1985-04-08 1985-11-13 Kawasaki Steel Corp Steel material having superior resistance to hydrogen induced cracking

Also Published As

Publication number Publication date
JPS6320142A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
Atkinson et al. Characterization of inclusions in clean steels: a review including the statistics of extremes methods
Tipler et al. The creep cavitation of commercial and high-purity Cr-Mo-V steels
Wang et al. Estimation of dislocation densities in cold rolled Al‐Mg‐Cu‐Mn alloys by combination of yield strength data, EBSD and strength models
Fernández et al. Relationship between the austenite recrystallized fraction and the softening measured from the interrupted torsion test technique
JP5320791B2 (en) Center segregation evaluation method
GB1558731A (en) Steel compositions
JP5853661B2 (en) Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
JP2014077642A (en) Estimation method of hic sensitivity of steel material and manufacturing method of high strength thick steel plate for line pipe superior in anti hic performance using the same
JP6044247B2 (en) Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking
JPH069733B2 (en) Judgment method of steel slab excellent in hydrogen-induced cracking resistance
Pillai et al. Effect of external stress on the behavior of oxide scales on 9Cr-1Mo steel
DE112021003995T5 (en) HIGHLY CORROSION RESISTANT AUSTENITIC STAINLESS STEEL AND METHOD OF MAKING THE SAME
JP2000319724A (en) Heat treatment of precipitation hardening type stainless steel
Willis et al. Prestrain effects on creep ductility of a 316 stainless steel light forging
JP3920961B2 (en) Evaluation method of remaining life of low alloy steel
JP3358134B2 (en) Method for evaluating inclusions in wires
KR20200110791A (en) Residual stress measurement method
JPH05164665A (en) Method for estimating weakened characteristics of creep notch of crmov steel
Chinese Society for Metals (CSM) and The Minerals, Metals & Materials Society (TMS) et al. Automatic measurement of centreline segregation in continuously cast line pipe steel slabs
CN109959671A (en) A kind of method of quantitative analysis plate segregation
KR20010057093A (en) Method for analyzing the inner defect of continuous casting slab
JPH0251971B2 (en)
JP3900851B2 (en) Manufacturing method of steel sheet with excellent surface properties
Vander Voort Results of interlaboratory test programs to assess the precision of inclusion ratings by methods A, C, and D of ASTM E45
AU2021102151A4 (en) Method to identify the influence of non-metallic inclusions in segregated banded-zone during plate groove butt joint welding