JPH0696771A - Gas diffusive electrode - Google Patents

Gas diffusive electrode

Info

Publication number
JPH0696771A
JPH0696771A JP4078598A JP7859892A JPH0696771A JP H0696771 A JPH0696771 A JP H0696771A JP 4078598 A JP4078598 A JP 4078598A JP 7859892 A JP7859892 A JP 7859892A JP H0696771 A JPH0696771 A JP H0696771A
Authority
JP
Japan
Prior art keywords
layer
hydrophilic
porous layer
water repellent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4078598A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP4078598A priority Critical patent/JPH0696771A/en
Publication of JPH0696771A publication Critical patent/JPH0696771A/en
Priority to US08/421,840 priority patent/US5618392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce hydrogen ion in using a reaction layer as a negative electrode and efficiently generate hydrogen gas from the negative electrode by providing an electrical insulating hydrophilic porous layer and an electrical insulating water repellent porous layer on both surfaces of the reaction layer. CONSTITUTION:In the center of a reaction layer 1 formed by tangling a hydrophilic part and a water repellent part in contact to each other, an electric collector 2 is nipped and built therein. An electrical insulating hydrophilic porous layer 3 is bonded to the layer 1, and an electrical insulating water repellent porous layer 4 to the other surface of the layer 1. Since the layers 3, 4 are provided on both the surfaces of the layer 1 in this way, the layer 1 is never exposed to a flowing electrolyte. The layer 1 is thus protected, the electrolyte is moved to the layer 2 only by diffusion, so that metal ions are never reduced, and hydrogen ions are diffused to the layer 1 and positively reduced in the hydrophilic part by the collector 2 to form hydrogen gas, which thus can be extremely efficiently taken out from the water repellent layer surface of the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的リアクター
に用いるガス拡散電極の改良に関する。
FIELD OF THE INVENTION This invention relates to improvements in gas diffusion electrodes for use in electrochemical reactors.

【0002】[0002]

【従来の技術】従来のガス拡散電極は、親水性カーボン
ブラックとポリ四弗化エチレンよりなる親水部(触媒を
担持させている場合もある)と、撥水性カーボンブラッ
クとポリ四弗化エチレンよりなる撥水部とが入り組み接
し合って構成されている反応層の一面に、撥水性カーボ
ンブラックとポリ四弗化エチレンよりなるガス拡散層を
接合してなるものである。このガス拡散電極を陰極に、
白金鋼を陽極にしてFe2+をFe3+に酸化しつつ、陰極
でH2 を発生させようとすると陽極で酸化したFe3+
陰極で還元されFe2+となってしまう。そこで反応層表
面に親水性多孔層を接合すると改良される。ところが、
上記ガス拡散電極はガス拡散層側に気室をもうける必要
があり、電解液中にそのまま入れて使用することができ
ないという問題点があった。
2. Description of the Related Art A conventional gas diffusion electrode is composed of a hydrophilic part made of hydrophilic carbon black and polytetrafluoroethylene (sometimes supporting a catalyst), a water-repellent carbon black and polytetrafluoroethylene. And a gas diffusion layer made of polytetrafluoroethylene are joined to one surface of the reaction layer formed by interposing and in contact with each other. This gas diffusion electrode as the cathode,
When platinum 2 is used as an anode to oxidize Fe 2+ to Fe 3+ and H 2 is generated at the cathode, Fe 3+ oxidized at the anode is reduced at the cathode to become Fe 2+ . Therefore, it is improved by bonding a hydrophilic porous layer to the surface of the reaction layer. However,
The gas diffusion electrode has a problem in that it is necessary to provide an air chamber on the gas diffusion layer side, and it is impossible to use the gas diffusion electrode as it is in the electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、陰極
として使用した際、電解液中の金属イオンを還元させ
ず、水素イオンの陰極への移動を妨げることなく、水素
イオンを還元して水素ガスを効率良く陰極から発生させ
るようにしたガス拡散電極を提供しようとするものであ
る。
Therefore, the present invention, when used as a cathode, does not reduce metal ions in the electrolytic solution and reduces hydrogen ions to prevent hydrogen ions from moving to the cathode. An object of the present invention is to provide a gas diffusion electrode in which gas is efficiently generated from the cathode.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明のガス拡散電極は、親水部と撥水部が入り組み
接し合って構成されている反応層の中心に集電体が挟ま
れて内蔵され、反応層の両面に電気絶縁性の親水性多孔
層と電気絶縁性の撥水性多孔層が接合されてなるもので
ある。
In the gas diffusion electrode of the present invention for solving the above-mentioned problems, a current collector is sandwiched at the center of a reaction layer which is constituted by a hydrophilic part and a water-repellent part which are interdigitated and in contact with each other. It is built in, and the hydrophilic layer having electrical insulation and the water repellent porous layer having electrical insulation are bonded to both surfaces of the reaction layer.

【0005】[0005]

【作用】上記のように構成されたガス拡散電極は、反応
層の一面に電気絶縁性の親水性多孔層を設けているの
で、陰極として使用した際、この親水性多孔層中に浸透
した電解液は対流によって移動できず、拡散移動のみと
なるため、反応層に陽極側で酸化された金属イオンを含
んだ電解液は供給されない。従って、陰極で金属イオン
を還元することがない。そして水素イオンは、陰極への
移動が妨げられずに透過率の高い電気絶縁性の親水性多
孔層を通り反応層中の親水部で集電体により積極的に還
元されて水素ガスとなり、反応層中の撥水部及び他面の
電気絶縁性の撥水性多孔層から発生する。尚、多孔層の
気孔率は、電解中の電気抵抗による電力ロスを抑える意
味合いから60%以上が好ましい。また多孔層の気孔径の
大きさは、電解液を拡散によってのみ移動させる目的か
ら10μm以下が好ましい。
In the gas diffusion electrode constructed as described above, the electrically insulating hydrophilic porous layer is provided on one surface of the reaction layer. Therefore, when the gas diffusion electrode is used as a cathode, electrolysis that permeates the hydrophilic porous layer. Since the liquid cannot move due to convection but only diffuse movement, the electrolytic solution containing the metal ions oxidized on the anode side is not supplied to the reaction layer. Therefore, the cathode does not reduce metal ions. Then, the hydrogen ions pass through the electrically insulating hydrophilic porous layer having a high transmittance without being hindered from moving to the cathode, and are actively reduced by the current collector at the hydrophilic part in the reaction layer to become hydrogen gas, and the reaction It occurs from the water repellent part in the layer and the electrically insulating water repellent porous layer on the other surface. The porosity of the porous layer is preferably 60% or more from the viewpoint of suppressing power loss due to electric resistance during electrolysis. The pore size of the porous layer is preferably 10 μm or less for the purpose of moving the electrolytic solution only by diffusion.

【0006】[0006]

【実施例】本発明のガス拡散電極の一実施例を図1によ
って説明すると、1は親水部と撥水部が入り組み接し合
って構成されている反応層で、この反応層1の中心に集
電体2が挾まれて内蔵されている。反応層1の一面には
電気絶縁性の親水性多孔層3が接合され、反応層1の他
面には電気絶縁性の撥水性多孔層4が接合されている。
前記反応層1は、平均粒径 390Åの親水性カーボンブラ
ックと、平均粒径420Åの撥水性カーボンブラックと、
平均粒径 0.3μmのポリ四弗化エチレン粉末とが4:
3:3の割合で混合成形された厚さ 0.1mm、幅 100mm、
長さ 100mmのシートにおける親水性カーボンブラックに
白金触媒が50mg担持されてなるものである。前記集電体
2は、厚さ 0.2mmのチタンのエクスパンドメタル(約50
メッシュ)に白金メッキしたものである。前記の電気絶
縁性の親水性多孔層3は、平均粒径 0.5μmの炭化けい
素粉末と平均粒径 0.3μmのポリ四弗化エチレンとが
9:1の割合で混合成形された厚さ 0.5mm、幅 100mm、
長さ 100mm、気孔率70%、気孔径10μm以下のシートで
ある。前記の電気絶縁性の撥水性多孔層4は、平均粒径
0.3μmポリ四弗化エチレンディスパージョンを厚さ
0.1mm、幅 100mm、長さ 100mm、にスプレーして 320℃
で熱処理したものである。然してこのように構成さたガ
ス拡散電極5を、例えば図2に示すように電解槽6内
で、親水性多孔層3側を不溶性電極7と対向させて配
し、電解槽6にFe++とFe3+をそれぞれ 1.5M/lを
含む5M塩酸溶液からなる電解液8を矢印のように流入
し、ガス拡散電極5を陰極とし、不溶性電極7を陽極と
して 0.2A/cm2 で電解したところ、Fe++は陽極側で
酸化されてFe3+になる。この陽極側で酸化されたFe
3+を含んだ電解液は陰極側の親水性多孔層3を拡散移動
するのみであるため反応層1には供給されない。従っ
て、Fe3+は陰極で還元されることがない。そして電解
液8中のH+ は陰極への移動が妨げられずに親水性多孔
層3を通り反応層1中の親水部で集電体2により積極的
に還元されH2 (水素ガス)になり、反応層1の撥水性
多孔層4を通ってガス拡散電極5から水素ガスが発生す
る。この時の水素発生過電圧は50mVであり、得られた水
素ガスの量は電流効率で97%であった。上記例では親水
性多孔層3と撥水性多孔層4は一面づつに接合されてい
るが、図3に示す如くそれぞれの面に親水および撥水性
多孔層を帯状に接合してもよいものである。このとき反
応層の一面に親水性多孔層3が接合された場合、他面は
撥水性多孔層4が接合されるようにするのが望ましい。
また図4に示すように両側に陽極をおくこともできる。
さらにこの電極の下部よりH2 をバブルさせ陽極とした
ところ、水素は酸化されFe2+の酸化はおこらなかっ
た。さらにまたこの電極は外1の反応を可逆的に行うこ
とができた。
EXAMPLE An example of the gas diffusion electrode of the present invention will be described with reference to FIG. 1. Reference numeral 1 denotes a reaction layer composed of a hydrophilic part and a water repellent part in contact with each other. The current collector 2 is sandwiched and built in. An electrically insulating hydrophilic porous layer 3 is bonded to one surface of the reaction layer 1, and an electrically insulating water-repellent porous layer 4 is bonded to the other surface of the reaction layer 1.
The reaction layer 1 comprises hydrophilic carbon black having an average particle size of 390Å and water-repellent carbon black having an average particle size of 420Å,
Polytetrafluoroethylene powder with an average particle size of 0.3 μm is 4:
Thickness 0.1mm, width 100mm, mixed and molded in the ratio of 3: 3,
50 mg of platinum catalyst is supported on hydrophilic carbon black in a 100 mm long sheet. The current collector 2 is made of titanium expanded metal (about 50 mm thick).
(Mesh) is platinum-plated. The electrically insulating hydrophilic porous layer 3 is formed by mixing and molding silicon carbide powder having an average particle size of 0.5 μm and polytetrafluoroethylene having an average particle size of 0.3 μm in a ratio of 9: 1 to a thickness of 0.5. mm, width 100 mm,
A sheet with a length of 100 mm, a porosity of 70%, and a pore diameter of 10 μm or less. The electrically insulating water-repellent porous layer 4 has an average particle size of
Thickness of 0.3 μm polytetrafluoroethylene dispersion
Spray 0.1mm, width 100mm, length 100mm, 320 ℃
It was heat treated in. Thus the gas diffusion electrode 5 thus configured, for example, in an electrolytic tank 6 as shown in FIG. 2, arranged in the hydrophilic porous layer 3 side to face the insoluble electrode 7, Fe ++ to the electrolytic cell 6 Electrolyte solution 8 consisting of a 5M hydrochloric acid solution containing 1.5 M / l of Fe and 3+ Fe 3+ was flowed in as indicated by an arrow, and electrolysis was carried out at 0.2 A / cm 2 using gas diffusion electrode 5 as a cathode and insoluble electrode 7 as an anode. However, Fe ++ is oxidized on the anode side to become Fe 3+ . Fe oxidized on the anode side
The electrolytic solution containing 3+ does not supply to the reaction layer 1 because it only diffuses and moves in the hydrophilic porous layer 3 on the cathode side. Therefore, Fe 3+ is not reduced at the cathode. The H + in the electrolytic solution 8 passes through the hydrophilic porous layer 3 without being hindered from moving to the cathode, and is actively reduced by the current collector 2 in the hydrophilic portion of the reaction layer 1 to H 2 (hydrogen gas). Then, hydrogen gas is generated from the gas diffusion electrode 5 through the water-repellent porous layer 4 of the reaction layer 1. The hydrogen evolution overvoltage at this time was 50 mV, and the amount of hydrogen gas obtained was 97% in terms of current efficiency. In the above example, the hydrophilic porous layer 3 and the water-repellent porous layer 4 are bonded to each other one by one, but as shown in FIG. 3, the hydrophilic and water-repellent porous layers may be bonded to each surface in a band shape. . At this time, when the hydrophilic porous layer 3 is bonded to one surface of the reaction layer, it is desirable that the water repellent porous layer 4 is bonded to the other surface.
Further, as shown in FIG. 4, it is also possible to place anodes on both sides.
Further, when H 2 was bubbled from the lower portion of this electrode to form an anode, hydrogen was oxidized and Fe 2+ was not oxidized. Furthermore, this electrode was able to reversibly carry out the reaction of Extra 1.

【外1】 [Outer 1]

【0007】一方、従来例として反応層の一面に親水性
多孔層として 0.5mmのガラスフィルター膜を形成し、他
面にガス拡散層を接合してなるガス拡散電極を、上記実
施例と全く同じ電解に用いたところ、水素発生過電圧は
62mVで、得られた水素ガスの量は電流効率で68%であっ
た。これはガス拡散層が導電性のため生成したFe3+
還元されるためであった。
On the other hand, as a conventional example, a gas diffusion electrode, in which a 0.5 mm glass filter film is formed as a hydrophilic porous layer on one surface of a reaction layer and a gas diffusion layer is bonded on the other surface, is the same as in the above embodiment When used for electrolysis, hydrogen overvoltage is
At 62 mV, the amount of hydrogen gas obtained was 68% in terms of current efficiency. This was because the gas diffusion layer was electrically conductive and Fe 3+ generated was reduced.

【0008】[0008]

【発明の効果】以上の説明で判るように本発明のガス拡
散電極は、反応層の両面に多孔層が設けられているの
で、反応層は流動する電解液にさらされることがない。
従って、反応層が保護されると共に反応層への電解液の
移動は拡散のみとなって、金属イオンは還元されず、水
素イオンは反応層に拡散して集電体により積極的に親水
部で還元されて水素ガスとなり、極めて効率良く電極の
撥水層表面より取り出すことができる。逆に水素を酸化
し水素イオンとすることもでき、このとき金属イオンは
酸化されることがない。このように共存するイオンの価
数を変えずに気体とそのイオンとの反応を可逆的に起こ
すことができる。
As can be seen from the above description, in the gas diffusion electrode of the present invention, since the porous layers are provided on both sides of the reaction layer, the reaction layer is not exposed to the flowing electrolytic solution.
Therefore, the reaction layer is protected and the movement of the electrolytic solution to the reaction layer is only diffusion, the metal ions are not reduced, the hydrogen ions are diffused in the reaction layer, and the current collector positively in the hydrophilic part. It is reduced to hydrogen gas and can be taken out from the surface of the water repellent layer of the electrode extremely efficiently. Conversely, hydrogen can be oxidized to hydrogen ions, and the metal ions are not oxidized at this time. Thus, the reaction between the gas and the ion can be reversibly caused without changing the valence of the coexisting ion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス拡散電極の一実施例を示す要部拡
大断面図である。
FIG. 1 is an enlarged sectional view of an essential part showing an embodiment of a gas diffusion electrode of the present invention.

【図2】本発明のガス拡散電極の使用例を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing an example of use of the gas diffusion electrode of the present invention.

【図3】本発明のガス拡散電極の他の実施例を示す要部
拡大断面である。
FIG. 3 is an enlarged cross-sectional view of a main part showing another embodiment of the gas diffusion electrode of the present invention.

【図4】本発明のガス拡散電極の他の使用例を示す断面
図である。
FIG. 4 is a cross-sectional view showing another example of use of the gas diffusion electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 反応層 2 集電体 3 電気絶縁性の親水性多孔層 4 電気絶縁性の撥水性多孔層 5 ガス拡散電極 1 Reaction Layer 2 Current Collector 3 Electrically Insulating Hydrophilic Porous Layer 4 Electrically Insulating Water-Repellent Porous Layer 5 Gas Diffusion Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 親水部と撥水部が入り組み接し合って構
成されている反応層の中心に集電体が挟まれて内蔵さ
れ、反応層の両面に電気絶縁性の親水性多孔層と電気絶
縁性の撥水性多孔層が接合されてなるガス拡散電極。
1. A current collector is sandwiched and incorporated in the center of a reaction layer composed of a hydrophilic part and a water repellent part which are assembled and in contact with each other. A gas diffusion electrode in which an electrically insulating water-repellent porous layer is joined.
JP4078598A 1991-10-31 1992-02-28 Gas diffusive electrode Pending JPH0696771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4078598A JPH0696771A (en) 1992-02-28 1992-02-28 Gas diffusive electrode
US08/421,840 US5618392A (en) 1991-10-31 1995-04-13 Gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4078598A JPH0696771A (en) 1992-02-28 1992-02-28 Gas diffusive electrode

Publications (1)

Publication Number Publication Date
JPH0696771A true JPH0696771A (en) 1994-04-08

Family

ID=13666341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4078598A Pending JPH0696771A (en) 1991-10-31 1992-02-28 Gas diffusive electrode

Country Status (1)

Country Link
JP (1) JPH0696771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906427B2 (en) 1997-04-17 2005-06-14 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906427B2 (en) 1997-04-17 2005-06-14 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5618392A (en) Gas diffusion electrode
US3117034A (en) Gas electrode
Watanabe et al. Applications of the gas diffusion electrode to a backward feed and exhaust (BFE) type methanol anode
US4414092A (en) Sandwich-type electrode
US3364071A (en) Fuel cell with capillary supply means
JP2004288620A (en) Manufacturing method of membrane electrode assembly
JP3211378B2 (en) Polymer electrolyte fuel cell
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
EP0563115A1 (en) Efficiency enhancement for solid-electrolyte fuel cell
JPH06212469A (en) Gas diffusion electrode and electrochemical reactor using the electrode
US3506493A (en) Electrochemical cell having barrier with microporous openings
JP5298358B2 (en) Fuel cell
US3669752A (en) Method of operating fuel cell
JP4519950B2 (en) Electrode-electrolyte-unit manufacturing method by catalyst electrolyte deposition
JPH0696771A (en) Gas diffusive electrode
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
JPS60500190A (en) electrochemical cell with at least one gas electrode
JPH0766812B2 (en) Gas diffusion electrode for fuel cells
JP3171642B2 (en) Gas diffusion electrode
JPH0633284A (en) Water electrolytic cell
JPS58165254A (en) Method of manufacturing gas-diffusion electrode for fuel cell
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
US3471334A (en) Fuel cell process using peroxide and superoxide and apparatus
JP2896768B2 (en) Alkali metal chloride aqueous solution electrolyzer using oxygen cathode gas diffusion electrode
JP3338138B2 (en) Gas diffusion electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081010

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091010

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101010

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20121010