JPH0696479B2 - Single crystal pulling device - Google Patents
Single crystal pulling deviceInfo
- Publication number
- JPH0696479B2 JPH0696479B2 JP25115288A JP25115288A JPH0696479B2 JP H0696479 B2 JPH0696479 B2 JP H0696479B2 JP 25115288 A JP25115288 A JP 25115288A JP 25115288 A JP25115288 A JP 25115288A JP H0696479 B2 JPH0696479 B2 JP H0696479B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- cooling cylinder
- cooling
- pulling
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、引き上げ中の単結晶を冷却するための冷却筒
を備えた単結晶引上装置に関する。TECHNICAL FIELD The present invention relates to a single crystal pulling apparatus including a cooling cylinder for cooling a single crystal being pulled.
「従来の技術」 この種の単結晶引上装置の一例として、特開昭61-68389
号公報において提案されたシリコン単結晶の引上装置を
第5図に示す。"Prior Art" As an example of a single crystal pulling apparatus of this type, Japanese Patent Laid-Open No. 61-68389
FIG. 5 shows a silicon single crystal pulling apparatus proposed in the publication.
図中符号1は炉体であり、この炉体1内には、シリコン
溶湯Yを保持する石英ルツボ2が黒鉛サセプタ3を介し
て回転軸4の上端に固定されている。また、ルツボ2の
周囲にはヒータ5および保温筒6が配置されるととも
に、ルツボ2の上方には図示しない引上機構が設けら
れ、引上ワイヤ7により、種結晶8を固定した種保持具
9が昇降および回転操作されるようになっている。In the figure, reference numeral 1 is a furnace body. In the furnace body 1, a quartz crucible 2 holding a molten silicon Y is fixed to an upper end of a rotary shaft 4 via a graphite susceptor 3. Further, a heater 5 and a heat retaining tube 6 are arranged around the crucible 2, and a pulling mechanism (not shown) is provided above the crucible 2 and a seed holding tool in which a seed crystal 8 is fixed by a pulling wire 7. 9 can be moved up and down and rotated.
また、引き上げられる単結晶Tの周囲には間隙をあけて
同心に冷却筒10が配置され、炉体1の上壁を垂直に貫通
して固定されている。この冷却筒10は円筒形をなし、そ
の内部には冷却水等を通す冷媒路(図示略)が形成され
ている。そして、この冷却筒10の上端からArガスが炉体
1内に供給されるようになっている。Further, a cooling cylinder 10 is concentrically arranged around the pulled single crystal T with a gap, and is vertically fixed through the upper wall of the furnace body 1. The cooling cylinder 10 has a cylindrical shape, and a refrigerant passage (not shown) for passing cooling water or the like is formed inside thereof. Then, Ar gas is supplied into the furnace body 1 from the upper end of the cooling cylinder 10.
この装置によれば、冷却筒10によって引き上げ中の単結
晶Tへの輻射熱を防ぐとともに単結晶Tを冷却し、引上
速度を高めることができる。According to this apparatus, radiant heat to the single crystal T being pulled by the cooling cylinder 10 can be prevented, the single crystal T can be cooled, and the pulling rate can be increased.
「発明が解決しようとする課題」 しかし、上記装置においては、単結晶Tの冷却効率をさ
らに高めて生産性を向上させようとした場合、冷却筒の
内径を小さくして単結晶との距離を小さくしなければな
らず、単結晶Tと冷却筒10とが干渉したり、Arガスの流
通が悪化するなどの問題があった。[Problems to be Solved by the Invention] However, in the above apparatus, when it is attempted to further improve the cooling efficiency of the single crystal T to improve the productivity, the inner diameter of the cooling cylinder is reduced to reduce the distance from the single crystal. It must be made small, and there are problems that the single crystal T and the cooling cylinder 10 interfere with each other, and the flow of Ar gas deteriorates.
また、本出願人らは、特願昭63-145260号において、半
導体デバイス工程での高温処理時に積層欠陥が生じにく
いシリコン単結晶の引上方法を提案した。この方法は、
溶湯から引き上げたシリコン単結晶が、850〜1050℃の
温度範囲を140分以下の滞留時間で通過するように冷却
温度の制御を行なうことを特徴とし、滞留時間が140分
以下であれば、短いほど加熱処理後に発生する積層欠陥
の少ないことが判明している。このため、この点から
も、冷却筒による単結晶冷却効果を高めることが切望さ
れている。In addition, the present applicants have proposed in Japanese Patent Application No. 63-145260 a method for pulling up a silicon single crystal in which stacking faults are less likely to occur during high temperature processing in the semiconductor device process. This method
The silicon single crystal pulled from the molten metal is characterized by controlling the cooling temperature so as to pass through a temperature range of 850 to 1050 ° C with a residence time of 140 minutes or less. It has been found that the number of stacking faults generated after the heat treatment is small. Therefore, also from this point, it is earnestly desired to enhance the single crystal cooling effect by the cooling cylinder.
そこで本発明者らは、冷却筒による冷却効果向上を図る
ため種々の実験を試み、その結果、冷却筒の内面に凹凸
部を多数形成して内面積を増すと、冷却効果を予想以上
に向上しうるという知見を得るに至った。Therefore, the present inventors tried various experiments in order to improve the cooling effect by the cooling cylinder, and as a result, when a large number of uneven portions were formed on the inner surface of the cooling cylinder to increase the inner area, the cooling effect was improved more than expected. We have come to the knowledge that it is possible.
「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、冷
却筒の内面に凹凸部を形成し、内面積を増大させたこと
を特徴とする。なお前記凹凸部は、冷却筒の内面に周方
向等間隔に形成された軸線方向に延びる突条や溝であっ
てもよい。"Means for Solving the Problems" The present invention has been made to solve the above problems, and is characterized in that a concavo-convex portion is formed on the inner surface of the cooling cylinder to increase the inner area. The uneven portion may be a protrusion or a groove formed in the inner surface of the cooling cylinder at equal intervals in the circumferential direction and extending in the axial direction.
「作用」 この装置によれば、凹凸部を形成して冷却筒の内面積を
増すことにより、単結晶から放出される熱線の吸収率を
増すとともに、冷却筒と雰囲気ガスとの熱交換効率、お
よび雰囲気ガスと単結晶との熱交換効率を共に高め、単
結晶の冷却効果を向上する。[Operation] According to this device, the unevenness is formed to increase the inner area of the cooling cylinder, thereby increasing the absorption rate of the heat rays emitted from the single crystal, and the heat exchange efficiency between the cooling cylinder and the atmosphere gas, Also, the heat exchange efficiency between the atmosphere gas and the single crystal is increased, and the cooling effect of the single crystal is improved.
「実施例」 第1図は、本発明に係わる単結晶引上装置の第1実施例
を示し、前記の従来例と同一部分には同一符号を付して
説明を省略する。"Embodiment" FIG. 1 shows a first embodiment of a single crystal pulling apparatus according to the present invention. The same parts as those of the conventional example are designated by the same reference numerals and the description thereof will be omitted.
この装置では、炉体1の上壁に貫通固定された冷却筒20
の内面に、上端から下端に達する多数(この場合8)本
の突条(凹凸部)21…が周方向等間隔に形成されたこと
を特徴とする。これら突条21は断面が鈍角三角形状であ
り、その突出量は冷却筒20の内壁面と単結晶Tとの距離
の5〜80%程度であることが望ましい。それよりも小さ
いと内面積増大効果が小さく、逆に大きいと突条21が単
結晶Tに与える熱影響が大きくなり過ぎ、冷却むら等の
悪影響が生じるおそれがある。また、前記突条21の個数
は多いほど冷却効率が向上するが、同時に製造コストも
増加するので、少なくとも引き上げたシリコン単結晶の
850〜1050℃での滞留時間が140分以下になるように考慮
すべきである。In this device, a cooling cylinder 20 is fixed through the upper wall of the furnace body 20.
A large number (in this case, 8) of protrusions (uneven portions) 21 ... That extend from the upper end to the lower end are formed on the inner surface of the plate at equal intervals in the circumferential direction. It is desirable that the projections 21 have an obtuse triangular shape in cross section, and the projection amount thereof is about 5 to 80% of the distance between the inner wall surface of the cooling cylinder 20 and the single crystal T. If it is smaller than that, the effect of increasing the inner area is small, and conversely if it is larger, the thermal effect of the ridges 21 on the single crystal T becomes too large, which may cause adverse effects such as uneven cooling. Further, as the number of the protrusions 21 increases, the cooling efficiency improves, but at the same time, the manufacturing cost also increases. Therefore, at least the pulled silicon single crystal
Care should be taken so that the residence time at 850-1050 ° C is 140 minutes or less.
冷却筒20は、Mo,SUS製等の外筒と、突条を形成した同材
質の内筒とを重ねて均等に空隙をあけ、両端部を封止し
た中空構造をなし、例えば第3図に示すように、前記空
隙内が仕切り22A,22Bで区画され、冷媒路24がその全体
に亙って形成されている。そしてこの冷媒路24には、冷
却筒20の上部両側に固定された一対の供給管23を通じて
冷却水が循環されるとともに、冷却筒20の上端にはArガ
ス等の供給管(図示略)が気密的に連結されている。な
お、第3図は冷媒路24の一例に過ぎず、他にも2重螺旋
形等の形状に冷媒路を形成してもよい。The cooling cylinder 20 has a hollow structure in which an outer cylinder made of Mo, SUS, etc. and an inner cylinder made of the same material having a ridge are overlapped to form a uniform gap and both ends are sealed, for example, as shown in FIG. As shown in, the inside of the space is partitioned by partitions 22A and 22B, and a refrigerant passage 24 is formed over the whole. In the refrigerant passage 24, cooling water is circulated through a pair of supply pipes 23 fixed to both upper sides of the cooling cylinder 20, and a supply pipe (not shown) such as Ar gas is provided at the upper end of the cooling cylinder 20. Airtightly connected. Note that FIG. 3 is only an example of the refrigerant passage 24, and the refrigerant passage may be formed in a shape such as a double spiral shape.
上記構成からなる単結晶引上装置においては、冷却筒20
の内面に突条21…を形成することにより内面積が広くさ
れているので、単結晶Tから放射される熱線の吸収率が
高いうえ、冷却筒と雰囲気ガスとの熱交換効率、および
Arガスと単結晶Tとの熱交換効率が共に向上され、従来
装置に比して単結晶Tの冷却効率を著しく高め、単結晶
の生産性を高めることが可能である。In the single crystal pulling apparatus having the above structure, the cooling cylinder 20
Since the inner area is widened by forming the ridges 21 on the inner surface of the, the absorption rate of the heat ray radiated from the single crystal T is high, and the heat exchange efficiency between the cooling cylinder and the atmospheric gas, and
Both the heat exchange efficiency between the Ar gas and the single crystal T is improved, the cooling efficiency of the single crystal T is remarkably increased as compared with the conventional apparatus, and the productivity of the single crystal can be increased.
また、上記のようにシリコン単結晶製造に用いれば、引
き上げられた単結晶を効率良く冷却できるため、単結晶
の850〜1050℃での滞留時間を140分以下に短縮すること
が容易で、半導体デバイス工程における高温処理後も積
層欠陥が発生しにくい優れた単結晶が得られる。Further, if used in the production of silicon single crystal as described above, the pulled single crystal can be efficiently cooled, so that the residence time at 850 to 1050 ° C. of the single crystal can be easily reduced to 140 minutes or less, and the semiconductor It is possible to obtain an excellent single crystal in which stacking faults are less likely to occur even after the high temperature treatment in the device process.
さらに、この例では、凹凸部として上下方向に延びる突
条21…を形成しているので、冷却筒内20を流れるArガス
の流れを整える作用が得られ、冷却筒20内でガスが渦を
巻いて滞ることがなく、冷却筒20内における不純物凝着
を防ぐ効果が高い。Further, in this example, since the protrusions 21 extending in the vertical direction are formed as the concavo-convex portion, the action of adjusting the flow of Ar gas flowing in the cooling cylinder 20 is obtained, and the gas swirls in the cooling cylinder 20. The effect of preventing the impurities from adhering in the cooling cylinder 20 is high without winding and staying.
なお、上記実施例のように上下方向に延びる突条21…を
冷却筒20に形成する代わりに、必要に応じては、上下方
向の溝、水平方向に延びる多数の突条や溝、螺旋状の突
条や溝、独立した多数の凹部や突起を形成したり、内面
に小形の熱交換フィンを固定する構成等も可能である。
また、熱線の吸収率を高めるためには、冷却筒20の内面
に黒色等の塗料を塗布したり、黒色の材質で冷却筒20の
内筒を形成することも有効である。It should be noted that, instead of forming the protrusions 21 extending in the vertical direction on the cooling cylinder 20 as in the above-described embodiment, if necessary, a groove in the vertical direction, a large number of protrusions or grooves extending in the horizontal direction, or a spiral shape. It is also possible to form a ridge or groove, a large number of independent recesses or protrusions, or to fix a small heat exchange fin on the inner surface.
In order to increase the heat ray absorption rate, it is also effective to apply a paint such as black on the inner surface of the cooling cylinder 20 or to form the inner cylinder of the cooling cylinder 20 with a black material.
また、本発明はシリコンのみに限らず、他種の半導体単
結晶の製造装置に適用してもよい。さらに、冷却筒の形
状を截頭円筒状等に変更したり、冷却筒に結晶成長部観
察用の窓を形成したり、炉体に冷却筒を直接固定する代
わりに、棒体を介して炉体1の上壁から冷却筒を吊り下
げた構成や、保温筒6の上端にフランジ部材を介して冷
却筒を支持する構成、冷却筒に昇降機構を付設し炉体1
内で昇降操作可能とした構成等も実施可能である。Further, the present invention is not limited to silicon, but may be applied to an apparatus for manufacturing another type of semiconductor single crystal. Furthermore, instead of changing the shape of the cooling cylinder to a truncated cylinder shape, forming a window for observing the crystal growth portion in the cooling cylinder, or directly fixing the cooling cylinder to the furnace body, the furnace is inserted via the rod body. A structure in which a cooling cylinder is suspended from the upper wall of the body 1, a structure in which the cooling cylinder is supported on the upper end of the heat retaining cylinder 6 via a flange member, and an elevating mechanism is attached to the cooling cylinder to provide a furnace body 1
It is also possible to implement a configuration such that the lifting operation can be performed inside.
「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experimental Example" Next, the effect of the present invention will be demonstrated with an experimental example.
(実験1) 第1図に示した装置と、冷却筒20以外は全く同構成かつ
同寸法の従来装置(第5図参照)を用い、それぞれシリ
コン単結晶の引上試験を行なった。なお、各装置におけ
る冷却筒の直径、冷却水の供給量、ルツボ内のシリコン
原料充填量、単結晶の直径、引き上げ速度、引き上げ時
の冷却筒の位置は全て統一した。また、本発明の装置の
冷却筒は内面に突出量20mmの突条を上下方向に多数形成
したもので、その内面積は従来装置の2倍であった。実
験の結果、本発明の装置では、引き上げた単結晶の850
〜1050℃での滞留時間が約50分であったのに対し、従来
装置では約100分要した。(Experiment 1) Using the apparatus shown in FIG. 1 and a conventional apparatus (see FIG. 5) having exactly the same structure and dimensions except for the cooling cylinder 20, pull-up tests of silicon single crystals were performed. The diameter of the cooling cylinder, the supply amount of cooling water, the filling amount of the silicon raw material in the crucible, the diameter of the single crystal, the pulling speed, and the position of the cooling cylinder at the time of pulling were all unified in each device. Further, the cooling cylinder of the device of the present invention has a large number of protrusions with a protrusion amount of 20 mm formed on the inner surface in the vertical direction, and the internal area thereof is twice as large as that of the conventional device. As a result of the experiment, in the device of the present invention, the pulled single crystal 850
The residence time at ~ 1050 ° C was about 50 minutes, whereas the conventional device required about 100 minutes.
次に、得られた2種のシリコン単結晶からウェーハを切
り出し、これらウェーハに、2℃/分で1100℃まで昇温
させる高温熱処理を施したところ、従来装置からのウェ
ーハでは約50cm-2の密度で積層欠陥が検出されたが、本
発明の装置で得られたウェーハでは積層欠陥は全く検出
されなかった。Then, two obtained silicon cut out wafers from a single crystal, these wafers, 2 ° C. / min was subjected to high-temperature heat treatment for raising the temperature to 1100 ° C., the at wafer from the conventional device about 50 cm -2 Stacking faults were detected by the density, but no stacking faults were detected in the wafer obtained by the apparatus of the present invention.
(実験2) 次に、冷却筒の内面積の大小と単結晶冷却効果との相関
を調べた。(Experiment 2) Next, the correlation between the size of the inner area of the cooling cylinder and the single crystal cooling effect was investigated.
冷媒路を内蔵した内径200mm、高さ100mmのMo,SUS製の冷
却筒の内周面に、軸線方向に延びる突条(突出量20mm)
を多数形成することにより、内面積を変更した数種の冷
却筒を作成し、それぞれを引上装置に装着してシリコン
単結晶の引き上げを行なった。一方、比較例としては、
突条のない同寸法の冷却筒(内面積S=3140cm2)を用
いた。なお、冷却水の供給量、シリコン原料充填量、単
結晶の直径、引き上げ速度、引き上げ時の冷却筒の位置
は全て統一した。A ridge extending in the axial direction (projection amount: 20 mm) on the inner peripheral surface of a cooling cylinder made of Mo, SUS with an internal diameter of 200 mm and a height of 100 mm that incorporates a refrigerant passage.
Several types of cooling cylinders having different inner areas were formed by forming a large number of them, and each of them was mounted on a pulling device to pull a silicon single crystal. On the other hand, as a comparative example,
A cooling cylinder (internal area S = 3140 cm 2 ) of the same size without protrusions was used. The supply amount of cooling water, the filling amount of silicon raw material, the diameter of the single crystal, the pulling rate, and the position of the cooling cylinder during pulling were all unified.
引き上げ中の単結晶が850〜1050℃の温度範囲を通過す
るのに要する滞留時間を測定した結果を第4図に示す。
このグラフから明らかなように、冷却筒の内面積と前記
滞留時間とは略反比例の関係を有し、本発明の有効性が
確認できた。The results of measuring the residence time required for the single crystal being pulled to pass through the temperature range of 850 to 1050 ° C are shown in Fig. 4.
As is clear from this graph, the internal area of the cooling cylinder and the residence time have a substantially inversely proportional relationship, confirming the effectiveness of the present invention.
「発明の効果」 以上説明したように、本発明に係わる単結晶引上装置
は、冷却筒の内面に突条を形成した内面積を広くとって
いるので、単結晶から放射される熱線の吸収率が高くな
るとともに、冷却筒と雰囲気ガスとの熱交換効率、およ
び雰囲気ガスと単結晶との熱交換効率が共に向上され、
従来装置に比して単結晶の冷却効率を高め、単結晶の成
長速度を増して生産性を向上することができる。"Effects of the Invention" As described above, the single crystal pulling apparatus according to the present invention has a wide inner area in which the ridge is formed on the inner surface of the cooling cylinder, so that the absorption of heat rays emitted from the single crystal is absorbed. As the rate increases, both the heat exchange efficiency between the cooling cylinder and the atmosphere gas and the heat exchange efficiency between the atmosphere gas and the single crystal are improved,
It is possible to increase the cooling efficiency of the single crystal, increase the growth rate of the single crystal, and improve the productivity as compared with the conventional apparatus.
また、例えばシリコン単結晶製造に用いた場合には、引
き上げられた単結晶の850〜1050℃での滞留時間を140分
以下に短縮することが容易で、半導体デバイス工程にお
ける高温処理後も積層欠陥が発生しにくい優れた単結晶
を製造できる。Further, for example, when used in the production of silicon single crystal, it is easy to shorten the residence time of the pulled single crystal at 850 to 1050 ° C to 140 minutes or less, and stacking faults even after high-temperature treatment in the semiconductor device process. It is possible to produce an excellent single crystal in which is less likely to occur.
さらに、凹凸部として上下方向に延びる突条を形成した
場合には、冷却筒内を流れる雰囲気ガスの流れを整える
作用が得られ、不純物の排除効果が高い利点を有する。Further, when the protrusions extending in the vertical direction are formed as the uneven portions, the effect of adjusting the flow of the atmospheric gas flowing in the cooling cylinder can be obtained, and the effect of eliminating impurities is high.
第1図は本発明に係わる単結晶引上装置の一実施例を示
し縦断面図、第2図および第3図は同装置の冷却筒を示
す平面図および側面図、第4図は本発明の実験例の結果
を示すグラフである。 一方、第5図は従来の単結晶引上装置の一例を示す縦断
面図である。 Y……シリコン溶湯、T……単結晶、 1……炉体、2……ルツボ、 20……冷却筒、21……突条(凹凸部)、 23……冷媒供給管、24……冷媒路。1 is a longitudinal sectional view showing an embodiment of a single crystal pulling apparatus according to the present invention, FIGS. 2 and 3 are plan and side views showing a cooling cylinder of the apparatus, and FIG. 5 is a graph showing the results of the experimental example of FIG. On the other hand, FIG. 5 is a longitudinal sectional view showing an example of a conventional single crystal pulling apparatus. Y: Silicon melt, T: Single crystal, 1 ... Furnace body, 2 ... Crucible, 20 ... Cooling cylinder, 21 ... Ridge (uneven portion), 23 ... Refrigerant supply pipe, 24 ... Refrigerant Road.
Claims (2)
溶湯から単結晶を成長させながら引き上げる引上機構
と、引き上げ中の単結晶の周囲に同心に配置される冷却
筒とを備えた単結晶引上装置において、 前記冷却筒の内面に凹凸部を形成したことを特徴とする
単結晶引上装置。1. A crucible for holding a molten metal, a pulling mechanism for pulling while raising a single crystal from the molten metal in the crucible, and a cooling cylinder concentrically arranged around the single crystal being pulled. A crystal pulling apparatus, wherein a concavo-convex portion is formed on the inner surface of the cooling cylinder.
隔に形成された軸線方向に延びる複数の突条または溝で
あることを特徴とする第1項記載の単結晶引上装置。2. The single crystal pulling apparatus according to claim 1, wherein the uneven portion is a plurality of protrusions or grooves formed in the inner surface of the cooling cylinder at equal intervals in the circumferential direction and extending in the axial direction. .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25115288A JPH0696479B2 (en) | 1988-10-05 | 1988-10-05 | Single crystal pulling device |
US07/313,799 US4981549A (en) | 1988-02-23 | 1989-02-22 | Method and apparatus for growing silicon crystals |
DE3905626A DE3905626B4 (en) | 1988-02-23 | 1989-02-23 | Device for growing silicon crystals |
US07/933,879 US5264189A (en) | 1988-02-23 | 1992-08-21 | Apparatus for growing silicon crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25115288A JPH0696479B2 (en) | 1988-10-05 | 1988-10-05 | Single crystal pulling device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13623792A Division JPH07242488A (en) | 1992-04-28 | 1992-04-28 | Single crystal pulling up device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0297479A JPH0297479A (en) | 1990-04-10 |
JPH0696479B2 true JPH0696479B2 (en) | 1994-11-30 |
Family
ID=17218451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25115288A Expired - Lifetime JPH0696479B2 (en) | 1988-02-23 | 1988-10-05 | Single crystal pulling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0696479B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3992800B2 (en) * | 1997-09-22 | 2007-10-17 | Sumco Techxiv株式会社 | Single crystal manufacturing apparatus and single crystal manufacturing method |
JP4788029B2 (en) * | 2000-08-31 | 2011-10-05 | 信越半導体株式会社 | Semiconductor single crystal manufacturing apparatus and semiconductor single crystal manufacturing method using the same |
KR101022948B1 (en) * | 2008-11-27 | 2011-03-16 | 주식회사 엘지실트론 | Cooling cylinder for single crystal and Manufacturing apparatus using the same |
CN113755941A (en) * | 2020-06-05 | 2021-12-07 | 隆基绿能科技股份有限公司 | Heat exchange device and single crystal furnace |
CN115110141A (en) * | 2021-03-22 | 2022-09-27 | 隆基绿能科技股份有限公司 | Heat dissipation device and thermal field |
-
1988
- 1988-10-05 JP JP25115288A patent/JPH0696479B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0297479A (en) | 1990-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5264189A (en) | Apparatus for growing silicon crystals | |
US3265469A (en) | Crystal growing apparatus | |
JP4773340B2 (en) | Semiconductor single crystal manufacturing equipment | |
JP4097729B2 (en) | Semiconductor single crystal manufacturing equipment | |
JPH0696479B2 (en) | Single crystal pulling device | |
JPH032840B2 (en) | ||
US3977934A (en) | Silicon manufacture | |
JP7101224B2 (en) | Semiconductor crystal growth device | |
Fan et al. | Zone‐melting recrystallization of 3‐in.‐diam Si films on SiO2‐coated Si substrates | |
TWI738352B (en) | Semiconductor crystal growth apparatus | |
JPS62256787A (en) | Method and device for growing single crystal | |
TWI761956B (en) | A semiconductor crystal growth apparatus | |
JP2705810B2 (en) | Single crystal pulling device | |
JP2000327479A (en) | Single crystal production apparatus and single crystal production | |
JPH07242488A (en) | Single crystal pulling up device | |
JP2884379B2 (en) | Single crystal manufacturing equipment | |
TWI749560B (en) | A semiconductor crystal growth apparatus | |
KR20040049358A (en) | An apparatus for growing silicon single crystals | |
KR101105593B1 (en) | A Silicon Single Crystal Grower | |
JP2845086B2 (en) | Semiconductor single crystal growth equipment | |
JP2558171Y2 (en) | Heat shield for single crystal pulling | |
JPS63143813A (en) | Method and apparatus for manufacturing high purity silicon as semiconductor material | |
JP2534341B2 (en) | Single crystal growth equipment | |
JPH05208891A (en) | Single crystal growing apparatus | |
KR20030070477A (en) | Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081130 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |