JPH0696225B2 - Polishing method - Google Patents

Polishing method

Info

Publication number
JPH0696225B2
JPH0696225B2 JP62266293A JP26629387A JPH0696225B2 JP H0696225 B2 JPH0696225 B2 JP H0696225B2 JP 62266293 A JP62266293 A JP 62266293A JP 26629387 A JP26629387 A JP 26629387A JP H0696225 B2 JPH0696225 B2 JP H0696225B2
Authority
JP
Japan
Prior art keywords
plate
polished
temperature
buff
top ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62266293A
Other languages
Japanese (ja)
Other versions
JPH01109066A (en
Inventor
好一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP62266293A priority Critical patent/JPH0696225B2/en
Publication of JPH01109066A publication Critical patent/JPH01109066A/en
Publication of JPH0696225B2 publication Critical patent/JPH0696225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に半導体ウエーハの研磨に好適な研磨方法
に関する。
TECHNICAL FIELD The present invention relates to a polishing method particularly suitable for polishing a semiconductor wafer.

(従来の技術) 第9図に従来の研磨方法の原理図を示すが、例えば半導
体ウエーハWはプレート106の下面にマウンティング
材、ワックス等にて接着され、その下面を所定の速度で
水平旋回する回転定盤101上に貼設されたバフ(研磨
布)102上にウエイト113…によって所定の力で押圧さ
れ、ノズル108からの研磨剤109の供給を受けて上記バフ
102との間に相対滑りを生じて当該半導体ウエーハWの
下面が鏡面研磨される。
(Prior Art) FIG. 9 shows a principle diagram of a conventional polishing method. For example, a semiconductor wafer W is adhered to a lower surface of a plate 106 with a mounting material, wax or the like, and the lower surface is horizontally swung at a predetermined speed. The buff (polishing cloth) 102 attached on the rotary surface plate 101 is pressed by a weight 113 with a predetermined force, and the buff (abrasive cloth) is supplied from the nozzle 108 to receive the abrasive 109.
The lower surface of the semiconductor wafer W is mirror-polished due to relative slippage with the semiconductor wafer W.

ところで、近年の半導体デバイスの高集積化等に伴い、
半導体ウエーハには高平行度及び高平坦度が要求される
が、この要求を満たすためには、研磨状態において前記
プレート106に撓み変形が生じず、これの平坦度が高く
保たていなければならない。
By the way, with the recent high integration of semiconductor devices,
The semiconductor wafer is required to have high parallelism and high flatness, and in order to satisfy these requirements, the plate 106 must be kept in a high flatness without being flexibly deformed in the polishing state. .

(発明が解決しようとする問題点) ところが、上記従来の研磨方法にあっては、第9図に示
すようにプレート106が逆皿形状を有するトップリング1
03によってその上面周縁を保持され、前記ウエイト113
…の荷重が該プレート106の上面の周縁に局部的に作用
し、当該プレート106の下面には上向きの研磨圧力が作
用するため、プレート106は第10図に実線にて示すよう
に上方に凸状を成す球面状に撓み変形し、当該プレート
106の平坦度が高く保たれず、延いては半導体ウエーハ
Wを高精度に研磨することができないという問題があ
る。
(Problems to be Solved by the Invention) However, in the above-described conventional polishing method, the top ring 1 in which the plate 106 has an inverted dish shape as shown in FIG.
The upper edge is held by 03, and the weight 113
The load of ... locally acts on the peripheral edge of the upper surface of the plate 106, and upward polishing pressure acts on the lower surface of the plate 106, so that the plate 106 is projected upward as shown by the solid line in FIG. The plate is bent and deformed into a spherical shape
There is a problem in that the flatness of 106 cannot be kept high and the semiconductor wafer W cannot be polished with high precision.

本発明は上記問題に鑑みてなされたもので、その目的と
する処は、研磨状態におけるプレートの平坦度を高く保
って被研磨物を高精度に研磨することができる研磨方法
を提供するにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a polishing method capable of polishing an object to be polished with high accuracy while maintaining high flatness of the plate in the polishing state. .

(問題点を解決するための手段) 上記目的を達成すべく本発明は、中心軸回りに回転可能
なプレートの下面に被研磨物を保持せしめ、該プレート
の上面周縁をトップリングによって押圧することによっ
て前記被研磨物の下面を回転定盤上に貼設されたバフ上
に所定の力で押圧し、該被研磨物とバフとの間に相対滑
りを生ぜしめて当該被研磨物の下面を鏡面研磨する研磨
方法において、前記トップリング内に冷却媒体を通し、
前記プレートの上面温度tpと下面温度tcとの差Δtが次
式: ここに、a:プレート半径 E:プテートのヤング率 h:プレートの厚さ P:プレートに作用する正味荷重 α:プレートの線膨張係数 ν:プレートのポアソン比 を満足するよう温度制御することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention holds an object to be polished on the lower surface of a plate rotatable about a central axis and presses the upper peripheral edge of the plate with a top ring. The lower surface of the object to be polished is pressed by a predetermined force on the buff attached to the rotating surface plate by a predetermined force to cause relative sliding between the object to be polished and the buff, and the lower surface of the object to be polished is a mirror surface. In the polishing method for polishing, a cooling medium is passed through the top ring,
The difference Δt between the upper surface temperature tp and the lower surface temperature tc of the plate is expressed by the following equation: Where a: Plate radius E: Young's modulus of pate h: Plate thickness P: Net load acting on the plate α: Linear expansion coefficient of the plate ν: Temperature control to satisfy the Poisson's ratio of the plate And

(作用) 而して、何ら温度制御がなされない場合、前述のように
プレートはその下面に研磨圧力を受けて上方に凸状を成
す球面状に撓み変形する(第10図参照)が、トップリン
グ内を流れる冷却媒体によってプレートの上面を冷却し
て該プレートの上、下面に温度差をつければ、当該プレ
ートは上記と逆形状を成して撓み変形し、この熱的変形
と前記機械的変形とが互いに相殺し合ってプレートの実
際の撓み変形量が小さく抑えられる。
(Function) If no temperature control is performed, the plate is subjected to polishing pressure on the lower surface thereof and is flexibly deformed into a spherical surface having a convex shape as described above (see FIG. 10). If the upper surface of the plate is cooled by the cooling medium flowing in the ring to cause a temperature difference between the upper and lower surfaces of the plate, the plate will be deformed flexibly in the shape reverse to the above, and this thermal deformation and the mechanical The deformations cancel each other out, and the actual amount of bending deformation of the plate is suppressed to a small value.

然るに、前掲の式は、プレートの中心での撓み変形量が
零、即ち、プレートの中心と周縁とが同一平面上に位置
するという条件から導かれたものであり、プレートの上
下面の温度差Δtを同式にて算出される値に等しくなる
よう温度制御すれば、プレートの撓み変形量が極小に抑
えられてその平坦度が高く保たれ、該プレートの下面に
保持された被研磨物は高精度に研磨されることとなる。
However, the above equation is derived from the condition that the amount of flexural deformation at the center of the plate is zero, that is, the center and the peripheral edge of the plate are on the same plane, and the temperature difference between the upper and lower surfaces of the plate is If the temperature is controlled so that Δt becomes equal to the value calculated by the same equation, the amount of flexural deformation of the plate is suppressed to a minimum, its flatness is kept high, and the object to be polished held on the lower surface of the plate is It will be highly accurately polished.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Below, the Example of this invention is described based on an accompanying drawing.

先ず、本発明方法を実施するための研磨装置を第1図に
基づいて説明するに、同図中、1は図示矢印方向に一定
速度で水平に回転駆動される回転定盤であり、該回転定
盤1上には適度な弾性を有するバフ(研磨布)2が貼設
されている。そして、この回転定盤1の上方はトップリ
ング3が回転自在に臨んでおり、該トップリング3の下
部には下方が開口する凹部3aが形成されていて該凹部3a
には注水管4及び排水管5が開口している。尚、注水管
4及び排水管5は不図示の冷却水供給装置に連通してい
る。
First, a polishing apparatus for carrying out the method of the present invention will be described with reference to FIG. 1. In FIG. 1, reference numeral 1 is a rotary platen that is horizontally driven to rotate at a constant speed in a direction indicated by an arrow. A buff (polishing cloth) 2 having appropriate elasticity is attached on the surface plate 1. A top ring 3 is rotatably faced above the rotary platen 1, and a concave portion 3a having a downward opening is formed at a lower portion of the top ring 3 to form the concave portion 3a.
A water injection pipe 4 and a drainage pipe 5 are open in the. The water injection pipe 4 and the drain pipe 5 communicate with a cooling water supply device (not shown).

一方、前記回転定盤1のバフ2条には予めその下めに複
数枚の半導体ウエーハW…を接着したプレート6が載置
されており、該プレート6の上面周縁は弾性シールリン
グ7を介して前記トップリング3によって下方へ所定の
力で押圧されている。尚、第1図中、8は回転定盤1の
中心軸上に開口するノズル、9は該ノズル8から噴出さ
れる砥液である。
On the other hand, a plate 6 to which a plurality of semiconductor wafers W are adhered is placed under the buff 2 of the rotary platen 1 in advance, and the peripheral edge of the upper surface of the plate 6 has an elastic seal ring 7 interposed therebetween. And is pressed downward by the top ring 3 with a predetermined force. In FIG. 1, 8 is a nozzle that opens on the central axis of the rotary platen 1, and 9 is a polishing liquid ejected from the nozzle 8.

而して、回転定盤1は不図示の駆動装置によってその中
心軸周りに一定速度で水平に回転駆動されており、この
ときトップリング3の凹部3a内には注水管4から冷却水
が供給されており、該冷却水はプレート6の上面を冷却
した後、排出管5から排出され、凹部3a内には冷却水が
常時流れている。尚、トップリング3の凹部3aからの冷
却水の漏洩は、弾性シールリング7のシール効果によっ
て阻止される。
Thus, the rotary platen 1 is driven to rotate horizontally around its central axis at a constant speed by a drive device (not shown), and at this time, the cooling water is supplied from the water injection pipe 4 into the recess 3a of the top ring 3. The cooling water is discharged from the discharge pipe 5 after cooling the upper surface of the plate 6, and the cooling water constantly flows in the recess 3a. The leakage of cooling water from the recess 3a of the top ring 3 is prevented by the sealing effect of the elastic seal ring 7.

ところで、回転定盤1上のバフ2には半径方向に周速度
の差が生じ、この周速度の差に起因して半導体ウエーハ
W…、プレート6、トップリング3等がつれ回りする。
そして、このつれ回りによって半導体ウエーハW…とバ
フ2との間には相対滑りが生じ、この相対滑りによって
も各半導体ウエーハWはノズル8から砥液9の供給を受
けながらバフ2によて鏡面研磨される。
By the way, the peripheral speed difference is generated in the buff 2 on the rotary platen 1 in the radial direction, and the semiconductor wafer W, the plate 6, the top ring 3 and the like circulate due to the peripheral speed difference.
Due to this movement, relative slippage occurs between the semiconductor wafer W ... And the buff 2. Due to this relative slip, each semiconductor wafer W receives the supply of the abrasive liquid 9 from the nozzle 8 and the buff 2 gives a mirror surface. To be polished.

以上において、プレート6に対して何ら冷却がなされな
い場合、即ち、トップリング3の凹部3aに冷却水が流れ
ない場合には、プレート6はその下面に研磨圧力を受け
て上方に凸状を成す球面状に撓み変形する(第10図参
照)。
In the above, when the plate 6 is not cooled at all, that is, when the cooling water does not flow into the recess 3a of the top ring 3, the plate 6 is subjected to polishing pressure on its lower surface to form a convex shape upward. It bends and deforms into a spherical shape (see Fig. 10).

然るに、本実施例においては、プレート6の上面はトッ
プリング3の凹部3aを流れる冷却水によって冷却され、
該上面と下面との間には温度差が生じ、この温度差によ
って当該プレート6は前記と逆形状の下に凸の球面状を
成して撓み変形するため、この熱的変形と前記機械的変
形とが互いに相殺し合ってプレート6の実際の撓み変形
量が小さく抑えられ、この結果プレート6の平担度が高
く保たれて該プレート6の下面に保持された半導体ウエ
ーハW…が高精度に研磨される。
Therefore, in this embodiment, the upper surface of the plate 6 is cooled by the cooling water flowing in the recess 3a of the top ring 3,
A temperature difference is generated between the upper surface and the lower surface, and the temperature difference causes the plate 6 to be bent and deformed to form a convex spherical surface below the above-described shape. The deformations cancel each other out, and the actual amount of flexural deformation of the plate 6 is suppressed to a small level. As a result, the flatness of the plate 6 is kept high and the semiconductor wafer W held on the lower surface of the plate 6 is highly accurate. To be polished.

以上のように本実施例においては、プレート6のその下
面が受ける研磨圧力に基づく機械的変形を冷却に基づく
熱的変形によって相殺しているが、該プレート6の実際
の撓み変形量を極小に保つための冷却条件(温度制御条
件)を以下に解析的に求める。
As described above, in this embodiment, the mechanical deformation due to the polishing pressure applied to the lower surface of the plate 6 is offset by the thermal deformation due to cooling, but the actual bending deformation amount of the plate 6 is minimized. The cooling condition (temperature control condition) for maintaining the temperature is analytically obtained below.

(1)プレートの機械的変形量 先ず、プレート6の研磨圧力による機械的変形量を第2
図に単純化したモデルについて求める。即ち、プレート
6はその周縁を単純支持されているものとし、該プレー
ト6の上、下面には図示矢印方向の等分布荷重Pp,Pc作
用しているものと考える。
(1) Mechanical Deformation Amount of Plate First, the mechanical deformation amount due to the polishing pressure of the plate 6 is
We ask for a simplified model in the figure. That is, it is considered that the plate 6 is simply supported at its peripheral edge, and the uniformly distributed loads Pp and Pc in the directions of the arrows in the drawing act on the upper and lower surfaces of the plate 6.

而して、プレート6の荷重Pp,Pcによる機械的変形量Wp
は次式にて求められる(機械工学便覧、改訂第5版第4
編:材料力学参照)。
Therefore, the mechanical deformation amount Wp due to the loads Pp and Pc of the plate 6
Is calculated by the following formula (Mechanical Engineering Handbook, revised 5th edition 4th
Hen: See Material Mechanics).

ここに、a:プレートの半径 r:プレートの任意点の半径 h:プレート厚さ E:プレートのヤング率 P:正味荷重(=Pp-Pc) ν:プレートのポアソン比 (2)プレートの熱的変形量 一方、プレート5の上面温度tpと下面温度tcとの差Δt
=tp−tcに基づく熱的変形量WHには近似的に次式に求め
られる。
Where a: radius of plate r: radius of arbitrary point of plate h: plate thickness E: Young's modulus of plate P: net load (= Pp-Pc) ν: Poisson's ratio of plate (2) thermal of plate Deformation amount On the other hand, the difference Δt between the upper surface temperature tp and the lower surface temperature tc of the plate 5
= The thermal deformation amount W H based on tp-tc required for approximately the following equation.

ここに、α:プレート線膨張係数 (3)プレートの実際の変形量 従って、プレート6の実際の変形量Wは、第(1)式に
て示される機械的変形量Wpと第(2)式にて示される熱
的変形量WHの和として次式にて求められる。
Here, α: Plate linear expansion coefficient (3) Actual deformation amount of plate Therefore, the actual deformation amount W of the plate 6 is the mechanical deformation amount Wp expressed by the equation (1) and the equation (2). It is calculated by the following formula as the sum of the thermal deformation amount W H shown in.

(4)プレートの実際の変形量Wを極小に保つ温度条件 プレート6の実際の変形量Wを極小に保つ条件として、
該プレート6での撓み変形量Wr=0が零(Wr=0
0)という条件を導入し、この条件を満足すべき温度差
ΔtNを求める。
(4) Temperature condition for keeping the actual amount W of deformation of the plate to a minimum As a condition for keeping the actual amount W of deformation of the plate 6 at a minimum,
The flexural deformation amount W r = 0 in the plate 6 is zero (W r = 0 =
0) is introduced and the temperature difference Δt N that satisfies this condition is determined.

即ち、 上式よりΔtNを求めると、 而して、プレート6の上、下面での温度差Δtが上式を
満たすとき(即ち、プレート6の中心点での変形量W
r=0=0のとき)のプレート6の実際の撓み変形量W
は、第(5)式を第(3)式に代入することによって次
式にて求められる。
That is, When Δt N is calculated from the above equation, Thus, when the temperature difference Δt between the upper and lower surfaces of the plate 6 satisfies the above equation (that is, the deformation amount W at the center point of the plate 6).
Actual flexural deformation amount W of the plate 6 when r = 0 = 0)
Is calculated by the following equation by substituting the equation (5) into the equation (3).

上式にて表わされるプレート6の撓み曲線を第3図に示
すが、最大撓みWMAXが生じる位置は次式を満足すべきr
として求められる。
The deflection curve of the plate 6 expressed by the above equation is shown in FIG. 3, and the position where the maximum deflection W MAX occurs should satisfy the following equation r
Is required as.

r>0であるため、最大撓みWMAXの位置で生じ、最大撓みWMAXは上式を第(7)式に代入
して次式にて求められる。
Since r> 0, the maximum deflection W MAX is The maximum deflection W MAX which occurs at the position of is calculated by the following equation by substituting the above equation into the equation (7).

(5)利用可能な温度差 次に、プレート6の上、下面の利用可能な温度差(実現
可能な温度差)Δtvの算出式を求める。
(5) Usable Temperature Difference Next, the calculation formula of the usable temperature difference Δv of the upper and lower surfaces of the plate 6 (achievable temperature difference) is calculated.

先ず、半導体ウエーハW…、該半導体ウエーハWの接着
層(ワックス層)、プレート6、冷却水の境膜(境界
層)及び冷却水の境膜以外の層の伝熱量Qは次式にて求
められる。
First, the heat transfer amount Q of the semiconductor wafer W, the adhesive layer (wax layer) of the semiconductor wafer W, the plate 6, the cooling water boundary film (boundary layer), and the layers other than the cooling water boundary film is calculated by the following equation. To be

Q=AU(t1−t3) …(10) ここに、A:伝熱面積 h1:ウヘーハの厚さ h2:接着層の厚さ k1:ウエーハの熱伝導率 k2:接着層の熱伝導率 k:プレートの熱伝導率 H:境膜伝熱係数 U:総括伝熱係数 t1:ウエーハの温度 t3:冷却水温度 一方、プレート6の伝熱量Qは次式にて求められる。 Q = AU (t 1 -t 3 ) ... (10) Where A: heat transfer area h 1 : thickness of wafer h 2 : thickness of adhesive layer k 1 : thermal conductivity of wafer k 2 : thermal conductivity of adhesive layer k: thermal conductivity of plate H: boundary Membrane heat transfer coefficient U: Overall heat transfer coefficient t 1 : Wafer temperature t 3 : Cooling water temperature On the other hand, the heat transfer amount Q of the plate 6 is obtained by the following equation.

従って、上記(10),(11)式より利用可能な温度差Δ
tvは次式によって求められる。
Therefore, the temperature difference Δ that can be used from the above equations (10) and (11)
tv is calculated by the following equation.

結局、プレート6の上、下めの温度差Δtをその撓み変
形量が極小に保たれるべき温度差ΔtN(第(5)式参
照)に調整し得るには、次の条件が満たされなければな
らない。
After all, in order to adjust the upper and lower temperature differences Δt to the temperature difference Δt N (see the formula (5)) at which the flexural deformation amount should be kept to a minimum, the following conditions are satisfied. There must be.

ΔtN≦tv …(13) (6)具体例 次に、具体的数値を用いた計算結果を示す。尚、計算は
次表に示した数値に基づいて行なわれた。
Δt N ≦ tv (13) (6) Concrete example Next, the calculation results using concrete numerical values are shown. The calculation was performed based on the numerical values shown in the following table.

而して、プレート6の変形量W及びその最大値WMAXは前
記第(6)式、第(9)式によりそれぞれ次のように求
められ、その結果は第4図、第5図にグラフ表示され
る。
Then, the deformation amount W of the plate 6 and its maximum value W MAX are respectively obtained by the above equations (6) and (9) as follows, and the results are graphed in FIGS. 4 and 5. Is displayed.

又、プレート6の変形量Wを上記結果に保つために必要
なプレート6の上、下面の温度差ΔtN及び利用可能な温
度差Δtvは第(5)式、第(12)式よりそれぞれ次のよ
うに求められ、その結果は第6図にグラフ表示される。
Further, the temperature difference Δt N between the upper and lower surfaces of the plate 6 and the usable temperature difference Δtv, which are necessary to keep the deformation amount W of the plate 6 at the above result, are calculated by the following equations (5) and (12). And the result is displayed in a graph in FIG.

ところで、前記第(6)式からプレート6の変形量Wを
小さく保ってその平担度を向上せしめるには、第(5)
式で表わされる温度条件を満足することを前提として以
下に列挙する対策が考えられる。
By the way, in order to improve the flatness of the plate 6 by keeping the deformation amount W of the plate 6 small according to the formula (6),
The following measures can be considered on the assumption that the temperature condition expressed by the formula is satisfied.

(a)正味荷重Pを可及的に小さくすること。(A) To reduce the net load P as much as possible.

(b)(1−ν)/Eの値の小さい材質を選定するこ
と。
(B) Select a material with a small value of (1-ν 2 ) / E.

(c)厚さhの大きいプレートを使用すること。(C) Use a plate with a large thickness h.

ここで、プレートの最大撓みWMAX及び温度差ΔtNに及ぼ
す厚さhの影響を直径2a=52.5cmのプレートに対して計
算すると次式のようになる。
Here, when the influence of the thickness h on the maximum deflection W MAX of the plate and the temperature difference Δt N is calculated for a plate having a diameter of 2a = 52.5 cm, the following formula is obtained.

上記結果を正味荷重P=0.05,0.1,0.2kg/cm2をパラメー
タとしてグラフ表示したものを第7図、第8図にそれぞ
れ示すが、プレート厚さhを増加は該プレートの撓み変
形量の低減に極めて有効であるとともに、必要温度差Δ
tNを小さくして冷却上の問題を緩和する方向にあるとい
うことがわかる。
The above results are shown graphically in FIG. 7 and FIG. 8 with the net load P = 0.05, 0.1, 0.2 kg / cm 2 as a parameter, respectively. The increase of the plate thickness h means the amount of bending deformation of the plate. It is extremely effective in reducing the required temperature difference Δ
It can be seen that there is a trend to reduce the cooling problem by reducing t N.

以上のように、本実施例においては、プレート6の下面
が受ける研磨圧力に基づく機械的変形を同プレート6の
上、下面の温度差に基づく熱的変形でもって相殺し、該
プレート6の撓み変形量を小さく抑えるようにし、特に
その撓み変形量を極小に抑えるに必要な温度差ΔtNを解
析的に求めたため、この温度差ΔtNが維持されるよう温
度制御がなされればプレート6の平担度が高く保たれ、
該プレート6の下面に保持された半導体ウエーハW…が
高精度に研摩されてその平行度及び平担度が高く保た
れ、近年の半導体デバイスの高集積化等に伴い半導体ウ
エーハに要求される精度を十分満足し得ることとなる。
As described above, in this embodiment, the mechanical deformation due to the polishing pressure applied to the lower surface of the plate 6 is offset by the thermal deformation due to the temperature difference between the upper and lower surfaces of the plate 6, and the bending of the plate 6 is canceled. The amount of deformation is kept small, and in particular, the temperature difference Δt N required to keep the amount of bending deformation to a minimum is analytically obtained. Therefore, if temperature control is performed to maintain this temperature difference Δt N, the plate 6 The flatness is kept high,
The semiconductor wafer W held on the lower surface of the plate 6 is highly accurately polished so that its parallelism and flatness are kept high, and the accuracy required for the semiconductor wafer in accordance with the recent high integration of semiconductor devices and the like. Will be fully satisfied.

尚、以上の実施例においては、プレート6の上面を冷却
する冷却媒体として特に水を用いたが、冷却媒体として
は任意のものを用いることができる。又、温度制御は冷
却媒体の温度、流量等を調整することによってなされ
る。
Although water is used as the cooling medium for cooling the upper surface of the plate 6 in the above embodiments, any cooling medium can be used. The temperature control is performed by adjusting the temperature, flow rate, etc. of the cooling medium.

(発明の効果) 以上の説明で明らかな如く本発明によれば、中心軸回り
に回転可能なプレートの下面に被研磨物を保持せしめ、
該プレートの上面周縁をトップリングによって押圧する
ことによって前記被研磨物の下面を回転定盤上に貼設さ
れたバフ上に所定の力で押圧し、該被研磨物とバフとの
間に相対滑りを生ぜしめて当該被研磨物の下面を鏡面研
磨する研磨方法において、前記トップリング内に冷却媒
体を通し、前記プレートの上面温度tpと下面温度tcとの
差Δtが次式: ここに、a:プレートの半径 E:プレートのヤング率 h:プレートの厚さ P:プレートに作用する正味荷重 α:プレートの線膨張係数 ν:プレートのポアソン比 を満足するよう温度制御するようにしたため、プレート
の機械的変形が熱的変形によって相殺され、該プレート
の撓み変形量が極小に抑えられてその平担度が高く保た
れ、同プレートの下面に保持された被研摩物が高精度に
研摩されるという効果が得られる。
(Effect of the invention) As is clear from the above description, according to the present invention, the object to be polished is held on the lower surface of the plate rotatable about the central axis,
By pressing the peripheral edge of the upper surface of the plate with a top ring, the lower surface of the object to be polished is pressed with a predetermined force onto the buff attached to the rotating surface plate so that the object to be polished and the buff are relatively opposed to each other. In a polishing method in which a lower surface of an object to be polished is mirror-polished by causing slippage, a cooling medium is passed through the top ring, and a difference Δt between an upper surface temperature tp and a lower surface temperature tc of the plate is expressed by the following formula: Where: a: radius of the plate E: Young's modulus of the plate h: thickness of the plate P: net load acting on the plate α: coefficient of linear expansion of the plate ν: temperature control to satisfy the Poisson's ratio of the plate As a result, the mechanical deformation of the plate is offset by the thermal deformation, the amount of flexural deformation of the plate is suppressed to a minimum, the flatness of the plate is kept high, and the workpiece held on the lower surface of the plate is highly accurate. It has the effect of being polished.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施するための研磨装置の構成
図、第2図はプレートの機械的変形量算出のためのモデ
ル化した図、第3図はプレートの撓み曲線を示す図、第
4図はプレートの撓み量をその半径に対して示したグラ
フ、第5図はプレートの最大撓み量をその半径に対して
示したグラフ、第6図はプレートの温度差及び利用可能
な温度差をプレートの半径に対して示したグラフ、第7
図はプレートの最大撓み量をプレート厚さに対して示し
たグラフ、第8図はプレートの必要温度差をプレート厚
さに対して示したグラフ、第9図は従来の研磨方法を説
明するための研磨装置の構成図、第10図はプレートの撓
み変形の様子を示す説明図である。 1……回転定盤、2……バフ、3……トップリング、4
……凹部、4……注水管、5……排水管、6……プレー
ト、W……半導体ウエーハ(被研摩物)。
1 is a configuration diagram of a polishing apparatus for carrying out the method of the present invention, FIG. 2 is a modeled diagram for calculating a mechanical deformation amount of a plate, FIG. 3 is a diagram showing a deflection curve of the plate, FIG. Fig. 4 is a graph showing the amount of deflection of the plate with respect to its radius, Fig. 5 is a graph showing the maximum amount of deflection of the plate with respect to its radius, and Fig. 6 is the temperature difference of the plate and the available temperature difference. The graph showing the radius of the plate,
FIG. 8 is a graph showing the maximum deflection of the plate with respect to the plate thickness, FIG. 8 is a graph showing the required temperature difference of the plate with respect to the plate thickness, and FIG. 9 is for explaining a conventional polishing method. FIG. 10 is a configuration diagram of the polishing apparatus of FIG. 10, and FIG. 10 is an explanatory view showing a state of flexural deformation of the plate. 1 ... Rotating surface plate, 2 ... Buff, 3 ... Top ring, 4
...... Concave part, 4 …… Water injection pipe, 5 …… Drainage pipe, 6 …… Plate, W …… Semiconductor wafer (abrasive).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心軸回りに回転可能なプレートの下面に
被研磨物を保持せしめ、該プレートの上面周縁をトップ
リングによって押圧することによって前記被研磨物の下
面を回転定盤上に貼設されたバフ上に所定の力で押圧
し、該被研磨物とバフとの間に相対滑りを生ぜしめて当
該被研磨物の下面を鏡面研磨する研磨方法において、前
記トップリング内に冷却媒体を通し、前記プレートの上
面温度tPと下面温度tCとの差Δtが次式: ここに、a:プレート半径 E:プレートのヤング率 h:プレートの厚さ P:プレートに作用する正味荷重 α:プレートの線膨張係数 ν:プレートのポアソン比 を満足するよう温度制御することを特徴とする研磨方
法。
1. An object to be polished is held on a lower surface of a plate rotatable about a central axis, and a lower surface of the object is affixed to a rotary platen by pressing a peripheral edge of an upper surface of the plate with a top ring. In the polishing method, in which the lower surface of the object to be polished is mirror-polished by pressing the surface of the buff with a predetermined force to cause relative sliding between the object to be polished and the buff, a cooling medium is passed through the top ring. , The difference Δt between the upper surface temperature t P and the lower surface temperature t C of the plate is given by the following equation: Where a: Plate radius E: Young's modulus of the plate h: Plate thickness P: Net load acting on the plate α: Linear expansion coefficient of the plate ν: Temperature control to satisfy the Poisson's ratio of the plate And polishing method.
JP62266293A 1987-10-23 1987-10-23 Polishing method Expired - Fee Related JPH0696225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266293A JPH0696225B2 (en) 1987-10-23 1987-10-23 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266293A JPH0696225B2 (en) 1987-10-23 1987-10-23 Polishing method

Publications (2)

Publication Number Publication Date
JPH01109066A JPH01109066A (en) 1989-04-26
JPH0696225B2 true JPH0696225B2 (en) 1994-11-30

Family

ID=17428933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266293A Expired - Fee Related JPH0696225B2 (en) 1987-10-23 1987-10-23 Polishing method

Country Status (1)

Country Link
JP (1) JPH0696225B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311116B2 (en) * 1993-10-28 2002-08-05 株式会社東芝 Semiconductor manufacturing equipment
US5643053A (en) 1993-12-27 1997-07-01 Applied Materials, Inc. Chemical mechanical polishing apparatus with improved polishing control
US6024630A (en) 1995-06-09 2000-02-15 Applied Materials, Inc. Fluid-pressure regulated wafer polishing head
USRE38854E1 (en) 1996-02-27 2005-10-25 Ebara Corporation Apparatus for and method for polishing workpiece
CN103029032B (en) * 2011-10-09 2015-04-08 沈阳理工大学 Sintered polycrystalline diamond cold plate cooling high-speed grinding device
CN102343546A (en) * 2011-10-10 2012-02-08 沈阳理工大学 Method for carrying out high-speed lapping on sintered polycrystalline diamond cooled by cold plate

Also Published As

Publication number Publication date
JPH01109066A (en) 1989-04-26

Similar Documents

Publication Publication Date Title
EP1197293B1 (en) Polishing device and method
TW478999B (en) Pad conditioner coupling and end effector for a chemical mechanical planarization system and method therefor
KR840002114B1 (en) Apparatus for improving flatness of polished wafers
TW495415B (en) Semiconductor wafer, polishing apparatus and method
KR100299804B1 (en) Polishing device and method of workpiece
EP0868975A1 (en) Polishing apparatus
US6334808B1 (en) Method for processing peripheral portion of thin plate and apparatus therefor
JPH01216768A (en) Method and device for polishing semiconductor substrate
JP2001291690A (en) Apparatus and method for polishing
JPH0696225B2 (en) Polishing method
JPH09225819A (en) Holding mechanism for workpiece
CN211728760U (en) Wafer polishing device
US5975998A (en) Wafer processing apparatus
JP2006074060A (en) Polishing method
JP2002046058A (en) Method of dressing polishing cloth for double-sided polishing
CN115070605A (en) Polishing equipment and working method thereof
JP4303860B2 (en) Silicon wafer polishing equipment
JPH0741534B2 (en) Wafer polishing method and polishing apparatus
JPH012857A (en) Wafer polishing method and polishing device
JPH09262758A (en) Polishing level block, and polishing device using the same
JPH10156710A (en) Thin plate polishing method and polishing device
JP2612012B2 (en) Polishing equipment
JP2022026348A (en) Polishing device
JPH0760637A (en) Polishing device
JPH09193003A (en) Polishing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees