JPH0695045A - Optical control element and its production - Google Patents

Optical control element and its production

Info

Publication number
JPH0695045A
JPH0695045A JP24054292A JP24054292A JPH0695045A JP H0695045 A JPH0695045 A JP H0695045A JP 24054292 A JP24054292 A JP 24054292A JP 24054292 A JP24054292 A JP 24054292A JP H0695045 A JPH0695045 A JP H0695045A
Authority
JP
Japan
Prior art keywords
electrode
optical waveguide
optical
control element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24054292A
Other languages
Japanese (ja)
Inventor
Yoshio Sugihara
美穂 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24054292A priority Critical patent/JPH0695045A/en
Publication of JPH0695045A publication Critical patent/JPH0695045A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lessen the temp. rise of a crystal plate and to lessen light loss, phase deviation and waveform distortion by connecting coupling electrodes to signal electrodes provide on an optical waveguide and connecting an introducing electrode to the coupling electrodes. CONSTITUTION:The main surface of a Z-cut crystal plate 1 consisting of lithium niobate is provided thereon with the optical waveguides 2 of Mach-Zehunder type. The one optical waveguide 2 is provided therein with a grounding electrode 3 consisting of gold (Au) of 3mum thickness and the other optical waveguide 2 is provided thereon with the signal electrode 4 consisting of gold. The optical waveguides 2 are formed by depositing titanium by evaporation on the parts corresponding to the optical waveguides 2 on the main surface of the crystalline plate 1 by a photolithography method, then subjecting these parts to a thermal diffusion treatment at 1050 deg.C in an oxygen atmosphere. Five pieces of the coupling electrodes 11 consisting of gold and having 20mum length X 10mum width X 3mum thickness are provided in connection to this signal electrode 4 and further the introducing electrode 12 consisting of gold and having 20mum length X 27mum width X 3mum thickness are provided in connection to the coupling electrodes 11. Then, the internal impedance of the signal electrode is lowered without changing the impedance between the signal electrode and the grounding electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバを用いた広
帯域通信システムに使用される光制御素子およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control element used in a broadband communication system using an optical fiber and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来のこの種の光制御素子としては図1
1および図12に示すものがあった。
2. Description of the Related Art FIG. 1 shows a conventional light control element of this type.
1 and shown in FIG.

【0003】図11は光変調用の光制御素子であり、1
は電気光学効果を示す結晶板であり、結晶板1の主表面
上にはマッハツェンダ型の光導波路2が設けられ、光導
波路2の一方の上にはアース電極3、他方の上には信号
電極4が設けられていた。光導波路2は結晶板1の主表
面上にリソグラフィ法で光導波路2に相当する部分に結
晶板1より屈折率の大きくなる元素を蒸着し、熱拡散処
理し、図11(a)のA−B線に沿った図11(b)の
断面図に示すように蒸着した元素を深さ方向に拡散させ
てマッハツェンダ型の光導波路2を形成していた。光は
結晶板1のX軸方向に伝搬し、電界はY軸方向に印加さ
れる。光導波路2の屈折率は結晶板1の屈折率より大き
いために光は外部に漏れることなく光導波路2の中を伝
搬する。このような光変調用の光制御素子において、左
方の光ファイバ5から6のような光信号を左方の光導波
路2に入れると分岐点で2つに分けられて分岐部を伝搬
する。この間に信号電極4に駆動電源7から変調信号電
圧を印加すると分岐部における結晶板1の電気光学効果
によって分岐された2つの光信号に位相差が生ずる。そ
の2つの光信号を右方の光導波路2で合流させて右方の
光ファイバ8で受光すると9のような変調信号が取り出
せる。10は終端抵抗である。
FIG. 11 shows a light control element for light modulation.
Is a crystal plate exhibiting an electro-optical effect, a Mach-Zehnder type optical waveguide 2 is provided on the main surface of the crystal plate 1, a ground electrode 3 is provided on one side of the optical waveguide 2, and a signal electrode is provided on the other side. 4 was provided. In the optical waveguide 2, an element having a larger refractive index than that of the crystal plate 1 is vapor-deposited on the main surface of the crystal plate 1 by a lithographic method on a portion corresponding to the optical waveguide 2 and subjected to thermal diffusion treatment. As shown in the cross-sectional view of FIG. 11B taken along the line B, the vapor-deposited element was diffused in the depth direction to form the Mach-Zehnder type optical waveguide 2. Light propagates in the X-axis direction of the crystal plate 1, and an electric field is applied in the Y-axis direction. Since the refractive index of the optical waveguide 2 is larger than that of the crystal plate 1, light propagates in the optical waveguide 2 without leaking to the outside. In such a light control element for light modulation, when an optical signal from the left optical fibers 5 to 6 is put into the left optical waveguide 2, it is divided into two at the branch point and propagates through the branch portion. When a modulation signal voltage is applied to the signal electrode 4 from the drive power source 7 during this time, a phase difference occurs between the two optical signals branched by the electro-optical effect of the crystal plate 1 at the branch portion. When the two optical signals are merged by the right optical waveguide 2 and received by the right optical fiber 8, a modulated signal such as 9 can be taken out. Reference numeral 10 is a terminating resistor.

【0004】また光スイッチ用の光制御素子は図12に
示すように結晶板1の主表面上に1組以上の光導波路2
を設け、その1組の光導波路2の間にアース電極3を設
け、光導波路2を介してアース電極3に対抗する位置に
信号電極4を設けてあった。このような構成で左方の光
ファイバ5から光信号を入れ、信号電極4に駆動電源7
から変調信号電圧を印加すると結晶板1の電気光学効果
によって右方の光ファイバ8でスイッチ信号が得られ
る。
As shown in FIG. 12, an optical control element for an optical switch has one or more sets of optical waveguides 2 on the main surface of a crystal plate 1.
And the ground electrode 3 is provided between the pair of optical waveguides 2, and the signal electrode 4 is provided at a position opposed to the ground electrode 3 via the optical waveguide 2. With such a configuration, an optical signal is input from the optical fiber 5 on the left side, and the driving power source 7 is applied to the signal electrode 4.
When a modulation signal voltage is applied from, a switch signal is obtained by the right optical fiber 8 due to the electro-optic effect of the crystal plate 1.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の光
制御素子の構成で信号電極4に高周波信号を印加して分
布定数動作させると、信号電極4に光信号と同じ位相速
度で電流が流れジュール損によって発熱して信号電極4
の下の光導波路2の温度を上昇させる。そうすると焦電
効果によって結晶板1の主表面に起電力が発生して安定
した変調またはスイッチ特性が得られないという問題が
あった。
However, when a high frequency signal is applied to the signal electrode 4 in the above-described conventional light control element for distributed constant operation, a current flows through the signal electrode 4 at the same phase velocity as the optical signal. Heat is generated due to Joule loss and the signal electrode 4
The temperature of the lower optical waveguide 2 is increased. Then, there is a problem that an electromotive force is generated on the main surface of the crystal plate 1 due to the pyroelectric effect and stable modulation or switch characteristics cannot be obtained.

【0006】また光導波路2は熱拡散法で形成するため
に基板表面で屈折率が最も高く基板内部に向かって半円
状のガウス分布となっていた。このために光損失、位相
ずれ、波形が歪むという問題もあった。
Further, since the optical waveguide 2 is formed by the thermal diffusion method, the refractive index is highest on the surface of the substrate and the Gaussian distribution is semicircular toward the inside of the substrate. For this reason, there are problems such as optical loss, phase shift, and waveform distortion.

【0007】本発明は上記の問題を解決するもので、結
晶板の温度上昇が少なく、光損失、位相ずれ、波形歪の
少ない光制御素子およびその製造方法の提供を目的とす
る。
The present invention solves the above problems, and an object of the present invention is to provide an optical control element in which the temperature rise of a crystal plate is small, optical loss, phase shift, and waveform distortion are small, and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の光制御素子は、信号電極に結合電極を接続
し、その結合電極に導入電極を接続した電極構成とする
か、タンタル酸リチウムまたはニオブ酸リチウムの結晶
板の主表面上にチタン、鉄、亜鉛、銅、銀の1種以上を
ドープしたニオブ酸リチウムのエピタキシャル結晶層を
設け、そのエピタキシャル結晶層にイオンエッチング法
による光導波路を設けた構成とする。
In order to achieve the above object, the light control element of the present invention has an electrode structure in which a coupling electrode is connected to a signal electrode and an introduction electrode is connected to the coupling electrode, or tantalum is used. An epitaxial crystal layer of lithium niobate doped with one or more of titanium, iron, zinc, copper and silver is provided on the main surface of a crystal plate of lithium oxide or lithium niobate, and the epitaxial crystal layer is subjected to optical etching by an ion etching method. A structure with a waveguide is provided.

【0009】[0009]

【作用】本発明は上記した構成により、信号電極とアー
ス電極間のインピーダンスを変えることなく信号電極の
内部インピーダンスを低下できるとともに結合電極およ
び導入電極により熱放散が大きくなる。また光導波路内
の屈折率の分布は同心円状となる。さらにエピタキシャ
ル層をイオンエッチング法で加工すると100〜200
℃で加工できるために熱拡散法より転位(ディスローケ
ション)や組成変化などの欠陥の少ない光導波路が形成
できる。
According to the present invention, the internal impedance of the signal electrode can be lowered without changing the impedance between the signal electrode and the ground electrode and the heat dissipation can be increased by the coupling electrode and the introduction electrode. The distribution of the refractive index in the optical waveguide is concentric. Further, if the epitaxial layer is processed by the ion etching method, it is 100 to 200.
Since it can be processed at ℃, it can form an optical waveguide with fewer defects such as dislocation (dislocation) and composition change than the thermal diffusion method.

【0010】[0010]

【実施例】【Example】

(実施例1)以下本発明の第1の実施例について図1を
参照しながら説明する。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIG.

【0011】本実施例が図11の従来例と相違する点
は、信号電極4に結合電極11を接続し、結合電極11
に導入電極12を接続した点である。さらに本実施例を
具体的に説明すると、1はニオブ酸リチウム(LiNb
3)のZカットの結晶板であり、長さ40mm×幅3mm
×厚さ1mmである。その結晶板1の主表面上にはマッハ
ツェンダ型の光導波路2が設けられている。一方の光導
波路2上には厚さ3μmの金(Au)のアース電極3、
他方の光導波路2上にはAuの信号電極4が設けられて
いる。光導波路2はLiNbO3の結晶板1の主表面上
にフォトリソグラフ法で光導波路2に相当する部分にチ
タン(Ti)を700Å蒸着し、酸素雰囲気中で105
0℃で熱拡散処理し、図1(a)のA−B線に沿った図
1(b)の断面図に示すようにTiを深さ約5μm拡散
させてマッハツェンダ型の光導波路2を形成した。信号
電極4の大きさは長さ20mm×幅9μm×厚さ3μmで
あり、その直流抵抗は20Ωであった。光導波路2の分
岐部の間隔は約1mmとした。終端抵抗10は50Ωとし
た。以上の構成は図11の従来例と同じであるが、本実
施例では信号電極4に接続して長さ20μm×幅10μ
m×厚さ3μmのAuの結合電極11を5本設け、結合
電極11に接続して長さ20mm×幅27μm×厚さ3μ
mのAuの導入電極12を設けた。
This embodiment is different from the conventional example of FIG. 11 in that the coupling electrode 11 is connected to the signal electrode 4 and the coupling electrode 11 is connected.
This is the point at which the introduction electrode 12 was connected to. Further specifically explaining this embodiment, 1 is lithium niobate (LiNb)
O 3 ) Z-cut crystal plate, length 40 mm x width 3 mm
× Thickness is 1 mm. A Mach-Zehnder type optical waveguide 2 is provided on the main surface of the crystal plate 1. On the one optical waveguide 2, a ground electrode 3 of gold (Au) having a thickness of 3 μm,
A signal electrode 4 of Au is provided on the other optical waveguide 2. For the optical waveguide 2, titanium (Ti) was vapor-deposited on the main surface of the LiNbO 3 crystal plate 1 in a portion corresponding to the optical waveguide 2 by a photolithography method in an amount of 700 Å, and was placed in an oxygen atmosphere.
A Mach-Zehnder type optical waveguide 2 is formed by thermal diffusion treatment at 0 ° C. and diffusing Ti to a depth of about 5 μm as shown in the cross-sectional view of FIG. 1B taken along the line AB of FIG. did. The size of the signal electrode 4 was 20 mm in length × 9 μm in width × 3 μm in thickness, and its DC resistance was 20Ω. The distance between the branched portions of the optical waveguide 2 was set to about 1 mm. The terminating resistance 10 was 50Ω. The above-mentioned configuration is the same as that of the conventional example of FIG. 11, but in the present example, it is connected to the signal electrode 4 and has a length of 20 μm and a width of 10 μm.
Five Au coupling electrodes 11 of m × thickness 3 μm are provided and connected to the coupling electrodes 11 and the length is 20 mm × width 27 μm × thickness 3 μ.
An m introduction electrode 12 of Au was provided.

【0012】上記の構成で従来例と同じ条件で駆動させ
ると従来例より温度上昇が少なく安定した変調特性を示
した。
When driven under the same conditions as in the conventional example with the above-mentioned configuration, the temperature rise was smaller than in the conventional example and stable modulation characteristics were exhibited.

【0013】(実施例2)次に本発明の第2の実施例に
ついて図2を参照しながら説明する。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG.

【0014】本実施例が図12の従来例と相違する点
は、信号電極4に結合電極11を接続し、結合電極11
に導入電極12を接続した点である。これらの各電極の
構成は実施例1と同じとしたが、アース電極3は長さ2
0mm×幅30μm×厚さ3μmのAuとし光導波路2の
間に設けた。
The present embodiment is different from the conventional example of FIG. 12 in that the coupling electrode 11 is connected to the signal electrode 4 and the coupling electrode 11 is connected.
This is the point at which the introduction electrode 12 was connected to. The structure of each of these electrodes was the same as that in Example 1, but the ground electrode 3 had a length of 2 mm.
Au of 0 mm × width 30 μm × thickness 3 μm was provided between the optical waveguides 2.

【0015】上記の構成で従来例と同じ条件で駆動させ
ると従来例より温度上昇が少なく安定したスイッチング
特性を示した。
When driven under the same conditions as in the conventional example with the above-mentioned structure, the temperature rise was smaller than in the conventional example and stable switching characteristics were exhibited.

【0016】(実施例3)次に本発明の第3の実施例に
ついて図3を参照しながら説明する。
(Embodiment 3) Next, a third embodiment of the present invention will be described with reference to FIG.

【0017】本実施例が図1の実施例1と相違する点
は、結晶板13としてLiNbO3の結晶板1に代えて
タンタル酸リチウム(LiTaO3)を用い、その主表
面上にTiをドープしたLiNbO3のエピタキシャル
結晶層14を形成し、エピタキシャル結晶層14にイオ
ンエッチング法によるマッハツェンダ型の光導波路15
を形成した点である。各電極の構成は実施例1と同じで
ある。
This embodiment is different from Embodiment 1 in FIG. 1 in that lithium tantalate (LiTaO 3 ) is used as the crystal plate 13 instead of the crystal plate 1 of LiNbO 3 , and the main surface thereof is doped with Ti. The epitaxial crystal layer 14 of LiNbO 3 is formed, and the Mach-Zehnder type optical waveguide 15 is formed on the epitaxial crystal layer 14 by the ion etching method.
Is the point that formed. The structure of each electrode is the same as that of the first embodiment.

【0018】上記の構成で従来例と同じ条件で駆動させ
ると従来例より温度上昇が少なく、光損失、位相ずれ、
波形歪の少ない変調特性を示した。
When driven under the same conditions as in the conventional example with the above-mentioned configuration, the temperature rise is smaller than in the conventional example, and the optical loss, phase shift,
The modulation characteristics with little waveform distortion are shown.

【0019】なお、本実施例においてはドープ元素とし
てTiについて説明したが、これに代えて鉄(Fe)、
亜鉛(Zn)、銅(Cu)、銀(Ag)の1種以上を用
いても同様の効果が得られる。
Although Ti has been described as the doping element in this embodiment, iron (Fe) may be used instead of Ti.
The same effect can be obtained by using one or more of zinc (Zn), copper (Cu), and silver (Ag).

【0020】(実施例4)次に本発明の第4の実施例に
ついて図4を参照しながら説明する。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIG.

【0021】本実施例が図12の従来例と相違する点
は、結晶板13としてLiNbO3の結晶板1に代えて
LiTaO3を用い、その主表面上にTiをドープした
LiNbO3のエピタキシャル結晶層14を形成し、エ
ピタキシャル結晶層14にイオンエッチング法による光
導波路15を形成し、信号電極4に接続して結合電極1
1を設け、結合電極11に接続して導入電極12を設け
た点である。
The present embodiment is different from the conventional example of FIG. 12 in that LiTaO 3 is used as the crystal plate 13 instead of the crystal plate 1 of LiNbO 3 , and the main surface thereof is doped with Ti to form an epitaxial crystal of LiNbO 3 . The layer 14 is formed, the optical waveguide 15 is formed on the epitaxial crystal layer 14 by the ion etching method, and the optical waveguide 15 is connected to the signal electrode 4 to form the coupling electrode 1.
1 is provided, and the introduction electrode 12 is provided by connecting to the coupling electrode 11.

【0022】上記の構成で従来例と同じ条件で駆動させ
ると従来例より温度上昇が少なく、光損失、位相ずれ、
波形歪の少ないスイッチング特性を示した。
When driven under the same conditions as in the conventional example with the above-mentioned configuration, the temperature rise is smaller than in the conventional example, and optical loss, phase shift,
It showed switching characteristics with little waveform distortion.

【0023】なお、実施例においてはドープ元素として
Tiについて説明したが、これに代えてFe,Zn,C
u,Agの1種以上を用いても同様の効果が得られる。
Although Ti was described as a doping element in the examples, Fe, Zn, C may be used instead.
Similar effects can be obtained by using at least one of u and Ag.

【0024】(実施例5)次に本発明の第5の実施例に
ついて図5を参照しながら説明する。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIG.

【0025】図5の実施例が図1の実施例1と相違する
点は、光導波路2上に厚さ3000Åの酸化ケイ素(S
iO2)のバッファ層16を設けた点である。これによ
り実施例1と同様に従来例より温度上昇が少なく安定し
た変調特性を示すとともに実施例1より光損失が低くな
った。
The embodiment of FIG. 5 is different from the embodiment 1 of FIG. 1 in that the silicon oxide (S) having a thickness of 3000 Å is formed on the optical waveguide 2.
The point is that the buffer layer 16 of iO 2 ) is provided. As a result, similar to the first embodiment, the temperature rise is smaller than that of the conventional example, stable modulation characteristics are shown, and the optical loss is lower than that of the first embodiment.

【0026】(実施例6)次に本発明の第6の実施例に
ついて図6を参照しながら説明する。
(Sixth Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG.

【0027】図6の実施例が図3の実施例3と相違する
点は、光導波路15上に厚さ3000ÅのSiO2のバ
ッファ層16を設けた点である。これにより実施例3と
同様に従来例より温度上昇が少なく、光損失、位相ず
れ、波形歪の少ない変調特性を示すとともに実施例3よ
り光損失が低くなった。
The embodiment of FIG. 6 is different from the embodiment 3 of FIG. 3 in that a buffer layer 16 of SiO 2 having a thickness of 3000 Å is provided on the optical waveguide 15. As a result, similar to the third embodiment, the temperature rise is smaller than that of the conventional example, the modulation characteristics with less optical loss, phase shift, and waveform distortion are exhibited, and the optical loss is lower than that of the third embodiment.

【0028】(実施例7)次に本発明の第7の実施例に
ついて図7を参照しながら説明する。
(Embodiment 7) Next, a seventh embodiment of the present invention will be described with reference to FIG.

【0029】図7の実施例が図2の実施例2と相違する
点は、光導波路2上に厚さ3000ÅのSiO2のバッ
ファ層16を設けた点である。これにより実施例2と同
様に従来例より温度上昇が少なく安定したスイッチング
特性を示すとともに実施例2より光損失が低くなった。
The embodiment of FIG. 7 differs from the embodiment 2 of FIG. 2 in that a buffer layer 16 of SiO 2 having a thickness of 3000 Å is provided on the optical waveguide 2. As a result, similar to the second embodiment, the temperature rise is smaller than that of the conventional example, stable switching characteristics are exhibited, and the optical loss is lower than that of the second embodiment.

【0030】(実施例8)次に本発明の第8の実施例に
ついて図8を参照しながら説明する。
(Embodiment 8) Next, an eighth embodiment of the present invention will be described with reference to FIG.

【0031】図8の実施例が図4の実施例4と相違する
点は、光導波路15上に厚さ3000ÅのSiO2のバ
ッファ層16を設けた点である。これにより実施例4と
同様に従来例より温度上昇が少なく、光損失、位相ず
れ、波形歪の少ないスイッチング特性を示すとともに実
施例4より光損失が低くなった。
The embodiment of FIG. 8 is different from the embodiment 4 of FIG. 4 in that a buffer layer 16 of SiO 2 having a thickness of 3000 Å is provided on the optical waveguide 15. As a result, similar to the fourth embodiment, the temperature rise is smaller than that of the conventional example, the switching characteristics with less optical loss, phase shift, and waveform distortion are exhibited, and the optical loss is lower than that of the fourth embodiment.

【0032】(実施例9)本実施例においては実施例3
(図3)で説明したLiNbO3のエピタキシャル結晶
層を有する光制御素子の製造方法について図9および図
10を参照しながら説明する。
(Embodiment 9) In this embodiment, Embodiment 3 is used.
A method of manufacturing the light control element having the LiNbO 3 epitaxial crystal layer described in (FIG. 3) will be described with reference to FIGS. 9 and 10.

【0033】図9はLiNbO3のエピタキシャル結晶
層を製造するための装置である。まず白金るつぼ17内
に酸化鉛(PbO)、酸化ビスマス(Bi23)、酸化
ホウ素(B23)の1種以上のフラックスを入れて電気
炉18で加熱してフラックスを溶融する。次に酸化ニオ
ブ(Nb25)、炭酸リチウム(Li2CO3)と酸化チ
タン(TiO2)を添加して融液19を製造する。次に
融液19を600〜700℃の過冷却状態にする。次に
LiTaO3の結晶板13(LiNbO3の結晶はLiT
aO3と同一結晶構造を有するためにLiTaO3の結晶
板上にエピタキシャル成長する。)を回転シャフト20
の先端に固定された基板ホルダー21に取り付けて融液
19中に入れる。回転シャフト20よりLiTaO3
結晶板13を一定速度で回転させるとチタンのドープさ
れたLiNbO3の結晶がエピタキシャル成長する。同
図において、22はかくはん板、23は断熱材である。
所定厚さのエピタキシャル結晶層を形成後フラックスを
除去し、結晶板13を徐冷すると図10(a)に示すよ
うなLiTaO3の結晶板13の主表面上にTiをドー
プしたLiNbO3のエピタキシャル結晶層14の形成
された基板が得られる。次にエピタキシャル結晶層14
上にマスキングを施し、イオンエッチング法で光導波路
15を形成すると図10(b)に示すような基板が得ら
れる。最後に各電極を形成するのに必要なマスキングを
施して真空蒸着法でAuを蒸着すると図3に示すような
アース電極3、信号電極4、結合電極11、導入電極1
2の形成されたマッハツェンダ型の光導波路15の形成
された光変調用の光制御素子が製造できる。
FIG. 9 shows an apparatus for producing an LiNbO 3 epitaxial crystal layer. First, at least one flux of lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), and boron oxide (B 2 O 3 ) is placed in the platinum crucible 17 and heated in the electric furnace 18 to melt the flux. Next, niobium oxide (Nb 2 O 5 ), lithium carbonate (Li 2 CO 3 ) and titanium oxide (TiO 2 ) are added to produce a melt 19. Next, the melt 19 is brought into a supercooled state of 600 to 700 ° C. Next, the crystal plate 13 of LiTaO 3 (the crystal of LiNbO 3 is LiT
Since it has the same crystal structure as aO 3 , it is epitaxially grown on the crystal plate of LiTaO 3 . ) The rotating shaft 20
It is attached to the substrate holder 21 fixed to the tip of the and is put into the melt 19. When the LiTaO 3 crystal plate 13 is rotated at a constant speed by the rotating shaft 20, a titanium-doped LiNbO 3 crystal is epitaxially grown. In the figure, 22 is a stirring plate and 23 is a heat insulating material.
Predetermined thickness of the epitaxial crystal layer formed after flux removal, epitaxial LiNbO 3 doped with Ti on the main surface of the crystal plate 13 of LiTaO 3 as shown in FIG. 10 (a) When annealing the crystal plate 13 A substrate on which the crystal layer 14 is formed is obtained. Next, the epitaxial crystal layer 14
By masking the top and forming the optical waveguide 15 by the ion etching method, a substrate as shown in FIG. 10B is obtained. Finally, masking necessary for forming each electrode is performed and Au is vapor-deposited by a vacuum vapor-deposition method.
It is possible to manufacture a light control element for light modulation in which the Mach-Zehnder type optical waveguide 15 in which 2 is formed is formed.

【0034】なお、本実施例では実施例3(図3)の光
制御素子について説明したが、同様の製造方法によって
実施例4(図4)、実施例6(図6)、実施例8(図
8)の光制御素子が製造できる。
Although the light control element of the third embodiment (FIG. 3) has been described in this embodiment, the fourth embodiment (FIG. 4), the sixth embodiment (FIG. 6) and the eighth embodiment (FIG. 4) are manufactured by the same manufacturing method. The light control element of FIG. 8) can be manufactured.

【0035】また実施例5(図5)、実施例6(図
6)、実施例7(図7)、実施例8(図8)で説明した
SiO2のバッファ層16を有する光制御素子の製造方
法は光導波路2または15を形成後スパッタリング法ま
たは真空蒸着法で形成する。
Further, the light control element having the SiO 2 buffer layer 16 described in Example 5 (FIG. 5), Example 6 (FIG. 6), Example 7 (FIG. 7) and Example 8 (FIG. 8) was used. As the manufacturing method, after forming the optical waveguide 2 or 15, the sputtering method or the vacuum deposition method is used.

【0036】さらに本実施例ではエピタキシャル結晶層
14の形成は液相エピタキシャル法で説明したが、これ
に代えてスパッタリング法で形成してもよい。
Further, although the epitaxial crystal layer 14 is formed by the liquid phase epitaxial method in this embodiment, it may be formed by the sputtering method instead.

【0037】[0037]

【発明の効果】以上の説明から明らかなように本発明の
光制御素子およびその製造方法によれば、次の効果が得
られる。
As is apparent from the above description, according to the light control element and the method of manufacturing the same of the present invention, the following effects can be obtained.

【0038】(1)従来例より温度上昇が少なく安定し
た変調またはスイッチ特性の光制御素子が得られる。
(1) It is possible to obtain an optical control element having a stable modulation or switch characteristic with less temperature rise than the conventional example.

【0039】(2)従来例より光損失、位相ずれ、波形
歪の少ない変調またはスイッチ特性の光制御素子が得ら
れる。
(2) An optical control element having a modulation or switch characteristic with less optical loss, phase shift and waveform distortion can be obtained as compared with the conventional example.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 1A is a perspective view of a light control element according to a first embodiment of the present invention, and FIG. 1B is a sectional view taken along line AB of FIG.

【図2】(a)は本発明の第2の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 2A is a perspective view of a light control element according to a second embodiment of the present invention, and FIG. 2B is a sectional view taken along line AB of FIG.

【図3】(a)は本発明の第3の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 3A is a perspective view of a light control element according to a third embodiment of the present invention, and FIG. 3B is a sectional view taken along line AB of FIG.

【図4】(a)は本発明の第4の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 4A is a perspective view of a light control element according to a fourth embodiment of the present invention, and FIG. 4B is a sectional view taken along line AB of FIG.

【図5】(a)は本発明の第5の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 5A is a perspective view of a light control element according to a fifth embodiment of the present invention, and FIG. 5B is a sectional view taken along line AB of FIG.

【図6】(a)は本発明の第6の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 6A is a perspective view of a light control element in a sixth embodiment of the present invention, and FIG. 6B is a sectional view taken along the line AB of FIG.

【図7】(a)は本発明の第7の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 7A is a perspective view of a light control element according to a seventh embodiment of the present invention, and FIG. 7B is a sectional view taken along the line AB of FIG.

【図8】(a)は本発明の第8の実施例における光制御
素子の斜視図 (b)は同じく矢視A−Bにおける断面図
FIG. 8A is a perspective view of a light control element according to an eighth embodiment of the present invention, and FIG. 8B is a sectional view taken along the line AB of FIG.

【図9】本発明におけるエピタキシャル結晶層の製造装
置の断面図
FIG. 9 is a sectional view of an epitaxial crystal layer manufacturing apparatus according to the present invention.

【図10】本発明における光導波路の製造工程の斜視図FIG. 10 is a perspective view of the manufacturing process of the optical waveguide according to the present invention.

【図11】(a)は従来例における光制御素子の斜視図 (b)は同じく矢視A−Bにおける断面図11A is a perspective view of a light control element in a conventional example, and FIG. 11B is a sectional view taken along the line AB of FIG.

【図12】(a)は他の従来例における光制御素子の斜
視図 (b)は同じく矢視A−Bにおける断面図
FIG. 12A is a perspective view of a light control element in another conventional example, and FIG. 12B is a sectional view taken along the line AB of FIG.

【符号の説明】[Explanation of symbols]

1,13 結晶板 2,15 光導波路 3 アース電極 4 信号電極 11 結合電極 12 導入電極 14 エピタキシャル層 16 バッファ層 1, 13 Crystal Plate 2, 15 Optical Waveguide 3 Earth Electrode 4 Signal Electrode 11 Coupling Electrode 12 Introduction Electrode 14 Epitaxial Layer 16 Buffer Layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】電気光学効果を示す結晶板の主表面上に前
記結晶板より屈折率の大なるマッハツェンダ型の光導波
路を設け、一方の光導波路上にアース電極を設け、他方
の光導波路上に信号電極を設けた光変調用の光制御素子
において、前記信号電極に結合電極を接続し、その結合
電極に導入電極を接続したことを特徴とする光変調用の
光制御素子。
1. A Mach-Zehnder type optical waveguide having a larger refractive index than that of the crystal plate is provided on the main surface of the crystal plate exhibiting the electro-optical effect, a ground electrode is provided on one of the optical waveguides, and the other optical waveguide is provided on the other optical waveguide. A light control element for light modulation, wherein a signal electrode is provided in the light control element, and a coupling electrode is connected to the signal electrode, and an introduction electrode is connected to the coupling electrode.
【請求項2】電気光学効果を示す結晶板の主表面上に前
記結晶板より屈折率の大なる1組以上の光導波路を設
け、その1組の光導波路の間にアース電極を設け、前記
光導波路を介して前記アース電極に対抗する位置に信号
電極を設けた光スイッチ用の光制御素子において、前記
信号電極に結合電極を接続し、その結合電極に導入電極
を接続したことを特徴とする光スイッチ用の光制御素
子。
2. One or more sets of optical waveguides having a refractive index higher than that of the crystal plate are provided on the main surface of the crystal plate exhibiting the electro-optical effect, and a ground electrode is provided between the one set of optical waveguides. In a light control element for an optical switch in which a signal electrode is provided at a position opposed to the ground electrode via an optical waveguide, a coupling electrode is connected to the signal electrode, and an introduction electrode is connected to the coupling electrode. Optical control element for optical switch.
【請求項3】タンタル酸リチウムまたはニオブ酸リチウ
ムの結晶板の主表面上にチタン、鉄、亜鉛、銅、銀の1
種以上をドープしたニオブ酸リチウムのエピタキシャル
結晶層を設け、そのエピタキシャル結晶層にイオンエッ
チング法によるマッハツェンダ型の光導波路を設け、一
方の光導波路上にアース電極を設け、他方の光導波路上
に信号電極を設け、その信号電極に結合電極を接続し、
その結合電極に導入電極を接続した光変調用の光制御素
子。
3. One of titanium, iron, zinc, copper and silver on the main surface of a crystal plate of lithium tantalate or lithium niobate.
An epitaxial crystal layer of lithium niobate doped with at least one seed is provided, a Mach-Zehnder type optical waveguide is provided by the ion etching method on the epitaxial crystal layer, a ground electrode is provided on one optical waveguide, and a signal is provided on the other optical waveguide. An electrode is provided, and a coupling electrode is connected to the signal electrode,
A light control element for light modulation in which an introduction electrode is connected to the coupling electrode.
【請求項4】タンタル酸リチウムまたはニオブ酸リチウ
ムの結晶板の主表面上にチタン、鉄、亜鉛、銅、銀の1
種以上をドープしたニオブ酸リチウムのエピタキシャル
結晶層を設け、そのエピタキシャル結晶層にイオンエッ
チング法による1組以上の光導波路を設け、その1組の
光導波路の間にアース電極を設け、前記光導波路を介し
て前記アース電極に対抗する位置に信号電極を設け、そ
の信号電極に結合電極を接続し、その結合電極に導入電
極を接続した光スイッチ用の光制御素子。
4. One of titanium, iron, zinc, copper and silver on the main surface of a crystal plate of lithium tantalate or lithium niobate.
An epitaxial crystal layer of lithium niobate doped with at least one seed is provided, one or more sets of optical waveguides are provided in the epitaxial crystal layer by an ion etching method, and a ground electrode is provided between the one set of optical waveguides. An optical control element for an optical switch, in which a signal electrode is provided at a position opposed to the ground electrode via a connection electrode, a coupling electrode is connected to the signal electrode, and an introduction electrode is connected to the coupling electrode.
【請求項5】光導波路上にバッファ層を設け、そのバッ
ファ層上にアース電極と信号電極を設けた請求項1また
は3記載の光変調用の光制御素子。
5. The light control element for light modulation according to claim 1, wherein a buffer layer is provided on the optical waveguide, and a ground electrode and a signal electrode are provided on the buffer layer.
【請求項6】光導波路上にバッファ層を設けた請求項2
または4記載の光スイッチ用の光制御素子。
6. A buffer layer provided on the optical waveguide.
Alternatively, the light control element for an optical switch according to the item 4.
【請求項7】タンタル酸リチウムまたはニオブ酸リチウ
ムの結晶板の主表面上にチタン、鉄、亜鉛、銅、銀の1
種以上をドープしたニオブ酸リチウムのエピタキシャル
結晶層を液相エピタキシャル法またはスパッタリング法
で形成し、次に前記エピタキシャル結晶層にイオンエッ
チング法によりマッハツェンダ型の光導波路を形成し、
次に一方の光導波路の上にアース電極、他方の光導波路
の上に信号電極を設け、次に前記信号電極に接続して結
合電極を設け、その結合電極に接続して導入電極を設け
る請求項3記載の光変調用の光制御素子の製造方法。
7. One of titanium, iron, zinc, copper and silver on the main surface of a lithium tantalate or lithium niobate crystal plate.
An epitaxial crystal layer of lithium niobate doped with at least one species is formed by a liquid phase epitaxial method or a sputtering method, and then a Mach-Zehnder type optical waveguide is formed on the epitaxial crystal layer by an ion etching method.
Next, a ground electrode is provided on one of the optical waveguides, a signal electrode is provided on the other optical waveguide, then a coupling electrode is provided by connecting to the signal electrode, and an introducing electrode is provided by connecting to the coupling electrode. Item 4. A method of manufacturing a light control element for light modulation according to Item 3.
【請求項8】タンタル酸リチウムまたはニオブ酸リチウ
ムの結晶板の主表面上にチタン、鉄、亜鉛、銅、銀の1
種以上をドープしたニオブ酸リチウムのエピタキシャル
結晶層を液相エピタキシャル法またはスパッタリング法
で形成し、次に前記エピタキシャル結晶層にイオンエッ
チング法により1組以上の光導波路を形成し、次に前記
1組の光導波路の間にアース電極を設け、前記光導波路
を介して前記アース電極に対抗する位置に信号電極を設
け、その信号電極に接続して結合電極を設け、その結合
電極に接続して導入電極を設ける請求項4記載の光スイ
ッチ用の光制御素子の製造方法。
8. One of titanium, iron, zinc, copper and silver on the main surface of a crystal plate of lithium tantalate or lithium niobate.
An epitaxial crystal layer of lithium niobate doped with at least one seed is formed by a liquid phase epitaxial method or a sputtering method, and then one or more sets of optical waveguides are formed on the epitaxial crystal layer by an ion etching method. A ground electrode is provided between the optical waveguides, a signal electrode is provided at a position facing the ground electrode through the optical waveguide, a connecting electrode is provided by connecting to the signal electrode, and a connecting electrode is provided by introducing the connecting electrode. The method for manufacturing a light control element for an optical switch according to claim 4, wherein an electrode is provided.
【請求項9】タンタル酸リチウムまたはニオブ酸リチウ
ムの結晶板の主表面上にチタン、鉄、亜鉛、銅、銀の1
種以上をドープしたニオブ酸リチウムのエピタキシャル
結晶層を液相エピタキシャル法またはスパッタリング法
で形成し、次に前記エピタキシャル結晶層にイオンエッ
チング法によりマッハツェンダ型の光導波路を形成し、
次に前記光導波路が設けられた面上にバッファ層を設
け、次に一方の光導波路上のバッファ層上にアース電
極、他方の光導波路上のバッファ層上に信号電極を設
け、次に前記信号電極に接続して結合電極を設け、その
結合電極に接続して導入電極を設ける請求項5記載の光
変調用の光制御素子の製造方法。
9. Titanium, iron, zinc, copper, silver 1 on the main surface of a crystal plate of lithium tantalate or lithium niobate.
An epitaxial crystal layer of lithium niobate doped with at least one species is formed by a liquid phase epitaxial method or a sputtering method, and then a Mach-Zehnder type optical waveguide is formed on the epitaxial crystal layer by an ion etching method.
Next, a buffer layer is provided on the surface on which the optical waveguide is provided, then a ground electrode is provided on the buffer layer on one optical waveguide, and a signal electrode is provided on the buffer layer on the other optical waveguide. The method for manufacturing a light control element for light modulation according to claim 5, wherein a coupling electrode is provided in connection with the signal electrode, and an introduction electrode is provided in connection with the coupling electrode.
【請求項10】タンタル酸リチウムまたはニオブ酸リチ
ウムの結晶板の主表面上にチタン、鉄、亜鉛、銅、銀の
1種以上をドープしたニオブ酸リチウムのエピタキシャ
ル結晶層を液相エピタキシャル法またはスパッタリング
法で形成し、次に前記エピタキシャル結晶層にイオンエ
ッチング法により1組以上の光導波路を形成し、次にそ
の光導波路上にバッファ層を設け、次に前記1組の光導
波路の間にアース電極を設け、前記光導波路を介して前
記アース電極に対抗する位置に信号電極を設け、その信
号電極に接続して結合電極を設け、その結合電極に接続
して導入電極を設ける請求項6記載の光スイッチ用の光
制御素子の製造方法。
10. An epitaxial crystal layer of lithium niobate doped with one or more of titanium, iron, zinc, copper and silver is formed on a main surface of a crystal plate of lithium tantalate or lithium niobate by a liquid phase epitaxial method or sputtering. Method, and then one or more sets of optical waveguides are formed on the epitaxial crystal layer by an ion etching method, then a buffer layer is provided on the optical waveguides, and then a ground is provided between the one set of optical waveguides. 7. An electrode is provided, a signal electrode is provided at a position opposed to the ground electrode via the optical waveguide, a coupling electrode is provided in connection with the signal electrode, and an introduction electrode is provided in connection with the coupling electrode. Manufacturing method of light control element for optical switch of.
JP24054292A 1992-09-09 1992-09-09 Optical control element and its production Pending JPH0695045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24054292A JPH0695045A (en) 1992-09-09 1992-09-09 Optical control element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24054292A JPH0695045A (en) 1992-09-09 1992-09-09 Optical control element and its production

Publications (1)

Publication Number Publication Date
JPH0695045A true JPH0695045A (en) 1994-04-08

Family

ID=17061086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24054292A Pending JPH0695045A (en) 1992-09-09 1992-09-09 Optical control element and its production

Country Status (1)

Country Link
JP (1) JPH0695045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563965A (en) * 1994-10-27 1996-10-08 Nec Corporation Optical waveguide device with additional electrode structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563965A (en) * 1994-10-27 1996-10-08 Nec Corporation Optical waveguide device with additional electrode structure

Similar Documents

Publication Publication Date Title
US4896930A (en) Optical functional device of an optical waveguide type
US5546494A (en) Optical waveguide device and manufacturing method of the same
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
JPH11231358A (en) Optical circuit and its production
JPH08146367A (en) Optical control device
EP0828168B1 (en) Optical waveguide device, process of producing the same and second harmonic generation device
JP3025982B2 (en) Waveguide type optical directional coupler
JPH0695045A (en) Optical control element and its production
NL9301058A (en) OPTICAL SINGLE-MODE WAVE GUIDE.
US5687265A (en) Optical control device and method for making the same
JPH0764034A (en) Travelling wave type optical modulator
JPH06289346A (en) Dielectric substance optical waveguide element and its production
JPH0688950A (en) Optical control element and its production
JP4137680B2 (en) Manufacturing method of light control element
JPH06289347A (en) Optical waveguide element and its manufacture
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP3228823B2 (en) Waveguide type optical element and method of manufacturing the same
JPH10330200A (en) Polling of mobile ion distribution in lithium niobate
JP2574602B2 (en) Optical waveguide device
JPH05113513A (en) Waveguide-type optical device and its production
JP2801894B2 (en) Waveguide type optical modulator
JP3019278B2 (en) Waveguide type optical device
JPH10104559A (en) Optical waveguide device
JP2809112B2 (en) Light control device and manufacturing method thereof
JP3050202B2 (en) Optical waveguide device and method of manufacturing the same