JPH0693392A - Vitreous alloy having magneto-striction of almost zero for use in high frequency - Google Patents

Vitreous alloy having magneto-striction of almost zero for use in high frequency

Info

Publication number
JPH0693392A
JPH0693392A JP5190314A JP19031493A JPH0693392A JP H0693392 A JPH0693392 A JP H0693392A JP 5190314 A JP5190314 A JP 5190314A JP 19031493 A JP19031493 A JP 19031493A JP H0693392 A JPH0693392 A JP H0693392A
Authority
JP
Japan
Prior art keywords
alloy
alloys
magnetic
range
glassy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5190314A
Other languages
Japanese (ja)
Other versions
JP2697808B2 (en
Inventor
Ryusuke Hasegawa
ハセガワ,リュウスケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
AlliedSignal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25452815&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0693392(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AlliedSignal Inc filed Critical AlliedSignal Inc
Publication of JPH0693392A publication Critical patent/JPH0693392A/en
Application granted granted Critical
Publication of JP2697808B2 publication Critical patent/JP2697808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Abstract

PURPOSE: To provide a glassy alloy which is especially suitable to use in high frequency application, whose magnetostriction is approximately zero, which is highly stable magnetically and thermally and has high magnetic permeability, low iron loss and low coercive force.
CONSTITUTION: This alloy consists of, by atom%, 68.0-70.0 Co, 2.5-4.0 Fe, 0-3 Ni, 1-4 Mn, 10-12 B and 14-15 Si, has a composition of (Fe+Ni)/(Co+Fe+ Mn)=0.07-0.09, and at least 70% of the alloy is vitreous and the alloy has the saturated magnetrostriction of -1×10-6 to +1×10-6, Curie temp. of 245-310°C, primary crystallization temp. of 530-575°C and saturation magnetic induction of 0.65-0.80 tesla.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の背景】この発明は高周波応用での使用に特に適
したほぼ0の磁歪を示すガラス質合金に関する。
BACKGROUND OF THE INVENTION This invention relates to glassy alloys exhibiting near zero magnetostriction that are particularly suitable for use in high frequency applications.

【0002】[0002]

【先行技術の説明】飽和磁歪λs は消磁状態から飽和し
た強磁性状態に変化する磁性材料で生じるΔl/lの長
さの比率変化に関する。磁歪の値、非ディメンション量
はしばしば微小ひずみの単位で与えられる(すなわち、
微小ひずみは1ppmの長さの比率変化である)。低磁
歪の強磁性合成はいくつかの相互に関係した理由のため
望ましい。
DESCRIPTION OF THE PRIOR ART Saturation magnetostriction λ s relates to the change in length ratio Δl / l that occurs in a magnetic material that changes from a demagnetized state to a saturated ferromagnetic state. Magnetostrictive values, non-dimensional quantities are often given in units of microstrain (ie,
A small strain is a change in length ratio of 1 ppm). Low magnetostrictive ferromagnetic synthesis is desirable for several interrelated reasons.

【0003】1.軟磁性(低保磁力、高透磁率)は、一
般的に飽和磁歪λs と磁気結晶異方性kが0に近づくと
き得られる。それ故、同じ異方性であるとき、より低い
磁歪の合金はより低いdc保磁力とより高い透磁率を示
す。このような合金は種々の軟磁性応用に適する。
1. Soft magnetism (low coercive force, high magnetic permeability) is generally obtained when the saturation magnetostriction λ s and the magnetic crystal anisotropy k approach zero. Therefore, with the same anisotropy, lower magnetostrictive alloys exhibit lower dc coercivity and higher permeability. Such alloys are suitable for various soft magnetic applications.

【0004】2.磁歪が0の材料の磁性は機械的歪に敏
感でない。この場合巻取り、パンチング又はその他この
ような材料からデバイスを形成するに必要な物理的処理
後応力除去焼鈍をほとんど必要としない。これに対して
結晶質合金のような応力に敏感な材料の磁性はこのよう
な冷間加工によって大きく劣化し、このような材料は注
意深く焼鈍しなければならない。
2. The magnetism of a material with zero magnetostriction is not sensitive to mechanical strain. In this case, there is little need for winding, punching, or other post-physical treatment stress relief anneals required to form devices from such materials. In contrast, the magnetic properties of stress-sensitive materials such as crystalline alloys are significantly degraded by such cold working, and such materials must be carefully annealed.

【0005】3.低保磁力と高透磁率が実現するとき
(磁気結晶異方性が大きすぎずかつ抵抗が小さすぎない
ことを条件として)0の磁歪を示す材料の低dc保磁力
がac操作状態にもたらされる。飽和磁歪が0のときエ
ネルギーが機械的振動として失われないので、0の磁歪
を示す材料の鉄損は極めて低い。このように、低損失及
び高ac透磁率が要求される場合には(低磁気結晶異方
性の)磁歪が0の磁性合金が有用である。このような応
用は、電力変圧機、信号変換器、磁気記録ヘッド等のよ
うな種々のテープ巻き及び積層鉄心装置を含む。
3. When low coercive force and high magnetic permeability are realized (provided that the magnetic crystal anisotropy is neither too large nor the resistance is too small), a low dc coercive force of a material exhibiting a magnetostriction of 0 is brought to an ac operating state. . Since energy is not lost as mechanical vibration when the saturation magnetostriction is 0, the iron loss of the material exhibiting 0 magnetostriction is extremely low. Thus, when low loss and high ac magnetic permeability are required, a magnetic alloy having zero magnetostriction (low magnetic crystal anisotropy) is useful. Such applications include various tape winding and laminated core devices such as power transformers, signal converters, magnetic recording heads and the like.

【0006】4.結局、磁歪が0の材料を含む電磁装置
はAC励磁下で騒音を生じない。これが前記のより低い
鉄損のための理由であると同時に、多くの電磁装置に固
有のハムを排除するのでそれ自身望ましい性質でもあ
る。
4. As a result, electromagnetic devices containing materials with zero magnetostriction do not generate noise under AC excitation. This is the reason for the lower iron loss mentioned above, and at the same time is a desirable property in itself as it eliminates the hum inherent in many electromagnetic devices.

【0007】磁歪が0の周知の3つの結晶質合金がある
(もし他の表示がないとき原子%で示す)。
There are three well known crystalline alloys with zero magnetostriction (expressed in atomic% unless otherwise noted).

【0008】(1) 約80%ニッケルを含有するニッ
ケル−鉄合金(“80ニッケルパーマロイ”) (2) 約90%コバルトを含有するコバルト−鉄合
金、及び (3) 約6重量%珪素を含有する鉄−珪素合金 2元系であるが、特定の性質を変化させるためにモリブ
デン、銅又はアルミニウムのような他の元素を少量添加
した磁歪が0の合金もこれらの種類に包含される。これ
らは、例えば、増大した抵抗率と透磁率の4%Mo、7
9%Ni、17%Fe(モリーパーマロイ(Moly
Permalloy)という名称で販売):軟磁性と改
善した延性の銅の添加量を変化させたパーマロイ(ムメ
タル(Mumetal)という名称で販売):異方性が
0の85重量%Fe、9重量%Si、6重量%Al(セ
ンダスト(Sendust)という名称で販売)を含
む。
(1) nickel-iron alloy containing about 80% nickel ("80 nickel permalloy") (2) cobalt-iron alloy containing about 90% cobalt, and (3) containing about 6 wt% silicon. These are also iron-silicon alloy binary systems, but alloys with a magnetostriction of 0 added with a small amount of other elements such as molybdenum, copper or aluminum in order to change specific properties are also included in these types. These include, for example, 4% Mo, 7 with increased resistivity and permeability.
9% Ni, 17% Fe (Molly permalloy
Permalloy): Permalloy (sold under the name Mumetal) with varying amounts of soft magnetism and improved ductility copper added: 85 wt% Fe with zero anisotropy, 9 wt% Si , 6 wt% Al (sold under the name Sendust).

【0009】種類(1)に包含される合金は、低異方性
と磁歪が0であり、そのため優れた軟磁性であるために
前記の3種類の内で最もよく使用される:すなわち、そ
れらは低保磁力、高透磁率及び低鉄損を示す。これらの
合金も相対的には機械的に軟質であり、高温(1000
℃以上)焼鈍により得られた優れた磁性は相対的に軽い
機械的衝撃によって劣化しがちである。Co90Fe10
金のような種類(2)の合金はパーマロイより一層高い
飽和磁気誘導(Bs 約1.9テスラ)を有する。しかし
ながら、これらの合金は、優れた軟磁性材料であること
を妨げる強い負の磁気結晶異方性を有する。例えば、C
90Fe10の初透磁率は約100〜200にすぎない。
The alloys included in class (1) are the most commonly used of the above three classes because of their low anisotropy and zero magnetostriction and therefore their excellent soft magnetic properties: Indicates low coercive force, high magnetic permeability and low iron loss. These alloys are also relatively mechanically soft and have high temperatures (1000
The excellent magnetism obtained by annealing (above ℃) tends to deteriorate due to relatively light mechanical impact. Alloys of type (2), such as the Co 90 Fe 10 alloy, have a higher saturation magnetic induction (B s about 1.9 Tesla) than permalloy. However, these alloys have a strong negative magnetocrystalline anisotropy that prevents them from being excellent soft magnetic materials. For example, C
The initial magnetic permeability of o 90 Fe 10 is only about 100 to 200.

【0010】前記のFe−6重量%Si及び関連した3
元合金センダストのような種類(3)の合金もパーマロ
イより一層高い飽和磁気誘導(それぞれBs 約1.8テ
スラ及び1.1テスラ)を示す。しかしながら、これら
の合金は極めてもろく、そのため粉末の形のみの限られ
た使用が見つけられた。最近、Fe−6.5重量%Si
〔IEEE Trans.MAG−16,728(19
80)〕とセンダスト合金〔IEEE Trans.
AG−15,J149(1970)〕が急速凝固により
相対的に延性に製造された。しかしながら、磁歪の組成
依存性はこれらの材料において極めて強く、ほぼ0の磁
歪を確保するための合金組成の正確なテーラリング(t
ayloring)は困難である。
Fe-6 wt% Si and related 3
Type (3) alloys such as the original alloy Sendust also exhibit higher saturation magnetic induction than Permalloy (B s about 1.8 Tesla and 1.1 Tesla, respectively). However, these alloys are extremely brittle, so that limited use in powder form only has been found. Recently, Fe-6.5 wt% Si
[IEEE Trans. MAG-16 , 728 (19
80)] and Sendust alloy [IEEE Trans. M
AG-15 , J149 (1970)] was made relatively ductile by rapid solidification. However, the composition dependence of magnetostriction is extremely strong in these materials, and accurate tailoring (t) of the alloy composition for ensuring a magnetostriction of almost 0 is required.
ailing is difficult.

【0011】磁気結晶異方性はガラス状態で効果的に排
除されることはよく知られている。これ故、磁歪が0の
ガラス質合金を発見することが望ましい。このような合
金は前記組成の近傍で発見されうる。遷移金属d−電子
状態に電荷を移動させることにより磁化を消滅させる傾
向のあるメタロイドの存在のため、ともかく80ニッケ
ルパーマロイのガラス質合金は室温で非磁性か又は許容
できないほどに低い飽和磁気誘導を示す。例えば、ガラ
ス質合金Fe40Ni40146 (下付き数字は原子%で
ある)は0.8テスラの飽和磁気誘導を有する。一方、
ガラス質合金Ni49Fe29146 Si2 は約0.46
テスラの飽和磁気誘導を有し、ガラス質合金Ni8020
は非磁性である。ほぼ0に等しい飽和磁歪を有する非ガ
ラス質合金はFe高濃度のセンダスト組成の近傍でまだ
発見されていない。前記(2)のCo−Fe結晶質合金
からなる磁歪がほぼ0のガラス質合金の多くは文献に報
告された。これらは、例えば、Co72Fe3166
3 〔AIP Conference Proceed
ing,No.24,pp.745−746(197
5)〕、Co70.5Fe4.5 Si1510〔Vol.14,
日本応用物理学会誌,pp.1077−1078(19
75)〕、Co31.2Fe7.8 Ni39.014Si8 〔Pr
oceedings of 3rd Internat
ional Conference on Rapid
ly Quenched Metals,p.183
(1979)〕及びCo74Fe620〔IEEE Tr
ans.MAG−12,942(1976)〕である。
表1はこれらの材料の磁気的性質のいくつかを列挙す
る。
It is well known that magnetic crystal anisotropy is effectively eliminated in the glassy state. Therefore, it is desirable to find a glassy alloy with zero magnetostriction. Such alloys can be found in the vicinity of the composition. Due to the presence of metalloids, which tend to extinguish their magnetization by transferring charge to the transition metal d-electronic state, the glassy alloys of 80 nickel permalloy, at any rate, are non-magnetic at room temperature or have unacceptably low saturation magnetic induction. Show. For example, the vitreous alloy Fe 40 Ni 40 P 14 B 6 (subscripts are in atomic%) has a saturation magnetic induction of 0.8 Tesla. on the other hand,
Glassy alloy Ni 49 Fe 29 P 14 B 6 Si 2 is about 0.46
Visible alloy Ni 80 P 20 with Tesla's saturation magnetic induction
Is non-magnetic. Non-glassy alloys with a saturation magnetostriction almost equal to 0 have not yet been found near the Fe-rich Sendust composition. Many of the glassy alloys having the magnetostriction of almost 0, which are composed of the Co—Fe crystalline alloy of the above (2), have been reported in the literature. These are, for example, Co 72 Fe 3 P 16 B 6 A
l 3 [AIP Conference Proceed
ing, No. 24, pp. 745-746 (197)
5)], Co 70.5 Fe 4.5 Si 15 B 10 [Vol. 14,
Journal of Japan Society of Applied Physics, pp. 1077-1078 (19
75)], Co 31.2 Fe 7.8 Ni 39.0 B 14 Si 8 [Pr
ocedings of 3rd Internet
Ional Conference on Rapid
ly Quenched Metals, p. 183
(1979)] and Co 74 Fe 6 B 20 [IEEE Tr
ans. MAG-12, 942 (1976)].
Table 1 lists some of the magnetic properties of these materials.

【0012】 これらの合金の飽和磁気誘導(Bs )は0.6〜1.2
テスラである。0.6Tに近い、Bs を示すガラス質合
金は、結晶質スーパマロイに比べて低保磁力及び高い透
磁率を示す。しかしながら、これらの合金は相対的に低
い温度(150℃)で磁気的に不安定になる傾向にあ
る。一方、Bs 1.2テスラまでのガラス質合金は第1
次結晶化温度(Tcl)近傍又はそれ以上で強磁性キュリ
ー温度(θf )を有しやすい。焼鈍がθf に近い温度で
実施されるとき最も効果的であるので、このことは、望
ましい軟磁性を得るためのこれらの材料の熱処理を極め
て困難にする。
[0012] The saturation magnetic induction (B s ) of these alloys is 0.6 to 1.2.
Tesla. The glassy alloy showing B s, which is close to 0.6 T, has lower coercive force and higher magnetic permeability than crystalline supermalloy. However, these alloys tend to be magnetically unstable at relatively low temperatures (150 ° C). On the other hand, glassy alloy to B s 1.2 Tesla first
It tends to have a ferromagnetic Curie temperature (θ f ) near or above the secondary crystallization temperature (T cl ). This makes the heat treatment of these materials extremely difficult to obtain the desired soft magnetism, since the annealing is most effective when carried out at temperatures close to θ f .

【0013】最近の先行技術〔ジャーナル・オブ・アプ
ライド・フィジックス,53,7819(1983)〕
は優れた軟磁性と磁気的安定性を示す磁歪がほぼ0のガ
ラス質合金を発表する。これらのガラス質合金はできる
だけ高い飽和磁気誘導の考えで計画される。応用磁気学
における最近の傾向は、高い飽和磁気誘導を必ず要求す
るのでなくて、高い矩形比、高周波数での低いac鉄損
と高い透磁率を要求する。この観点で、このような性質
を示すガラス質合金は望ましい。
Recent Prior Art [Journal of Applied Physics, 53 , 7819 (1983)]
Announces a glassy alloy with almost zero magnetostriction that exhibits excellent soft magnetism and magnetic stability. These glassy alloys are designed with the idea of the highest possible saturation magnetic induction. Recent trends in applied magnetism do not necessarily require high saturation magnetic induction, but rather high squareness ratio, low ac core loss at high frequencies and high permeability. From this viewpoint, glassy alloys exhibiting such properties are desirable.

【0014】発明の要約 この発明によれば、少なくとも70%がガラス質で、磁
歪がほぼ0で、磁気的及び熱的に高安定性で、高周波で
優れた軟磁性を示す磁性合金が提供される。このガラス
質合金はCoa Feb Nic Mnde Sif の組成を
有する。ここに下付き文字は原子%であり、“a”は6
8.0〜70.0の範囲であり、“b”は2.5〜4.
0の範囲であり、“c”は0〜3の範囲であり、“d”
は1〜4の範囲であり、“e”は10〜12の範囲であ
り、“f”は14〜15の範囲である。ガラス質合金は
−1×10-6〜+1×10-6の範囲の飽和磁歪値、0.
65〜0.80テスラの飽和磁気誘導、245〜310
℃の範囲のキュリー温度及び530〜575℃の範囲の
第1次結晶化温度を有する。
SUMMARY OF THE INVENTION According to the present invention, there is provided a magnetic alloy which is at least 70% vitreous, has a magnetostriction of almost 0, is highly magnetically and thermally stable, and exhibits excellent soft magnetism at high frequencies. It The glassy alloy has the composition Co a Fe b Ni c Mn d B e Si f. Subscripts here are atomic% and "a" is 6
The range is 8.0 to 70.0, and “b” is 2.5 to 4.
0 range, "c" range 0-3, "d"
Is in the range of 1 to 4, "e" is in the range of 10 to 12, and "f" is in the range of 14 to 15. The vitreous alloy has a saturation magnetostriction value in the range of -1 × 10 -6 to + 1 × 10 -6 ,
65-0.80 Tesla saturated magnetic induction, 245-310
It has a Curie temperature in the range of 0 ° C and a primary crystallization temperature in the range of 530-575 ° C.

【0015】発明の説明 この発明によると、少なくとも70%がガラス質であ
り、磁歪がほぼ0で、磁気的及び熱的に高安定で、高透
磁率、低鉄損及び低保磁力を含む諸性質の優れた組み合
せを有する磁性合金が提供される。このガラス質合金は
Coa Feb Nic Mnde Sif の組成を有する。
ここに下付き文字は原子%であり、“a”は68.0〜
70.0の範囲であり、“b”は2.5〜4.0の範囲
であり、“c”は0〜3の範囲であり、“d”は1〜4
の範囲であり、“e”は10〜12の範囲であり、
“f”は14〜15の範囲である。ガラス質合金は−1
×10-6〜+1×10-6の範囲の飽和磁歪値、0.65
〜0.80テスラの飽和磁気誘導、245〜310℃の
範囲のキュリー温度及び530〜575℃の範囲の第1
次結晶化温度を有する。
DESCRIPTION OF THE INVENTION According to the present invention, at least 70% is glassy, has a magnetostriction of almost 0, is highly magnetically and thermally stable, and has high magnetic permeability, low iron loss and low coercive force. A magnetic alloy having a combination of excellent properties is provided. The glassy alloy has the composition Co a Fe b Ni c Mn d B e Si f.
Here, the subscript is atomic% and "a" is 68.0.
70.0 range, "b" is 2.5-4.0 range, "c" is 0-3 range, and "d" is 1-4 range.
And "e" is in the range of 10-12,
“F” is in the range of 14-15. Glassy alloy is -1
Saturation magnetostriction value in the range of x10 -6 to +1 x 10 -6 , 0.65
~ 0.80 Tesla saturation magnetic induction, Curie temperature in the range 245-310 ° C and first in the range 530-575 ° C.
It has a sub-crystallization temperature.

【0016】前記組成の純度は通常の商業的慣習のもの
である。2原子%の(Si+B)はこれらの合金の望ま
しい磁性を大きく劣化させることなく炭素、アルミニウ
ム又はゲルマニウムによって置換することが可能であ
る。
The purity of the composition is that of conventional commercial practice. 2 atom% of (Si + B) can be replaced by carbon, aluminum or germanium without significantly degrading the desired magnetism of these alloys.

【0017】当該発明の磁歪がほぼ0のガラス質合金の
いくつかの磁気的及び熱的性質を表2に列挙する。
Some magnetic and thermal properties of the near zero magnetostrictive glassy alloys of the present invention are listed in Table 2.

【0018】 金属元素Mnの存在はTclを増大し、それゆえ合金系の
熱的安定性を増大する。4原子%を超えるMnの含有量
はしかしながら通常の磁気的装置において望ましくない
245℃より低いレベルにキュリー温度を減少する。
[0018] The presence of the metallic element Mn increases T cl and therefore the thermal stability of the alloy system. A Mn content above 4 atom%, however, reduces the Curie temperature to a level below 245 ° C, which is not desirable in conventional magnetic devices.

【0019】いくつかの応用にとって、微小+又は微小
−の磁歪を有する材料の使用が望ましく又は容認され
る。その例のとき−1×10-6〜+1×10-6の範囲の
飽和磁歪値を示す表2のすべてのガラス質合金が適切で
ある。磁歪値は(Fe+Mn)/(Co+Fe+Mn)
の比率によって本質的に決定される。これらの比率は
0.07〜0.09である。
For some applications, the use of materials with micro + or micro-magnetostriction is desirable or acceptable. In that case, all glassy alloys of Table 2 which exhibit saturation magnetostriction values in the range -1 x 10 -6 to +1 x 10 -6 are suitable. Magnetostriction value is (Fe + Mn) / (Co + Fe + Mn)
It is essentially determined by the ratio of. These ratios are 0.07 to 0.09.

【0020】発明のガラス質合金は、ほかで容易に入手
できる技術によって都合よく調製される:例えば197
4年11月5日に発行されたU.S特許3,845,8
05及び1974年12月24日に発行されたU.S特
許3,856,513参照。一般に連続リボン、線材等
の形のガラス質合金が希望した組成の溶融物から少なく
とも約105 K/秒の冷却速度で急速冷却される。
The glassy alloys of the invention are conveniently prepared by other readily available techniques: eg 197.
U.S. issued on November 5, 4th. S Patent 3,845,8
05 and U.S. See S Patent 3,856,513. Generally, vitreous alloys in the form of continuous ribbons, wires, etc. are rapidly cooled from a melt of the desired composition at a cooling rate of at least about 10 5 K / sec.

【0021】全体の合金組成の10〜12原子%の範囲
のボロンと14〜15原子%の範囲の珪素、合計で24
〜27原子%のボロン及び珪素から成るメタロイド含有
量は、ガラス形成にとって充分である。
Boron in the range of 10 to 12 atomic% and silicon in the range of 14 to 15 atomic% of the total alloy composition, a total of 24
A metalloid content of boron and silicon of ˜27 atomic% is sufficient for glass formation.

【0022】表3及び4は、種々の温度(T0 )で焼鈍
した当該発明の磁歪がほぼ0のガラス質合金の50kヘ
ルツ及び0.1テスラの磁気誘導における透磁率
(μ)、励磁力(P8 )、ac鉄損(L)を示す。要約
すれば、表3に示す熱処理後の水冷によってこの発明の
ガラス質合金は平均してL=4W/kg、P8 =6VA
/kg、及びμ=28,000を示す。熱処理後の徐冷
は、一般に損失と励磁力が高く、低い透磁率となる。熱
処理後徐冷するとき、この発明のいくつかのガラス質合
金は、ともかく、熱処理後急冷した材料によって示され
るものより優れているか又はそれに匹敵するものとな
る。
Tables 3 and 4 show the magnetic permeability (μ) and the exciting force of the glass alloy of the present invention annealed at various temperatures (T 0 ) at a magnetostriction of almost 0 at 50 kHz and 0.1 Tesla. (P 8 ) and ac iron loss (L) are shown. In summary, by virtue of the water cooling after heat treatment shown in Table 3, the glassy alloys of this invention average L = 4 W / kg, P 8 = 6 VA.
/ Kg, and μ = 28,000. The gradual cooling after the heat treatment generally has high loss and exciting force, and has low magnetic permeability. When heat-treated and then annealed, some glassy alloys of the present invention, in any case, outperform or are comparable to those exhibited by the heat-treated and quenched material.

【0023】この発明の範囲外のガラス質合金の例を表
5に列挙する。当該発明の合金によって提供される性質
の有益な組み合せは、Co74Fe620のような高い飽
和磁気誘導を有する従来技術の非磁歪ガラス質合金によ
って得ることができない。というのは、それらのキュリ
ー温度は第1次結晶化温度よりも高くかつ性質を改善す
るための熱処理は低飽和磁気誘導を有すそれらにおいて
効果的でないからである。当該発明のガラス質合金が得
た前記の性質は、従来技術の低磁気誘導ガラス質合金で
得られるかもしれない。ともかく、Co31.2Fe7.8
Ni39.0−B14Si8 のような従来技術の合金は、前記
のように約150℃の相対的に低い温度において磁気的
に不安定になりやすい。従来技術の他のガラス質合金の
優れた組み合した性質は、380℃15分間焼鈍後急冷
したガラス質合金のCo67.4Fe4.1 Ni3.0 Mo1.5
−B12.5Si11.5で得られたL=4W/kg、P8 =7
VA/kg及びμ=23,000であった。当該発明の
ガラス質合金はこのクラスのガラス質合金より一般的に
優れていることは明らかである。
Examples of glassy alloys outside the scope of this invention are listed in Table 5. The beneficial combination of properties provided by the alloys of the present invention cannot be obtained with prior art non-magnetostrictive vitreous alloys with high saturation magnetic induction, such as Co 74 Fe 6 B 20 . Because their Curie temperature is higher than the primary crystallization temperature and heat treatments to improve the properties are not effective in those with low saturation magnetic induction. The above properties obtained by the glassy alloys of the present invention may be obtained by prior art low magnetic induction glassy alloys. Anyway, Co 31.2 Fe 7.8
Prior art alloys such as Ni 39.0 -B 14 Si 8 are susceptible to magnetic instability at relatively low temperatures of about 150 ° C., as mentioned above. The excellent combined properties of other prior art glassy alloys are Co 67.4 Fe 4.1 Ni 3.0 Mo 1.5 which is a glassy alloy annealed at 380 ° C. for 15 minutes and then quenched.
Obtained in -B 12.5 Si 11.5 L = 4W / kg, P 8 = 7
VA / kg and μ = 23,000. It is clear that the glassy alloys of the invention are generally superior to this class of glassy alloys.

【0024】 表5ではa,b,c,d,e及びfの少なくとも1つが
当該発明で限定した組成の範囲外にあるCoa Feb
c Mnde Sif の組成のいくつかの代表的なガラ
ス質合金の磁気的性質を示す。この表は、限定した範囲
外の成分の少なくとも1種を有する合金はキュリー温度
又は飽和磁気誘導のいずれかが多くの磁気的応用で実用
的であるにはあまりにも低いことを示すことを列挙す
る。
[0024] In Table 5, Co a Fe b N in which at least one of a, b, c, d, e and f falls outside the composition range defined by the present invention.
of i c Mn d Some exemplary glassy alloys of the composition of B e Si f shows the magnetic properties. This table lists that alloys having at least one of the components outside the limited range show that either the Curie temperature or the saturation magnetic induction is too low to be practical for many magnetic applications. .

【0025】次の例は、この発明のより完全な理解を提
供するために示される。特定の技術、状態、材料、比率
及び報告されたデータが原理を説明するために示され、
この発明の実際が例として役立ち、この発明の範囲を制
限するものと解釈されるべきでない。
The following example is presented to provide a more complete understanding of the invention. Specific techniques, conditions, materials, ratios and reported data are presented to explain the principle,
The practice of this invention serves as an example and should not be construed as limiting the scope of this invention.

【0026】例 1.試料調製 表2〜5に列挙したガラス質合金がU.S特許3,85
6,513のチェンとポークが教示する技術に従って溶
融物から急冷(約106 K/秒)された。典型的には厚
さ25〜30μm、幅0.5〜2.5cmの得られたリ
ボンは、X線回折法(CuK放射使用)及び走査熱量測
定によって有効な結晶性を欠くことが決定された。ガラ
ス質合金のリボンは強度があり、光沢を有し、硬くかつ
延性を示した。
Example 1. Sample Preparation The glassy alloys listed in Tables 2-5 are U.V. S Patent 3,85
The melt was quenched (about 10 6 K / sec) according to the technique taught by Chen and Pork of 6,513. The resulting ribbon, typically 25-30 μm thick and 0.5-2.5 cm wide, was determined by X-ray diffractometry (using CuK radiation) and scanning calorimetry to lack effective crystallinity. . The glassy alloy ribbon was strong, shiny, hard and ductile.

【0027】2.磁性測定 例1に記載した手順に従い調製したガラス質合金の連続
リボンが密閉した磁石道(closed−magnet
−path)の環状試料を形成するためにボビン(3.
8cmO.D.)に巻かれた。各試料は1〜3gのリボ
ンを含んでいた。絶縁した1次及び2次巻き(各々少な
くとも10を数えて)が環状に適用された。これらの試
料は商用曲線トレーサを用いて初透磁率及びヒステリシ
スループ(保磁力及び残留磁気)並びに鉄損(IEEE
標準106−1972)を得るために用いられた。
2. Magnetism Measurement A closed ribbon of a continuous ribbon of glassy alloy prepared according to the procedure described in Example 1.
Bobbin (3.-path) to form an annular sample.
8 cmO. D. ). Each sample contained 1-3 g of ribbon. Insulated primary and secondary windings (each counting at least 10) were applied annularly. These samples were tested using a commercial curve tracer for initial permeability and hysteresis loops (coercive force and remanence) and iron loss (IEEE).
Used to obtain standards 106-1972).

【0028】各試料の飽和磁化Ms ′が商用振動試料磁
気計(プリンストン応用研究所)を用いて測定された。
この場合に、リボンはいくつかの小さい正方形(ほぼ2
mm×2mm)に切断された。これらは標準方向の周囲
に任意に配向され、それらの平面は付与する磁場(0〜
720kA/m)に平行である。飽和磁気誘導Bs (=
4π4Ms D)は測定された質量密度Dを使用すること
によって計算された。
The saturation magnetization M s ′ of each sample was measured using a commercial vibration sample magnetometer (Princeton Applied Research Laboratory).
In this case, the ribbon is some small squares (approximately 2
mm × 2 mm). These are arbitrarily oriented around the standard direction and their planes are
720 kA / m). Saturation magnetic induction B s (=
4π4M s D) was calculated by using the measured mass density D.

【0029】強磁性キュリー温度(θf )はインダクタ
ンス法によって測定され、結晶化温度を決定するために
主として使用される示差走査熱量測定によっても監視さ
れた。最初の又は第1次結晶化温度(Tcl)は当該及び
従来技術の発明の種々のガラス質合金の熱的安定性を比
較するために使用された。
The ferromagnetic Curie temperature (θ f ) was measured by the inductance method and was also monitored by differential scanning calorimetry, which is mainly used to determine the crystallization temperature. The first or first crystallization temperature (T cl ) was used to compare the thermal stability of the various glassy alloys of the instant and prior art inventions.

【0030】磁気的安定性は、ジャーナル・オブ・アプ
ライド・フィジックス,Vol.49,p.6510
(1978)に記載された方法に従って磁化の再配向運
動学(reorientation kinetic
s)から決定された。その方法はそこへ参照によってそ
の中に示されている。磁歪測定は、リボンの2つの短か
い長さ間に接合(イーストマン−910セメント)され
た金属ストレンゲージ(BLHエレクトロニクス)を使
用した。リボン軸とゲージ軸は平行であった。磁歪は、
式λ=2/3〔(Δl/l)−(Δl/l)〕に従っ
て、平坦な磁場に平行(Δl/l)に及び垂直(Δl/
l)に長さ歪から付与した磁場の関数として決定され
た。発明をかなり詳細に記載したので、この詳細な記載
に厳格に固守する必要はなく、追加した特許請求の範囲
により限定される発明の範囲内に属するすべてのなお一
層の変更及び修正が当業者に示唆されうる。
Magnetic stability is described in Journal of Applied Physics, Vol. 49, p. 6510
Reorientation kinetics of magnetization according to the method described in (1978).
s). The method is shown therein by reference thereto. Magnetostriction measurements used a metal strain gauge (BLH Electronics) bonded (Eastman-910 cement) between two short lengths of ribbon. The ribbon axis and the gauge axis were parallel. Magnetostriction is
According to the formula λ = 2/3 [(Δl / l)-(Δl / l)], parallel to the flat magnetic field (Δl / l) and perpendicular (Δl / l)
It was determined as a function of the applied magnetic field from the length strain in l). Since the invention has been described in considerable detail, it is not necessary to strictly adhere to this detailed description, and all further modifications and alterations that fall within the scope of the invention as defined by the appended claims will occur to those skilled in the art. Can be suggested.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 式Coa Feb Nic Mnde Sif
を有し、式中下付き文字は原子%であり、aは68.0
〜70.0の範囲であり、bは2.5〜4.0の範囲で
あり、cは0〜3の範囲であり、dは1〜4の範囲であ
り、eは10〜12の範囲であり、fは14〜15の範
囲であり、かつ(Fe+Mn)/(Co+Fe+Mn)
の比が0.07−0.09である、少なくとも70%が
ガラス質合金であり、−1×10-6〜+1×10-6の飽
和磁歪の値、245℃〜310℃の範囲のキュリー温
度、530℃〜575℃の範囲の第1次結晶化温度及び
0.65〜0.80テスラの飽和磁気誘導を有する磁性
合金。
1. A formula Co a Fe b Ni c Mn d B e Si f
And the subscript in the formula is atomic% and a is 68.0.
Is in the range of 70.0, b is in the range of 2.5 to 4.0, c is in the range of 0 to 3, d is in the range of 1 to 4, and e is in the range of 10 to 12. And f is in the range of 14 to 15 and (Fe + Mn) / (Co + Fe + Mn)
Ratio is 0.07-0.09, at least 70% glassy alloy, -1 × 10 -6 ~ + 1 × 10 -6 for values of saturation magnetostriction, in the range of 245 ° C. to 310 ° C. Curie A magnetic alloy having a temperature of 530 ° C. to 575 ° C., a primary crystallization temperature, and a saturation magnetic induction of 0.65 to 0.80 Tesla.
【請求項2】 Co68.2Fe3.8 Mn112Si15の組
成を有する請求項1記載の磁性合金。
2. The magnetic alloy according to claim 1, having a composition of Co 68.2 Fe 3.8 Mn 1 B 12 Si 15 .
【請求項3】 Co67.7Fe3.3 Mn212Si15の組
成を有する請求項1記載の磁性合金。
3. The magnetic alloy according to claim 1, having a composition of Co 67.7 Fe 3.3 Mn 2 B 12 Si 15 .
【請求項4】 Co70.0Fe4.0 Mn110Si15の組
成を有する請求項1記載の磁性合金。
4. The magnetic alloy according to claim 1, having a composition of Co 70.0 Fe 4.0 Mn 1 B 10 Si 15 .
【請求項5】 Co69.5Fe3.5 Mn210Si15の組
成を有する請求項1記載の磁性合金。
5. The magnetic alloy according to claim 1, having a composition of Co 69.5 Fe 3.5 Mn 2 B 10 Si 15 .
【請求項6】 Co69.0Fe3.0 Mn310Si15の組
成を有する請求項1記載の磁性合金。
6. The magnetic alloy according to claim 1, having a composition of Co 69.0 Fe 3.0 Mn 3 B 10 Si 15 .
【請求項7】 Co68.5Fe2.5 Mn410Si15の組
成を有する請求項1記載の磁性合金。
7. The magnetic alloy of claim 1 having a composition of Co 68.5 Fe 2.5 Mn 4 B 10 Si 15 .
JP5190314A 1986-11-03 1993-07-30 Vitreous alloy with almost zero magnetostriction for high frequency use Expired - Lifetime JP2697808B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92614786A 1986-11-03 1986-11-03
US926147 1986-11-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62507130A Division JPH0625399B2 (en) 1986-11-03 1987-10-27 Glassy alloy with almost zero magnetostriction for high frequency use

Publications (2)

Publication Number Publication Date
JPH0693392A true JPH0693392A (en) 1994-04-05
JP2697808B2 JP2697808B2 (en) 1998-01-14

Family

ID=25452815

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62507130A Expired - Lifetime JPH0625399B2 (en) 1986-11-03 1987-10-27 Glassy alloy with almost zero magnetostriction for high frequency use
JP5190314A Expired - Lifetime JP2697808B2 (en) 1986-11-03 1993-07-30 Vitreous alloy with almost zero magnetostriction for high frequency use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62507130A Expired - Lifetime JPH0625399B2 (en) 1986-11-03 1987-10-27 Glassy alloy with almost zero magnetostriction for high frequency use

Country Status (4)

Country Link
EP (1) EP0329704B1 (en)
JP (2) JPH0625399B2 (en)
DE (1) DE3775778D1 (en)
WO (1) WO1988003699A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755340B2 (en) * 1998-09-17 2011-08-24 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Current transformer with DC current tolerance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015992A (en) * 1989-06-29 1991-05-14 Pitney Bowes Inc. Cobalt-niobium amorphous ferromagnetic alloys
EP0429022B1 (en) * 1989-11-17 1994-10-26 Hitachi Metals, Ltd. Magnetic alloy with ulrafine crystal grains and method of producing same
DE19533362A1 (en) * 1995-09-09 1997-03-13 Vacuumschmelze Gmbh Elongated body as a security label for electromagnetic anti-theft systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825449A (en) * 1981-08-05 1983-02-15 Toshiba Corp Amorphous magnetic alloy for magnetic head
JPS61210134A (en) * 1985-11-16 1986-09-18 Res Inst Iron Steel Tohoku Univ Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance
JPS61261451A (en) * 1985-05-15 1986-11-19 Mitsubishi Electric Corp Magnetic material and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358576A (en) * 1979-06-09 1994-10-25 Matsushita Electric Industrial Co., Ltd. Amorphous materials with improved properties
JPS5719361A (en) * 1980-07-11 1982-02-01 Hitachi Ltd Amorphous alloy for core of magnetic head and magnetic head for video using it
EP0160166A1 (en) * 1981-11-26 1985-11-06 Allied Corporation Low magnetostriction amorphous metal alloys
DE3275492D1 (en) * 1982-01-18 1987-04-02 Allied Corp Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability
JPS5985835A (en) * 1982-11-10 1984-05-17 Toshiba Corp Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825449A (en) * 1981-08-05 1983-02-15 Toshiba Corp Amorphous magnetic alloy for magnetic head
JPS61261451A (en) * 1985-05-15 1986-11-19 Mitsubishi Electric Corp Magnetic material and its production
JPS61210134A (en) * 1985-11-16 1986-09-18 Res Inst Iron Steel Tohoku Univ Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755340B2 (en) * 1998-09-17 2011-08-24 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Current transformer with DC current tolerance

Also Published As

Publication number Publication date
JPH0625399B2 (en) 1994-04-06
WO1988003699A1 (en) 1988-05-19
JP2697808B2 (en) 1998-01-14
DE3775778D1 (en) 1992-02-13
EP0329704A1 (en) 1989-08-30
EP0329704B1 (en) 1992-01-02
JPH02500788A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
JP2013100603A (en) Magnetic glassy alloy for high frequency application
JP2013168637A (en) Glassy metal alloy for monitoring electron article
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
JP2907271B2 (en) Vitreous alloy with perminbar properties
EP0084138B1 (en) Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability
JP2697808B2 (en) Vitreous alloy with almost zero magnetostriction for high frequency use
JPH04506383A (en) Iron-rich metallic glass with high saturation magnetic induction and outstanding soft ferromagnetism
US4938267A (en) Glassy metal alloys with perminvar characteristics

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970812

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11